The New Therapeutics in Alzheimer's Disease Longitudinal Cohort study (NTAD): study protocol

Juliette H Lanskey¹, Ece Kocagoncu², Andrew J Quin³, Yun-Ju Cheng⁴, Melek Karadag², Jemma Pitt³, John Isaac⁵, Stephen Lowe⁴, Michael Perkinton⁶, Vanessa Raymont⁷, Krish D Singh⁸, Mark Woolrich³, Anna C Nobre³, Richard N Henson¹,², James B Rowe¹,² on behalf of the NTAD study group

Affiliations

¹. MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
². Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
³. Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
⁴. Lilly Corporate Center, Indianapolis, USA
⁵. Neuroscience External Innovation, Johnson & Johnson Innovations, London, UK
⁷. Department of Psychiatry, University of Oxford, Oxford, UK
⁸. Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
⁹. Department of Psychiatry, University of Cambridge, Cambridge, UK

Correspondence

Juliette Lanskey
MRC Cognition and Brain Sciences Unit,
15 Chaucer Road,
Cambridge, CB2 7EF, UK
Juliette.lanskey@mrc-cbu.cam.ac.uk

Words 3942
Figures 4
Tables 4

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Introduction
With the pressing need to develop treatments that slow or stop the progression of Alzheimer’s disease, new tools are needed to reduce clinical trial duration and validate new targets for human therapeutics. Such tools could be derived from neurophysiological measurements of disease.

Methods and Analysis
The New Therapeutics in Alzheimer’s disease study (NTAD) aims to identify a biomarker set from magneto/electro-encephalographic that is sensitive to disease and progression over one year. The study will recruit 100 people with amyloid-positive mild cognitive impairment or early-stage Alzheimer’s disease and 30 healthy controls aged between 50 and 85 years. Repeat measurements of the clinical, cognitive and imaging data (magnetoencephalography, electroencephalography and magnetic resonance imaging) of participants with Alzheimer’s disease or mild cognitive impairment will be taken at baseline and at one year. To assess reliability of magneto/electro-encephalographic changes, a subset of 30 participants with mild cognitive impairment or early-stage Alzheimer’s disease will undergo repeat magneto/electro-encephalographic two weeks after baseline. Clinical and cognitive assessment will be repeated at 2 years. Linear mixed models of baseline and longitudinal change in neurophysiology are the primary analyses of interest, supported by Bayesian inference. Additional outputs will include relative effect sizes for physiological markers, atrophy and cognitive change and the respective numbers needed to treat each arm of simulated clinical trials of a future disease modifying therapy.

Ethics and dissemination
The study has received a favourable opinion from the East of England Cambridge Central Research Ethics Committee (REC reference 18/EE/0042). Results will be disseminated through internal reports, peer-reviewed scientific journals, conference presentations, website publication, submission to regulatory authorities and other publications. Data will be made available via the Dementias Platform UK Data Portal on completion of initial analyses by the NTAD study group.
STRENGTHS AND LIMITATIONS OF THIS STUDY

Strengths:
- NTAD is a longitudinal, multicentre study of magneto/electro-encephalographic measures of Alzheimer’s disease progression
- NTAD assesses the test-retest reliability of magneto/electro-encephalographic parameters
- All participants with early-stage Alzheimer’s disease or mild cognitive impairment will be amyloid-positive

Limitations:
- Attrition during follow up may limit inferences
- Recruitment is from volunteer panels and clinical services that may not reflect national diversity of people affected by Alzheimer’s disease
INTRODUCTION

With 44 million people living worldwide with dementia, treatments to slow or stop disease progression are urgently needed. Alzheimer’s disease is the most prevalent dementia but despite rapid advances in therapeutics within preclinical models,[1,2] clinical trials remain expensive, slow and challenging[3–5] with high-profile failures.[6] Significant bottlenecks exist in early-phase trials, where efficacy rates are very low and costs rapidly escalate. To bridge the gap between animal models and the human disease, better tools are needed to quantify pathogenic and pathophysiological mechanisms in patients, in vivo providing evidence to pursue or discontinue trials of a candidate treatment. These tools should be safe, scalable and able to support early-phase trials over a short duration and viable budget.

Brain imaging is widely used to diagnose dementia and measure pathology in clinical trials. There are diverse imaging methods with differential sensitivity to brain structure, chemistry, pathology and function. For example, magnetic resonance imaging (MRI) is commonly used to measure structural changes related to Alzheimer’s disease,[7] such as entorhinal cortex[8] and hippocampus volumes.[9] Positron emission tomography (PET) can quantify and localise Alzheimer pathology, through the use of ligands that bind to the aggregated tau protein,[10–14] beta-amyloid plaques[15] and neuroinflammation.[16]

The loss of synapses and synaptic plasticity is an early feature of Alzheimer’s disease.[17–19] Indeed, measures of synaptic loss may be more sensitive than measures of atrophy to cognitive decline.[20,21] As synaptic changes occur early in Alzheimer’s disease,[20] such measures could be sensitive to the earliest precursors of cognitive involvement. This accords with preclinical models in transgenic mice where network physiology and cognition are impaired before tangles or cell death.[22]

In contrast to preclinical models and post-mortem analysis, there are limited options to assess synaptic function in humans, in vivo. While PET imaging now offers ligands that indirectly quantify synaptic density, electroencephalography (EEG) and magnetoencephalography (MEG) measure neurophysiological properties that depend on synaptic integrity and function within local and large-scale brain networks. MEG can identify synaptic and local circuit impairments[23,24] and their impact on network dynamics in Alzheimer’s Disease,[25–28] frontotemporal dementia,[24,29–32] and Lewy-body disease.[33] MEG and EEG therefore have potential to support and de-risk clinical trials of novel compounds. However, to enable MEG as a viable biomarker in clinical trials, one must assess longitudinal MEG and test-retest reliability and harmonise MEG protocols across sites.

The New Therapeutics for Alzheimer’s Disease (NTAD) study aims to identify viable MEG and EEG biomarkers for clinical trials. The NTAD consortium is a multicentre study established by the Dementias Platform UK and supported by the Medical Research Council, Alzheimer’s Research UK and industry partners.

This paper describes the NTAD study and its protocol to acquire longitudinal MEG and EEG data in people with biomarker-positive mild cognitive impairment and early Alzheimer’s disease.

Research Aims

The primary objective is to identify a biomarker set from neurophysiological MEG and EEG that is sensitive to the presence and progression of Alzheimer’s disease. We aim to harmonise MEG protocols across sites to allow biomarker identification from pooled data. Such a neurophysiological biomarker, or biomarker set, should be related to cognitive function, have high test-retest reliability and be able to track disease progression over the duration of clinical
trials. The sensitivity to disease progression should ideally also outperform current widely used biomarkers such as MRI and cognitive tests.

Our secondary objective is to identify a biomarker set that can predict disease progression, explaining individual differences in the future trajectory of disease (i.e. prognostic from baseline) and the variation in cognitive decline over time (i.e. mediating mechanisms).

Analysis

The analysis of MEG parameters will occur in two stages. Stage 1 analyses will identify baseline, disease-sensitive MEG parameters and assess their reliability using test-retest data. Stage 2 analyses will assess the sensitivity of these parameters to longitudinal change.

Stage 1 analyses will assess the sensitivity of the cross-sectional MEG parameters to group effects (using parametric or non-parametric frequentist tests and receiver operating characteristic analyses and their Bayesian analogues), their correlation to baseline cognition (using Pearson or Spearman’s rank correlation coefficient analyses) and their test-retest reliability (using intraclass correlation coefficient analyses). Stage 2 longitudinal analyses will assess how these neurophysiological markers change over ~12 months (using linear mixed models of change) and compare their sensitivity (as accuracy and effects sizes) to disease progression with MRI and cognitive measures. Using multiple regression models, we will identify baseline biomarkers that are predictive of disease progression. Post-hoc exploratory analyses will examine the relationship between cognitive and imaging biomarkers as a function of: (i) variations in tau haplotype, (ii) polymorphisms of genes related to plasticity (e.g. brain-derived neurotrophic factor), (iii) Alzheimer’s disease risk alleles (e.g. apolipoprotein e4), (iv) polygenic risk scores of Alzheimer’s disease, and (v) plasma tau levels.

METHODS

Study Design

This is a repeated-measures, observational-design study with 130 participants tested at two sites: Cambridge University and Oxford University. The protocol includes two stages (Figure 1). The first, cross-sectional stage consists of baseline and test-retest sessions. Baseline sessions are comprised of clinical and neuropsychological assessments, an MRI scan and a MEG combined with EEG (M/EEG) scan. For the test-retest session, a subset of patients returns for a second M/EEG scan approximately two weeks after the first. Stage 2, at 12-months, repeats baseline sessions, followed by a 24-month clinical and neuropsychological reassessment of patients.

Participant recruitment and selection

Participants will be aged between 50 and 85 years, with similar numbers of men and women, with symptomatic mild cognitive impairment or Alzheimer’s Disease (n=100) or normal cognition (n=30, Figure 1). Potential participants are identified using local registry data, regional memory clinics and Join Dementia Research. People completing other observational studies may also be invited to screening.

A participant information sheet detailing the study procedures is provided to candidate participants and a study partner (their ‘informant’). The informant is someone who regularly sees the participant and is willing to attend and complete the assessments. Candidate
participants are invited to a screening appointment where any further questions they may have are answered before they provide written, informed consent. The screening appointment allows further assessment of eligibility according to inclusion and exclusion criteria (Table 1). Eligible people proceed to Stage 1.
<table>
<thead>
<tr>
<th>Group inclusion criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
</tr>
<tr>
<td>Diagnosis of MCI or AD</td>
</tr>
<tr>
<td>Positive amyloid status (CSF or PET)</td>
</tr>
<tr>
<td>MMSE > 18</td>
</tr>
<tr>
<td>CDR =0.5 – 1</td>
</tr>
<tr>
<td>50-85 years</td>
</tr>
<tr>
<td>Controls</td>
</tr>
<tr>
<td>No neurological diagnosis</td>
</tr>
<tr>
<td>Known amyloid status (CSF or PET)</td>
</tr>
<tr>
<td>MMSE > 24</td>
</tr>
<tr>
<td>CDR =0</td>
</tr>
<tr>
<td>50-85 years</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General exclusion criteria (patients and controls)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significant neurological disease, other than Alzheimer’s disease, that may affect cognition or ability to complete the study</td>
</tr>
<tr>
<td>Presence of any significant psychiatric disorder that could affect participation [68]</td>
</tr>
<tr>
<td>Any clinically significant abnormality that could compromise study participation</td>
</tr>
<tr>
<td>A clinically significant illness, medical or surgical procedure, or trauma within 30 days prior to screening or baseline</td>
</tr>
<tr>
<td>Known or suspected systemic infection</td>
</tr>
<tr>
<td>Medications affecting cognition, unless on a stable dose for >30 days prior to baseline</td>
</tr>
<tr>
<td>Rosen Modified Hachinski Ischaemic score ≥ 4</td>
</tr>
<tr>
<td>History of seizure, except febrile seizures or single provoked seizure</td>
</tr>
<tr>
<td>Head trauma resulting in protracted loss of consciousness, or serious infectious disease affecting the brain, within five years of screening and baseline</td>
</tr>
<tr>
<td>Participation in a clinical trial of an investigational medicinal product</td>
</tr>
<tr>
<td>Impairment of vision or hearing that could affect study participation</td>
</tr>
<tr>
<td>Formal education ≤ 7 years</td>
</tr>
<tr>
<td>Lack of mental capacity or other ability to consent</td>
</tr>
<tr>
<td>Inability to read and write fluently in English</td>
</tr>
<tr>
<td>Inability to walk 10 metres independently</td>
</tr>
<tr>
<td>Contraindications to blood sampling</td>
</tr>
<tr>
<td>Contraindications to lumbar puncture (e.g. spinal deformations) and amyloid PET scan</td>
</tr>
<tr>
<td>Contraindication to MRI (including, but not limited to, claustrophobia; pregnancy; MR-incompatible pacemakers and other MR-incompatible, implanted medical devices)</td>
</tr>
<tr>
<td>Metallic implants in the body that affect MEG recordings, as judged by the Investigator</td>
</tr>
</tbody>
</table>

Table 1 Group inclusion criteria and general exclusion criteria. MCI=Mild Cognitive Impairment, AD=Alzheimer’s Disease, MMSE=Mini Mental State Examination, CDR=Clinical dementia rating
Figure 1 Participant flow chart. A) Recruitment strategy: Electronic screening of records from regional memory clinics and Join Dementia Research generates approximately 300 potential patient and 1000 potential patient and control participants who are invited to telephone screening. People who remain eligible are screened further on-site to identify 100 patient and 30 control participants.

B) Study stages: Stage 1 consists of the cross-sectional baseline assessments and, for 30 patients, a repeat of the M/EEG assessment two weeks after the first. Only patients continue to the longitudinal stage 2 of the study, with repeat 12 and 24 months after baseline. Attrition of 20% is expected at stage 2. M/EEG=Magnetoencephalography combined with electroencephalography imaging, MRI=Magnetic resonance imaging.
Sample Size and Power

With power of 80% and $\alpha=0.05$, a one-tailed test of the cross-sectional NTAD data should detect (i) medium, group-wise effect sizes of >0.5 and (ii) correlations with disease severity of >0.25. With 20% attrition in follow up and $\alpha=0.05$, within-sample effect size >0.28 achieves power 80% (Figure 2).[34]

![Figure 2 Effect sizes required to detect longitudinal correlations with disease severity at different attrition rates (resulting in reduced longitudinal sample size) with 80% power and $\alpha=0.05$. We expect <20% attrition.](image-url)

STUDY PROCEDURES

Overview of protocol stages

Screening

Potential participants are identified by electronically screening registry data from Join Dementia Research and regional memory clinics. Prospective participants are screened further on-site. After written, informed consent, a doctor administers the clinical interview and Haschinski ischemic scale. The remaining clinical assessments are completed by a member of the research team and include physiology and blood sampling. If amyloid status is unknown, participants proceed to either cerebrospinal fluid examination or amyloid PET imaging according to participant preference and eligibility. For patients, where participants’ amyloid status has been confirmed at any timepoint previously, a positive result enables participation, a negative result excludes participation.

Stage 1: Baseline

One hundred people with mild cognitive impairment or Alzheimer’s disease and 30 neurologically normal people proceed to baseline assessment. Participants undergo structured neuropsychological assessment, an M/EEG scan and MRI imaging of brain structure and function over two sessions (or three by preference).

Stage 1: Two-week M/EEG retest

We invite 30 people from the patient group (i.e. mild cognitive impairment or Alzheimer’s disease) to repeat the M/EEG scan between two and four weeks after the first scan.
Invitations are prioritised to people who can most readily attend the additional session (e.g. considering distance) until the target sample size is reached.

Stage 2: Annual follow-up 1
Participants in the patient group repeat the clinical and neuropsychological assessments, M/EEG scan, MRI scan and blood collection at 12 months after baseline.

Stage 2: Annual follow-up 2
Clinical and neuropsychological assessments are repeated at 24 months for participants in the patient group.

The timeline for the study is illustrated in Figure 3.

Blood Samples
Participants are asked to consume only water for two hours prior to blood collection. At baseline and follow-up, blood is drawn in the following order: 2.7ml in Sodium Citrate Tubes (plasma), 5ml in Serum Separator Tubes (serum), 10ml in an EDTA tube (DNA), 10ml in an EDTA tube (plasma and buffy coat) and 2.5ml in each of 2 PAXgene tubes (RNA). Once filled, the EDTA and PAXgene tubes are gently inverted 10 times. From April 2021, 4.9ml of blood is collected for SARS-CoV-2 serology. The samples are processed and frozen according to the guidelines for the constituents of interest in...
Clinical criteria are insufficient to reliably diagnose the presence of Alzheimer’s disease pathology.[35,36] We seek additional biomarker evidence of the presence of Alzheimer’s pathology, using either cerebrospinal fluid or PET imaging according to participant preference and eligibility.[37]

Cerebrospinal fluid
Cerebrospinal fluid is obtained by lumbar puncture and collected in polypropylene tubes. Within one hour of collection, the cerebrospinal fluid is centrifuged, separated and the supernatant frozen to −80°C for later batched analysis using a chemiluminescent enzyme immunoassay for total tau, phosphorylated tau and amyloid beta 1-42 levels. Positive amyloid status is indicated by a total tau to amyloid beta 1-42 ratio >1, and amyloid beta 1-42 concentration <450pg/ml.

Amyloid PET
Participants receive a 300 MBq bolus injection of florbetaben and are scanned 80-100 minutes post-injection on a GE Signa PET/MR scanner at the Wolfson Brain Imaging Centre, Cambridge or a GE D710 PET/CT scanner at the Churchill Hospital, Oxford. The centiloid method is used to classify the florbetaben scans as amyloid positive with centiloid >1.19.[38,39]

Clinical Assessments
Clinical assessments are completed at a clinical research centre in one or two sessions.

Clinical Interview
A study clinician interviews the participant and study partner. The clinician follows a structured interview that covers socio-demographic factors, including age and years of life, education, and occupation.
education; lifestyle factors; family history of dementia; medical history, including information on significant medical conditions with date of onset; and concomitant medication usage, with details about dosage and duration.

Addenbrooke’s Cognitive Examination
The revised Addenbrooke’s Cognitive Examination (ACE-R) evaluates orientation, memory, verbal fluency, language and visuo-spatial domains.[40] It is administered and scored according to the ACE-R Administration and Scoring Guide (2006). Alternate versions at each visit reduce practice effects.

Mini-Mental State Examination
The Mini-Mental State Examination was acquired.[41]

Clinical Dementia Rating
The Clinical Dementia Rating quantifies the severity of dementia through a structured interview.[42–44] The interviewer rates participant impairments in 6 categories: memory, orientation, judgment and problem solving, community affairs, home and hobbies and personal care. The global CDR is derived from these ratings.[43]

Haschinski Ischaemic Score
The Rosen modification of Haschinski’s Ischaemic Score seeks to differentiate between primary progressive dementias, including Alzheimer’s disease and multi-infarct dementia.[45] A study clinician uses information from medical history, physical and neurological examination and medical records to determine the score. Scores below 4 indicate a low likelihood of vascular disease as the cause of dementia.

Self-reported questionnaires
The participant completes the 30-item Geriatric Depression Scale,[46] 40-item Spielberger State-Trait Anxiety Inventory,[47] and 11-item Pittsburgh Sleep Quality Index.[48] The study partner completes the 30-item Amsterdam Instrumental Activity of Daily Living Questionnaire (short version)[49] and Mild Behavioral Impairment Checklist.[50]

Physiological measures
Height, weight, hip-waist ratio, blood pressure, pulse rate and temperature are measured for each participant using a stadiometer, electronic weight scales and stretch-resistant tape.

Neuropsychological Assessment
The neuropsychological test battery closely resembles the Deep and Frequent Phenotyping study[51] and IMI-European Prevention of Alzheimer’s Disease,[52,53] including the Pre-Alzheimer Cognitive Composite.[54] The assessments take place in a private, testing room in one session with breaks as needed (see Table 3).
Repeatable Battery for the Assessment of Neuropsychological Status

Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) measures cognitive decline in 5 domains: immediate memory, visuospatial, language, attention and delayed memory.[55] Participants receive alternate forms at repeated assessments. The immediate memory index comprises the list learning subtest, with immediate recall of 10-items over 4 trials and the story memory subtest, with immediate recall of a 12-item story over two trials. The visuospatial index comprises the figure copy subtest, which involves copying a geometric figure and the line orientation subtest. The language index comprises the 10-item, picture naming subtest and the semantic fluency subtest, where the participant must name as many exemplars of the given semantic category as they can in 60 seconds. The attention index comprises the digit span forwards subtest, involving immediate recall.

<table>
<thead>
<tr>
<th>Order of assessments</th>
<th>Duration (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. List learning (RBANS subtest)</td>
<td></td>
</tr>
<tr>
<td>2. Story memory (RBANS subtest)</td>
<td></td>
</tr>
<tr>
<td>3. Figure Copy (RBANS subtest)</td>
<td></td>
</tr>
<tr>
<td>4. Line orientation (RBANS subtest)</td>
<td></td>
</tr>
<tr>
<td>5. Semantic fluency (RBANS subtest)</td>
<td></td>
</tr>
<tr>
<td>6. Digit span forwards (RBANS subtest)</td>
<td>≈ 40</td>
</tr>
<tr>
<td>8. Semantic fluency (RBANS subtest)</td>
<td></td>
</tr>
<tr>
<td>9. Coding (RBANS subtest)</td>
<td></td>
</tr>
<tr>
<td>10. List recall (RBANS subtest)</td>
<td></td>
</tr>
<tr>
<td>11. List recognition (RBANS subtest)</td>
<td></td>
</tr>
<tr>
<td>12. Story recall (RBANS subtest)</td>
<td></td>
</tr>
<tr>
<td>13. Figure recall (RBANS subtest)</td>
<td></td>
</tr>
<tr>
<td>14. Free and cued selective reminding test</td>
<td></td>
</tr>
<tr>
<td>15. Logical memory part 1</td>
<td>≈ 15</td>
</tr>
<tr>
<td>16. National adult reading test</td>
<td></td>
</tr>
<tr>
<td>17. Digit symbol substitution</td>
<td>≈ 45</td>
</tr>
<tr>
<td>18. Trails B</td>
<td></td>
</tr>
<tr>
<td>19. Logical memory part 2</td>
<td></td>
</tr>
<tr>
<td>20. Reaction time task (CANTAB subtest)</td>
<td></td>
</tr>
<tr>
<td>21. Paired associates learning (CANTAB subtest)</td>
<td></td>
</tr>
<tr>
<td>22. Rapid visual processing (CANTAB subtest)</td>
<td>≈ 30</td>
</tr>
<tr>
<td>23. Spatial working memory (CANTAB subtest)</td>
<td></td>
</tr>
<tr>
<td>24. Four mountains task</td>
<td></td>
</tr>
</tbody>
</table>

Break

Table 3 Order of neuropsychological assessments. RBANS=Repeatable Battery for the Assessment of Neuropsychological Status, CANTAB = Cambridge Neuropsychological Test Automated Battery

Repeteable Battery for the Assessment of Neuropsychological Status

Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) measures cognitive decline in 5 domains: immediate memory, visuospatial, language, attention and delayed memory.[55] Participants receive alternate forms at repeated assessments. The immediate memory index comprises the list learning subtest, with immediate recall of 10-items over 4 trials and the story memory subtest, with immediate recall of a 12-item story over two trials. The visuospatial index comprises the figure copy subtest, which involves copying a geometric figure and the line orientation subtest. The language index comprises the 10-item, picture naming subtest and the semantic fluency subtest, where the participant must name as many exemplars of the given semantic category as they can in 60 seconds. The attention index comprises the digit span forwards subtest, involving immediate recall.
repetition of increasing digit strings and the coding subtest, scored as the total number of correctly coded numbers generated using an item-to-number code within 90 seconds. The delayed memory index comprises the list recall subtest, involving free recall of the list learning task; list recognition, where the participant decides whether a word was included in the list learning task; story recall, where the participant freely recalls the story memory task; and figure recall, where the participant draws from memory the figure presented in the figure copy task.

Digit Span Backwards

Digit span backwards, from the Wechsler adult intelligent scale,[56] is used in conjunction with RBANS digit span forwards. It follows the RBANS digit span format except that the participant is asked to immediately repeat in reverse order.

Free and Cued Selective Reminding Test

The Free and Cued Selective Reminding Test assesses episodic memory and distinguishes retrieval from storage deficits.[57] Sixteen pictured items are encoded during the initial learning phase, where the participant identifies and names items responding to unique semantic cues. After a short delay, the participant freely recalls all items. The interviewer prompts for each item not recalled using the unique semantic cues from the learning phase. Participants receive alternate forms at repeated assessments. This test forms part of the Pre-Alzheimer Cognitive Composite.

Logical Memory

Logical Memory, taken from the third edition of the Wechsler memory scale, assesses episodic memory.[58] The participant immediately recalls short stories they have been read. After a 30-minute delay with intervening tests, the participant freely recalls the stories and answers yes or no questions that test story recognition. This test forms part of the Pre-Alzheimer Cognitive Composite.

National Adult Reading Test

The national adult reading test (second edition) estimates premorbid intelligence,[59] from printed irregular words.

Digit Symbol Substitution

The digit symbol substitution from the Wechsler Adult Intelligence Scale assesses processing speed and attention.[56] The participant has 90 seconds to code as many correct symbols as possible corresponding to presented numbers by using the given number-to-symbol code. This test forms part of the Pre-Alzheimer Cognitive Composite.

Trails Making Test B

The Trails Making Test B assesses executive function, attention and processing speed.[60] Following a practice sample to ensure the participant understands the task, the participant is presented with the test comprising 25 encircled numbers which they must connect by alternating between numbers and letters. The time it takes to complete the sample and any errors made are recorded.

Cambridge Neuropsychological Test Automated Battery

The tablet-based Cambridge Neuropsychological Test Automated Battery test battery assesses processing speed, episodic memory, attention, working memory and executive
function.[61] The reaction time task (simple and five choice variant) assesses processing speed. The participant holds down a response button and must release this to respond to a target on screen. The paired associates learning task (standard variant) assesses episodic memory. The participant learns associations between patterns and their locations. There is an initial learning stage followed by immediate recall. The rapid visual processing task (3 target variant) assesses attention. Single digits appear on the screen and the participant responds when they see a string matching the target sequences. The spatial working memory task (standard variant) assesses working memory and executive function. The participant searches inside multiple boxes on the screen to find and collect tokens. Tokens do not appear in the same box twice.

Four Mountains Task
The tablet-based four mountains task assesses allocentric spatial processing.[62] During a learning phase of each trial, the participant learns the topographical layout of 4 mountains presented in a computer-generated landscape. Following a delay, the participant is presented with four alternative images and must identify the target image that matches the topographical mountain layout of the image presented in the learning phase of the trial, but with potentially altered colours, textures and points of view.

Neurophysiology (M/EEG)
M/EEG data are collected simultaneously in a magnetically-shielded room. At Cambridge, data are collected using the Elekta VectorView system from 2017 to December 2019, with 204 planar gradiometers and 102 magnetometers and a 70-channel Easycap. Stage 1 scans and the first 12 follow-up scans used the same scanner. The MEGIN Triux Neo M/EEG scanner is used from March 2020 onwards with the same sensor configuration as the VectorView and a 64-channel Easycap. At Oxford, the MEGIN Triux Neo M/EEG scanner and an EasyCap 60 channel BrainCap for MEG with an augmented 10/20 layout are used for all data collection. M/EEG data are collected at 1000Hz.

The position of the standard fiducial points, >300 additional head points, five head position indicator coils and the EEG electrodes are recorded using the Polhemus digitisation system. The head position indicator coils measure head position within the MEG helmet. Three pairs of bipolar electrodes record electrocardiogram data, with electrodes placed on the right clavicle and left lower rib, and vertical and horizontal electrooculogram data, with electrodes placed above the left eyebrow, below the left eye and lateral canthus of each eye. A reference electrode is placed on the left side of the nose and a ground electrode is placed on the left cheek. During the seated scan, the participant rests or performs simple task using a button box to respond. The participant wears non-magnetic earphones with sound delivered through plastic tubes and, if necessary, non-magnetic glasses. Prior to M/EEG a Snellen eye test and pure tone audiometry assess sight and hearing thresholds. The tasks are carried out in the following order for each M/EEG session. The study will identify a harmonised MEG/EEG pre-processing pipeline, to be confirmed before baseline data acquisition is completed.

Simple audio-visual task
The participant fixates on a red central fixation dot and responds each time an auditory or visual stimulus is presented (see Figure 4a). Auditory tones (n=100) of 300, 600 or 1200Hz frequency are presented for 300-ms duration after a blank interval of 1000ms. Visual stimuli are concentric black and white circles that appear for 300ms after 3000ms. Participants respond as quickly as possible after detecting a stimulus. Filler trials (n=30) containing only the red fixation dot are also included. Visual and auditory trials are randomly interspersed. Ten initial practice trials are also included to familiarise participants to the task.
Auditory Mismatch-negativity Task

The roving auditory mismatch negativity task is designed to elicit error responses to novel, deviant tones followed by rapid plasticity as predictions are updated upon repetition of the deviant stimulus.\[63,64\] The participant passively watches a muted nature documentary. Through earpieces, they hear binaural, in-phase sinusoidal tones >60dB above the average auditory threshold with a duration of 100ms and stimulus onset asynchrony of 500ms. The frequency of each tone is the same within a block but different between the blocks. Blocks range from 400 to 800 Hz. The number of tones per blocks varies from 3 to 11, according to a truncated exponential distribution. The first tone of each block is called a deviant tone and the sixth repetition is called a standard tone (see Figure 4b).

Scene Repetition Task

In this passive memory test, participants view a series of complex scenes (landscapes and cityscapes) and press a button only when they see a scene containing a moon (n=26, different moon images). Target scenes containing a moon require participants to attend to every scene but are not of interest; the main interest is the difference between initial and repeated presentation of the non-target scenes. Each scene is presented for 800ms and preceded by a fixation cross presented for 200ms on average (100-300ms). Scenes are pseudo-randomly intermixed with the constraint that there are 10 initial ‘burn-in’ complex scenes with 2 moon target scenes, followed by 256 complex scenes presented twice with 14-93 (median=42) intervening scenes between the first and repeat presentation (see Figure 4c).

Cross-modal Oddball Task

The task assesses hippocampal-dependent paired associates learning.\[65,66\] The trials comprise a visual abstract “object” for 700ms and a sound presented for 400ms, starting 300ms after trial onset. The inter-stimulus interval averages 300ms. During the initial training period (80 trials), participants learn the association between four standard pairs of visual objects and sounds. The main task consists of 770 bimodal trials and 40 unimodal, target trials. The trials are randomly intermixed. The bimodal trials consist of: the standard, learnt pairs of objects and sounds (n=670); standard objects paired with a novel sound (n=50); and mismatched object-sound pairs, where the sound from a pre-learnt, standard pair is presented with an object from a different learnt, standard pair (n=50). For unimodal trials, the participant presses a button when they see a fifth visual object (the letter ‘a’, see Figure 4d) which ensures the task is attended. The task is followed by a 10-item assessment in which a standard sound is presented and the participant reports which of four presented objects the sound was paired with most often during the task.

Eyes-open Resting State

The participant is presented with a small central fixation cross and is given the following instructions: ‘In the next 5 minutes, we will do a recording as you rest. Please clear your mind, relax, and try not to think of anything in particular. Please stay awake and focus your eyes on the cross at the centre of the screen’.

Eyes-closed Resting State

The participant is given the following instructions: ‘In the next 5 min, we will do a recording as you rest. Please clear your mind, relax, and try not to think of anything in particular. Please close your eyes but do not fall asleep.’
Figure 4

a) Audio-visual task: Participants visually fixate on a red dot and press a button whenever they hear or see something.

b) Mismatch-negativity task: Participants passively watch a nature documentary while listening to tones through the earpieces. Red dashes represent deviant tones and black dashes represent standard tones (from the sixth repetition).

c) Scene repetition task: Participants view scenes and press the button when they see a scene containing a moon. Each non-target scene repeats once during the task.

d) Cross-modal oddball task: Participants view object-tone pairs consisting of 4 learnt (standard) pairs (the standard sounds are black in the figure); associative-deviant, object-tone pairs (the associative-deviant sound is coloured red in the figure); and standard objects presented with novel tones (the novel-deviant tones are blue in the figure). The participant presses a button when they see the letter 'a'.
Magnetic Resonance Imaging

The MRI sequences use 3T Siemens PRISMA scanners, at the MRC Cognition and Brain Science Unit, Cambridge, and the Oxford Centre for Human Brain Activity, Oxford. The sequences in order of acquisition are: localiser, T1-weighted, T2 Fluid Attenuated Inversion Recovery (FLAIR), T2*-weighted, T2-weighted with fat saturation, diffusion weighted imaging, quantitative susceptibility mapping, resting state eyes open, hippocampal subfields, and 3D arterial spin labelling. Details of the sequences are in Table 4.

<table>
<thead>
<tr>
<th>Sequence Type</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1-weighted</td>
<td>The 3D T1-weighted structural image is acquired using the Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) technique applied to a high-resolution Magnetization Prepared Rapid Gradient Echo (MPRAGE) sequence with the following parameters: TE=2.91ms, TR =2300.00ms, TI=900.00ms, flip angle =9 degrees, acquisition matrix =256 x 240, voxel size =1.00mm isotropic, number of slices =176, slice thickness =1mm, acquisition time =5 minutes and 12 seconds</td>
</tr>
<tr>
<td>T2 FLAIR</td>
<td>The 3D FLAIR structural image is acquired using the following parameters: TE=394.00ms, TR =5000.00ms, TI =1650.00ms, flip angle =120 degrees, acquisition matrix =256 x 256, voxel size =1.00mm isotropic, number of slices =192, slice thickness =1.00mm, acquisition time =5 minutes and 7 seconds</td>
</tr>
<tr>
<td>T2-weighted*</td>
<td>The T2*-weighted structural image is acquired using the following parameters: TE =20.00ms, TR =640.00ms, Flip angle =20 degrees, acquisition matrix =256 x 256, number of slices =47, slice thickness =3.00mm, Voxel size =0.90x0.90x3.00mm, Acquisition time =4 minutes and 7 seconds</td>
</tr>
<tr>
<td>T2-weighted with fat saturation</td>
<td>The T2-weighted image with fat saturation is acquired with the following parameters: TE =78.00ms, TR =4000.00ms, flip angle =150 degrees, acquisition matrix =256x232, number of slices =47, slice thickness =3.00mm, voxel size =0.90x0.90x3.00mm, acquisition time =3 minutes and 26 seconds</td>
</tr>
<tr>
<td>Diffusion Weighted Imaging</td>
<td>The Diffusion-Weighted Images are acquired with a spin-echo echo-planar sequence. B-values of 0, 300, 700 and 2000 s/mm² were used with 116 diffusion gradient directions obtained via MRTrix3.[67] The number of signal averages was 12, 8, 32, and 64 for b-values of 0, 300, 700 and 2000, respectively. The acquisition is run in the transverse orientation without any angulation. Other scan parameters include: TR=3800ms; TE=85.00ms, voxel size=2.50mm isotropic, acquisition matrix =96x96, number of slices=64, slice thickness =2.50mm, acquisition time=8 minutes and 45 seconds</td>
</tr>
<tr>
<td>Quantitative Susceptibility Mapping</td>
<td>The quantitative susceptibility mapping correlates with Aβ-amyloid iron density and is acquired with a 3D Gradient Echo sequence with multiple echoes and flow compensation in the readout and slice directions. (TE 1=5.20ms, TE 2=10.4ms, TE 3 =15.6ms, TE 4 =20.8ms, TE 5=26.0ms; TR =31.0ms, flip angle =15 degrees, acquisition matrix =256x192, number of slices =160 (per TE), slice thickness =1.00mm, voxel size =1.00mm isotropic, acquisition time =5 minutes 10 seconds.</td>
</tr>
</tbody>
</table>
Resting state eyes open
For the resting-state scan, the participant is presented with a fixation cross and asked to maintain fixation throughout the task. Echo planar images are acquired with 200 volumes with the following parameters: TE=30.00ms, TR=1500.00ms, flip angle =90 degrees, acquisition matrix =64x64, number of slices =54, slice thickness =3.00mm, voxel size = 3.00mm isotropic, acquisition time =5 minutes 50 seconds.

Hippocampal subfields
The high-resolution, hippocampal subfield images are acquired with T2-weighted, turbo spin echo sequences and run with the following parameters: TE=50.00ms, TR=8020.00ms, flip angle =122 degrees, acquisition matrix =448x448, number of slices =30, slice thickness =2.00mm, voxel size =0.4x0.4x2.0mm, acquisition time =8 minutes 11 seconds.

Arterial Spin Labelling
3D Arterial Spin Labelling images are acquired using a flow-sensitive alternating inversion recovery spin-echo pulsed sequence with Q2-TIPS bolus saturation in the transverse plane with the following parameters: TR=4000.00ms; TE =13.20ms; flip angle =130 degrees, labelling duration =800ms, post-labelling delay =2000ms, acquisition matrix =64x60; slices per slab =32, slice thickness =4.50mm, voxel size =1.85x1.85x4.50mm, acquisition time =6 minutes 46 seconds.

Table 4 MRI sequence parameters. TE=Echo time, TR=Repetition time, TI=Inversion time.

CURRENT STATUS
The study is currently active at both sites.

ETHICS AND DISSEMINATION PLAN
The study has received a favourable opinion from the East of England – Cambridge Central Research Ethics Committee (REC reference 18/EE/0042). Imaging data and clinical severity scores are hosted by the Dementias Platform UK Imaging Platform (https://portal.dementiasplatform.uk), using XNAT technology (https://www.xnat.org). The data will be made available by a managed access process through the DPUK, subject to constraints to preserve confidentiality and privacy.

CONCLUSION
With a pressing need to evaluate new treatments for Alzheimer’s disease, measures that are sensitive to changes in the underlying neurophysiology of the human disease are needed. The NTAD study establishes a dataset that will allow detailed assessment of neurophysiological measures of annual progression, linked to cognitive and MRI changes and baseline blood and DNA. The unique design of the NTAD study enables an assessment of MEG as a potential biomarker in Alzheimer’s disease intervention trials.
REFERENCES

99. doi:10.1093/brain/awy176
Ishihara T, Terada S. [Geriatric Depression Scale (GDS)]. Nihon Rinsho 2011;69 Suppl 8:455–8. doi:10.1300/j018v05n01_09

FOOTNOTES

Authors’ contributions: JHL and JBR drafted the manuscript, with review and contribution from all authors. JBR is the chief investigator of the study. RNH, ACN, MW, KDS and VR are principal investigators, contributing to conception and design. EK led protocol development and governance. JBR, MW, ACN, RNH, JI, SL, MP and KDS conceived and designed the study.

Funding statement: This work is primarily supported by Dementias Platform UK (MR/L023784/1 & MR/L023784/2) and Alzheimer’s Research UK (ARUK-PG2017B-19), with additional support from the Wellcome Trust (103838), Medical Research Council (SUAG/051 G101400; SUAG/046 G101400), NIHR Cambridge Biomedical Research Centre (BRC-1215-20014) and NIHR Oxford Biomedical Research Centre (BRC-1215-20008). The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care. For the purpose of Open Access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.

Competing interests: None declared