Preserved metacognition despite impaired perception of intentionality cues in schizophrenia

Ana Muthesius¹*, Farina Grothey¹, Carter Cunningham², Susanne Hölzer³, Kai Vogeley³,⁴,⁵, Johannes Schultz⁴,⁵*

Affiliations

¹Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany;
²Masters in Neuroscience Program, Medical Faculty, University of Bonn, Bonn, Germany;
³Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM-3), Research Centre Jülich, Jülich, Germany; ⁴Center for Economics and Neuroscience, University of Bonn, Bonn, Germany; ⁵Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Bonn, Germany

*To whom correspondence should be addressed. AM: Department of Psychiatry and Psychotherapy, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; tel: +49 221 4784005; fax: +49 221 4786030; e-mail: ana.muthesius@uk-koeln.de. JS: Center for Economics and Neuroscience, University of Bonn, Nachtigallenweg 86, 53127 Bonn, Germany; +49 228 73 8282; e-mail: johannes.schultz@ukbonn.de.

Word count: Abstract: 178; Body text: 3954

Running title: Preserved metacognition about social perception

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Social cognition and metacognition are frequently impaired in schizophrenia, and these impairments complicate recovery. Recent work suggests that different aspects of metacognition may not be impaired to the same degree. Furthermore, metacognition and the cognitive capacity being monitored need not be similarly impaired. Here, we assessed performance in detecting cues of intentional behaviour as well as metacognition about detecting those cues in schizophrenia. Thirty patients and controls categorized animations of moving dots into those displaying a dyadic interaction demonstrating a chase or no chase and indicated their confidence in these judgments. Perception and metacognition were assessed using signal detection theoretic measures, which were analysed using frequentist and Bayesian statistics. Patients showed a deficit compared to controls in detecting intentionality cues, but showed preserved metacognitive performance into this task. Our study reveals a selective deficit in the perception of intentionality cues, but preserved metacognitive insight into the validity of this perception. It thus appears that impairment of metacognition in schizophrenia varies across cognitive domains - metacognition should not be considered a monolithic stone that is either impaired or unimpaired.

Keywords: social cognition, social perception, meta-d', experimental task, self-monitoring
Introduction

Schizophrenia is one of the most disabling psychiatric diseases. The poor functioning does not only depend on the characteristic psychotic symptoms, but also on deficits in cognitive functions. One type of cognitive function particularly important for understanding daily functioning in people with schizophrenia is social cognition, which has been found to be impaired in numerous studies. Social cognition can be studied for example by assessing the perception of social interactions presented in visual displays: Abstract, interacting moving objects can evoke complex human-like behaviours related to intentions such as chasing each other, wanting something or courting each other. Perceiving such displays is associated with increased activity in a network of brain regions involved in social cognition. Patients with schizophrenia show impairments in correctly attributing intentions to interacting moving objects in different paradigms.

Functional outcomes in schizophrenia also crucially depend on the integrity of metacognitive awareness of one’s own cognitive capacities. A growing number of studies investigated metacognition of perceptual processes. While a recent review has reported small-to-medium sized deficits in metacognition of perception, several examples of preserved metacognition of perception exist. For example, one study reported impaired conscious yet preserved unconscious performance monitoring in a low-level visual perception task in schizophrenia. Another study reported that metacognitive performance monitoring was unrelated to psychosis when perceptual sensitivity was accounted for. Furthermore, self-reported schizotypy in healthy participants was found to contribute little to variations in metacognitive performance. Preserved metacognitive abilities may allow to mitigate the impact of impaired cognitive skills through
Compensatory strategies \cite{2,7,22,23,29-32}. Therefore, a more differentiated investigation may be helpful for understanding self-monitoring deficits in schizophrenia.

Measuring metacognition is difficult as metacognition is not an explicit behaviour. One reliable and bias-free assessment method called meta-d' \cite{33,34} is based on Signal Detection Theory \cite{35,36}. It consists in the combined assessment of discrimination between stimulus alternatives (perceptual performance) and reports of confidence in the discrimination responses. Accurate self-monitoring about perceptual judgments is reflected in higher confidence in true than in false percepts (metacognitive performance) \cite{33,34,37}. In addition, the meta-d’ method allows to measure metacognitive efficiency, a measure of self-monitoring adjusted for differences in perceptual performance \cite{33}. This is particularly useful for distinguishing between cognitive and metacognitive skills in schizophrenia, where cognitive impairments are well known. In fact, the above-mentioned review reported inconclusive metacognitive deficits about perception in schizophrenia when controlling for perceptual performance \cite{25}. Another aspect to consider is that metacognitive sensitivity is often higher for percepts about displays in which a target stimulus is present than for percepts about displays without stimulus \cite{38,39}. This may be due to the fact that more sensory evidence can be accumulated when reporting the presence rather than the absence of a target. For this reason, a variation of meta-d’ evaluates response-specific metacognitive sensitivity \cite{34}.

To investigate metacognition in social perception, we asked schizophrenia patients and healthy controls to report perceived chasing between two interacting dots. This paradigm has revealed an association between perceived chasing and attribution of animacy in healthy individuals \cite{35} and a deficit in the perception of chasing in participants with autism \cite{40}. In addition, participants reported their confidence in their responses. We analysed the data
using signal detection measures of performance and metacognition. Based on previous findings, we hypothesized that patients would perform worse than control persons when asked to judge the presence of chasing. Given mixed findings about perceptual metacognition, we were curious to assess metacognitive performance in this task.

Methods

Thirty patients (age [mean ± SD] 33.6 ± 10.3 y, 8 females) satisfying DSM-V criteria for schizophrenia (DSM-V 295.90) as determined by consultation with treating psychiatrists and medical records and 30 healthy control subjects (age 34.1 ± 10.9 y, 8 females) individually matched for sex and age (±2 y), participated in this study. Participants’ age ranged from 19 to 60 years and were recruited for the present and another experiment, reported in a previous publication⁴⁴. All participants had normal or corrected-to-normal vision and were able to speak German sufficiently well to provide written informed consent, and to understand and follow the task instructions. The number of participants was determined by a power analysis for the previously published study. One patient did not complete the task and dropped out of the study. Patients were in- and outpatients recruited from the Department of Psychiatry at the University Hospital Cologne. Healthy volunteers were recruited among the general population and denied having any current or history of psychiatric diagnoses. Details of the sample are provided in Table 1. The study was carried out in compliance with the latest revision of the Declaration of Helsinki. All participants provided written informed consent. Ethical approval was provided by the University of Cologne Ethics Committee (18–265).
### Table 1.

Demographic Details and Assessment Instrument Scores of Participants

<table>
<thead>
<tr>
<th>Measure</th>
<th>Patients</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td>33.6 ± 10.3</td>
<td>34.1 ± 10.9</td>
</tr>
<tr>
<td>Sex (N females; N males)</td>
<td>8; 22</td>
<td>8; 22</td>
</tr>
<tr>
<td>Disease duration (mo)</td>
<td>106.9 ± 90.9</td>
<td>N.A.</td>
</tr>
<tr>
<td>Medication (mg chlorpromazine/day equivalent)</td>
<td>678.8 ± 416.1</td>
<td>N.A.</td>
</tr>
<tr>
<td>PANSS total score</td>
<td>50.6 ± 11.8</td>
<td>N.A.</td>
</tr>
<tr>
<td>PANSS positive symptoms subscale</td>
<td>11.73 ± 3.62</td>
<td>N.A.</td>
</tr>
<tr>
<td>PANSS negative symptoms subscale</td>
<td>14.13 ± 5.87</td>
<td>N.A.</td>
</tr>
<tr>
<td>PANSS general symptoms subscale</td>
<td>24.76 ± 5.55</td>
<td>N.A.</td>
</tr>
<tr>
<td>CDSS</td>
<td>0.07 ± 0.25</td>
<td>N.A.</td>
</tr>
<tr>
<td>CGI</td>
<td>4.07 ± 0.98</td>
<td>N.A.</td>
</tr>
<tr>
<td>SOFAS</td>
<td>56.53 ± 13.81</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

**Note:** CDSS, Calgary Depression Rating Scale for Schizophrenia; CGI, Clinical Global Impression-scale; PANSS, Positive and Negative Syndrome Scale for Schizophrenia; SOFAS, Social and Occupational Functioning Assessment Scale; N.A.: not applicable. Mean ± SD are shown except if otherwise stated.
Patients’ illness duration varied between 0 (first-episode psychosis) and 25 years. Mean disease duration was $8.9 \pm 7.6$ (median: 6.5) years and widely varied in the sample: Fifteen patients ranged between 0 and 6 years, eight from 6 to 16 years, and seven from 16 to 25 years. Patients were excluded if diagnosed with any comorbid axis-I disorder, significant medical illness including any past or present neurological disorder or acute substance intoxication, or if there was a risk of acute suicidality measured by item 8 of the Calgary Depression Rating Scale for Schizophrenia (CDSS) \(^4^3\). We did not assess IQ but patients with an explicit diagnosis of mental retardation or learning disabilities were excluded. None of the participants were hospitalized coercively by order of the responsible local authorities.

Patients’ symptoms severity were assessed using the Positive and Negative Syndrome Scale for Schizophrenia (PANSS) \(^4^3\). All patients were under antipsychotic medication determined by the treating psychiatrist. Fourteen patients were treated with one, fourteen patients with two, and two patients with three antipsychotics simultaneously. Additionally, seven patients were treated with antidepressants, four with antiepileptics prescribed for anxiolysis and mood stabilization, and one with low potency neuroleptics. Chlorpromazine equivalent dosage of antipsychotic medication (Table 1) was calculated according to published conversion tables \(^4^4^4^5\).

**Experimental Task**

Participants performed a modified version of a social perception task \(^3^5\) and reported their confidence in their responses. In a two-alternative forced choice, participants reported whether two moving dots (one coloured red, the other blue; see Figure 1) on a visual display chase each other or not. In interactive trials, the red dot followed the blue dot, and thus chasing was present. In control trials, the red dot followed the same trajectories as in the interactive trials, but the trajectory of the blue dot was reversed in time and space.
compared to the interactive trials, thus disrupting the chasing (chasing was absent). The degree of dependence between the dots’ trajectories was controlled by one cross-correlation parameter in a mathematical algorithm. A higher value of this parameter made the dots appear to chase each other more in both interactive and control trials. Here, we used two cross-correlation levels (low and high) in both interactive and control trials, resulting in four different trial types: interactive with low cross-correlation, control with low cross-correlation, interactive with high cross-correlation, control with high cross-correlation. There were ten trials per trial type for a total of forty trials, presented in a randomized order. Each trial started with an animation sequence (4.3s) followed by participants’ chasing judgment and confidence rating [evaluated on a scale between 1 (= not confident) and 4 (= highly confident); self-paced].

Figure 1. Stimuli and Task. Example of the displays seen by the participants in the subsequent stages of each trial (stimulus; discrimination task; confidence rating). The white arrows represent the trajectories of the dots and were not shown on the screen.
Measurements

Perceptual performance was assessed through the signal detection theory measure $d'$, which quantified discrimination between trials with chasing and trials without chasing (higher values indicate better discrimination). Perceptual bias was assessed using the measure criterion, or bias, $c'$. Because a higher value of the cross-correlation parameter made the dots appear to chase each other more (in both the interactive and the control trials, leading to false positive chasing detection), we expected participants to tend to report chasing more frequently at the high cross-correlation level than at the low cross-correlation level, leading to a change in $c'$ between cross-correlation levels (lower values indicate a tendency to report chasing).

We calculated three measures of metacognitive performance using the “meta-$d'” toolbox (http://www.columbia.edu/~bsm2105/type2sdt/) implemented in Matlab (MATLAB R2016a, The Mathworks Inc., Natick, USA), with default settings. The first measure is the metacognitive sensitivity meta-$d'$, a response-bias free measure of how well a participant distinguishes between their correct and incorrect judgments. A participant who gives higher confidence ratings after correct judgments and lower confidence ratings after incorrect judgments has high metacognitive sensitivity. The second measure is the relative metacognitive sensitivity meta-$d'/d'$, also known as MRatio or metacognitive efficiency, which measures a participant’s metacognitive sensitivity given a certain level of task performance. The last measure is the response-specific metacognitive efficiency rs-meta-$d'/d'$, which involves calculating rs-meta-$d'$ separately for “yes” and “no” answers. These measures were all estimated for each stimulus cross-correlation level and each participant using the maximum likelihood method, or a simpler sum of squares method in case the maximum likelihood fit did not converge to a solution.
Statistical analysis

Dependent variables were assessed using frequentist and Bayesian repeated-measures ANOVAs implemented in the software JASP, version 0.14.1 (www.jasp-stats.org), using default settings. Reported Bayes Factors (BF$_{10}$) are odds in favour of the alternative hypothesis, i.e., ratios of the likelihood of the alternative hypothesis (=there is a difference between conditions) to the likelihood of the null hypothesis (=there is no difference between conditions), and are interpreted according to the currently recommended heuristic based on Jeffrey’s rule.

As meta-$d'$ and derived values are notoriously difficult to estimate from single-participant data with relatively low trial numbers, differences between participant groups can be directly estimated using a hierarchical Bayesian approach. This approach enhances statistical power, incorporates uncertainty in group-level parameter estimates and avoids edge-correction confounds. We used the HMeta-$d'$ toolbox (https://github.com/metacoglab/HMeta-d) to estimate differences in meta-$d'/d'$ between patients and controls. This toolbox represents all participants’ data in a hierarchical graphical model, and uses a Markov chain Monte Carlo (MCMC) algorithm to estimate the joint posterior distribution of the model parameters, given the model specification and the data. In accordance with HMeta-$d'$ toolbox recommendations, early samples of the posterior distributions were discarded and three chains were run in order to diagnose convergence problems. Differences between participant groups were considered significant if the 95% highest-density intervals (HDI; the intervals containing 95% of the MCMC samples) of the posterior distribution of group-level difference parameters did not overlap with zero.
Results

Perceptual performance

First, we assessed whether changes in the stimuli led to the expected changes in perception. We expected that participants would perceive chasing between the dots more often in displays with a higher cross-correlation level than in displays with a lower cross-correlation level. This would be reflected by lower criterion (c') values at higher cross-correlation level, which is indeed what we observed: Criterion c' was lower in trials with high cross-correlation level than in those with low cross-correlation (Figure 2A; F(1,58) = 148.7, p << 0.001, η_p² = 0.72; two-way repeated measures ANOVA). There was no significant difference between patients and control persons (F(1,58) = 0.17, p = 0.68, η_p² < 0.01) nor interaction between participant group and cross-correlation level (F(1,58) = 0.37, p = 0.55, η_p² < 0.01). A Bayesian repeated-measures ANOVA revealed that the best model included only cross-correlation level (BF_M = 10.66). Post-hoc tests revealed extremely strong evidence of an effect of cross-correlation level (BF_so > 7.7*10^14), and moderately strong evidence toward no difference between patients and controls (BF_so = 0.21). These data suggest that participants of both groups were similarly sensitive to stimulus manipulations.

Patients with schizophrenia were significantly less sensitive (i.e., had lower d' values) in discriminating chasing from no chasing (Figure 2B; F(1,58) = 7.17, p = 0.01, η_p² = 0.11). There was no significant effect of cross-correlation level (F(1,58) = 1.63, p = 0.21, η_p² = 0.03) nor interaction between participant group and cross-correlation level (F(1,58) = 0.68, p = 0.41, η_p² = 0.01). A Bayesian repeated-measures ANOVA revealed that the best model included only participant group (BF_M = 3.38). Post-hoc tests revealed moderate evidence toward no
effect of cross-correlation (BF$_{10} = 0.25$), and moderately strong evidence of a difference between patients and controls (BF$_{10} = 3.25$).

**Metacognitive performance**

Metacognitive sensitivity (meta-$d'$) did not differ significantly between patients and controls (Figure 2C; $F(1,58) < 0.01$, $p = 0.98$, $\eta_p^2 < 0.001$), did not vary with cross-correlation level ($F(1,58) = 0.88$, $p = 0.35$, $\eta_p^2 = 0.015$) and showed no interaction between cross-correlation level and participant groups ($F(1,58) = 0.15$, $p = 0.70$, $\eta_p^2 = 0.003$). A Bayesian repeated-measures ANOVA revealed that the null model best explained the data (BF$_M = 5.92$; including only the subject factor). Post-hoc tests revealed moderately strong evidence toward no effect of cross-correlation (BF$_{10} = 0.22$), and moderately strong evidence toward no difference between patients and controls (BF$_{10} = 0.19$).

Metacognitive efficiency (meta-$d'/d'$) did also not differ between patients and controls (Figure 2D; $F(1,58) = 0.92$, $p = 0.34$, $\eta_p^2 = 0.016$), did not vary with cross-correlation level ($F(1,58) = 0.20$, $p = 0.66$, $\eta_p^2 = 0.003$) and showed no interaction between cross-correlation level and participant groups ($F(1,58) = 2.36$, $p = 0.13$, $\eta_p^2 = 0.039$). The hierarchical Bayesian analysis did not reveal evidence of differences between groups, neither for trials with low nor high cross-correlation (posterior distributions of difference estimates overlapped with 0: mean and 95% highest-density intervals of these distributions were $0.11; [-1.10, 1.22]$ and $0.62; [-0.54, 1.72]$ for trials with low and high cross-correlation, respectively). These results suggest that there was no difference in metacognitive efficiency between patients and controls.

Response-specific metacognitive efficiency (rs-meta-$d'/d'$) did not differ significantly between patients and controls (Figure 2E; $F(1,49) = 0.52$, $p = 0.48$, $\eta_p^2 = 0.010$), did not vary
for “yes” vs. “no” responses ($F(1, 49) < 0.01, \, p = 0.94, \, \eta^2_p < 0.001$) nor with cross-correlation level ($F(1, 49) = 0.17, \, p = 0.68, \, \eta^2_p = 0.003$). Interactions between cross-correlation level and participant groups, cross-correlation level and response, and the three-way interaction were not significant ($F(1, 49) < 1.23, \, p > 0.27, \, \eta^2_p < 0.024$). There was a non-significant trend towards an interaction between response and participant groups ($F(1, 49) = 3.27, \, p = 0.077, \, \eta^2_p = 0.063$). Note that rs-meta-$d'/d'$ could not be estimated for 7 patients and 2 controls because of missing data for either yes or no responses in one or more stimulus conditions. A Bayesian repeated-measures ANOVA revealed that the null model best explained the data ($BF_M = 24.36$; including only the subject factor). Post-hoc tests revealed moderately strong evidence toward no difference between patients and controls and no effect of cross-correlation or response ($BF_{10}$ values were respectively: 0.21; 0.11; 0.11). In sum, we found no evidence for differences in metacognitive performance between patients and controls in any measure of metacognition.
**Figure 2. Results.** (A) Criterion ($c'$) was lower in trials with high compared to low cross-correlation level in both participant groups, indicating a higher tendency to report chasing with high cross-correlation level. (B) Discrimination between chasing and no chasing (measured in $d'$) was reduced in patients compared to control persons. (C-E) No measure of metacognitive performance (C: meta-$d'$; D: meta-$d'/d'$; E: response-specific meta-$d'$) showed a significant difference between participant groups, trial types or response types. Error bars represent ±1 standard deviation, and boxes represent ±1 standard error of the mean.

**Discussion**

This study investigated perceptual and metacognitive performance in a social perception task in patients with schizophrenia and control persons. Consistent with established findings\textsuperscript{6,7}, patients performed worse than control persons in detecting a social percept in displays of abstract social interactions. However, we found no significant differences in metacognitive performance between patients and controls. Bayesian tests indicated moderate effect sizes for both findings. In the context of recent occasional reports of preserved metacognitive capabilities\textsuperscript{25–27}, our findings provide additional evidence for preserved metacognitive abilities.

Social perception in schizophrenia has been studied using a wide variety of tasks and measurements, ranging from descriptions of situations of daily life\textsuperscript{50,51} to the interpretation of displays of interacting abstract objects\textsuperscript{52–54}. One advantage of displays of interacting abstract objects is that cues for intentional behaviour are solely carried by motion parameters, are independent from object appearance, and can be systematically varied in their quantity. This controlled approach to biological motion allows us to assess the
sensitivity to cues about intentions-to-act inscribed in the presented movements irrespective of influences of the objects’ visual appearance or visual context. The psychophysical measures we used here allow a precise quantification of the sensitivity to cues of intentionality and do not depend for example on declarative verbal skills which can be disturbed in persons with schizophrenia.

Patients’ deficit in discriminating between chasing and non-chasing dot displays is unlikely to be due to basic stimulus processing or attention deficits, as we found similar effects of the cross-correlation parameter on perceptual biases between patients and control persons. This suggests that patients could process the stimuli and were not simply overwhelmed by the task. This discrimination deficit indicates reduced sensitivity to visual cues for intentional interactions.

Several previous studies had investigated attributions of intentionality to displays of interacting agents in schizophrenia. One study described a deficit in the spontaneous attribution of social meaning to displays of interacting objects \cite{Gao2009}. Participants verbally described each animation, and these descriptions were rated for the degree of intentionality attributed to the agents. Patients’ descriptions were rated lower in intentionality than those of control persons. This deficit was replicated in subsequent studies \cite{Gao2009,Berger2018}. A chasing detection paradigm with several interacting objects developed by Gao and colleagues (2009) was used in three studies, with two studies reporting preserved detection of cues of intentionality \cite{Gao2009, Berger2018}, while the third reported a deficit \cite{Belanger2018}. Our present findings also reveal a deficit in chasing detection with a different display. In sum, a definitive consensus opinion about whether detection of intentionality cues in displays of interacting abstract agents is impaired in schizophrenia or not has not been reached yet.
We assessed metacognition about social perception by combining perceptual decisions (first-order task) and confidence ratings about these decisions. This procedure is considered to be the gold standard to investigate metacognition, because it allows to assess metacognition while taking into account impairments in first-order performance, which are frequent in schizophrenia. A recent meta-analysis found a global deficit of metacognition in schizophrenia driven by studies which did not equate first-order performance between groups, but no conclusive deficit among studies controlling for first-order performance. We found no significant impairment in metacognitive performance, whether measured as meta d', M-ratio or response-specific M-ratio. Our finding is compatible with the notion that not all types of metacognitive skills are similarly impaired in schizophrenia (see also).

Other studies that have controlled for participant performance have also shown preserved components of metacognition in chronic schizophrenia, in the domains of episodic memory, detection of auditory signals, facial emotion recognition and visual motion perception. For example, Faivre and colleagues reported preserved metacognitive efficiency and sensitivity during perception of visual motion in people with chronic schizophrenia, and equivalent decisional mechanisms in patients and controls.

A more subtle investigation of metacognition consists in assessing the adaptability of metacognitive performance to the stimulus type, such as separate assessment of metacognitive performance for yes and no responses. Indeed, confidence judgments about having perceived a target may be based on the amount of supporting evidence for the target. This is a somewhat different assessment than confidence judgments about not having perceived a target, which is based on the absence of evidence and might thus provide a poorer basis for discerning correct versus incorrect responses. A recent study reported that patients with schizophrenia do not show healthy controls’ adaptability of
metacognitive performance to the type of visual motion stimuli. This could indicate that at least in some domains, patients with schizophrenia are atypical not in their metacognitive abilities, but rather in how their metacognitive capacity adapts to the demands of the cognitive function currently engaged. We found a non-significant trend toward a difference in response-specific metacognitive performance between patients and controls: M-ratios tended to be higher for yes- than for no-responses in control persons, as was observed in previous studies, and interestingly, this trend reversed in patients. While our findings did not reach significance, such a sensitive approach may allow to better understand the mechanisms underlying the reported metacognitive difficulties previously reported in schizophrenia.

Some limitations of our study need to be acknowledged. First, our patient sample was small and heterogeneous: participants consisted of in- and outpatients, the sexes were not equally represented, and the duration of their disease varied widely. Second, while basic parameters such as age and sex were individually matched between patients and controls, we did not match the number of years of education and did not measure participants’ IQ. Lastly, our findings relate to processing of abstract stimuli in an experimental task, and thus our conclusions may not extend to real-life situations.

Social cognition and metacognition are challenging for people with schizophrenia, and are an important focus of psychotherapeutic interventions. If preserved, specific metacognitive abilities can be used by patients to reconsider their interpretation of sensory signals they receive. For example, if patients learned to trust their metacognitive insight into a deficient perceptual process, they could learn to compensate or circumvent their deficit and improve the accuracy of their interpretations. Specifically, compensation could be achieved for example by taking more time and/or gathering more information before
making a decision. Our results give some reason for optimism about this process regarding metacognition of social perception.

Acknowledgments

The authors have declared that there are no conflicts of interest in relation to the subject of this study.

References


30. Lysaker PH, Kukla M, Vohs JL, Schnakenberg Martin AM, Buck KD, Hasson Ohayon I. Metacognition and recovery in schizophrenia: From research to the development of


56. Pinkham AE, Klein HS, Hardaway GB, Kemp KC, Harvey PD. Neural correlates of social
cognitive introspective accuracy in schizophrenia. Schizophr Res. 2018;202:166-172.

57. Faivre N, Roger M, Pereira M, et al. Confidence in visual motion discrimination is


skills training in schizophrenia: An initial efficacy study of stabilized outpatients.

60. Moritz S, Andreou C, Schneider BC, et al. Sowing the seeds of doubt: a narrative

Group Psychotherapy for Schizophrenia and Other Psychotic Disorders, Clinician Guide.

Ansätze zur Vermeidung psychosozialer Behinderungen bei schizophrenen