2 MRC Lifecourse Epidemiology Unit, University of Southampton.

Corresponding author:

Prof Chittaranjan S. Yajnik.

Director, Kamalnayan Bajaj Diabetology Research Centre,

Diabetes Unit, King Edward Memorial Hospital Research Centre,

Rasta Peth, Pune, 411011

India.

Telephone number: 91-20-26061958

Fax number: 91-20-26061958

Email: diabetes@kemdiabetes.org; csyajnik@gmail.com

For Abstract: 249, for main text: 3492

Number of tables: Main-2, Supplemental-3, And Number of figures: Main-2, Supplemental-5
Abstract

Objective

Maternal diabetes in pregnancy increases the risk of obesity and diabetes in the offspring. Our aim was to compare the offspring born to diabetic mothers (ODM) with those born in non-diabetic mothers (ONDM).

Research design and methods

We compared the physical characteristics, body composition (DXA) and glycemia of ODMs and matched ONDMs. Glycemic measures included capillary blood glucose measurement in children <10 years of age and a 1.75g/kg glucose OGTT in those >10 years. We evaluated insulin sensitivity (HOMA-S and Matsuda index), beta cell function (HOMA-β and insulinogenic index) and β-cell compensatory response (Disposition Index: Matsuda* Insulinogenic index). We studied the association of maternal and paternal body size and glycemia with outcomes in the child.

Results

We studied 200 ODMs (176 diabetic mothers - 133 GDM, 21 type 2 diabetes and 22 type 1 diabetes), 177 ONDMs, and their parents at an average period of 9.7 years after delivery. ODMs were heavier and more glucose intolerant than ONDMs. Children born to overweight or obese mothers with GDM or type 2 diabetes were more likely to be overweight or glucose intolerant, whereas those born to thin type 1 diabetic mothers were glucose intolerant but not obese. In addition, obesity or glucose intolerance in the father had an independent influence on the child’s phenotype.
Conclusion:

Our results show that offspring obesity and glucose intolerance are programmed independently by both parents. In addition there is an independent mirror-imaging of size and glycemia between parents and children. Further studies of genetic and epigenetic mechanisms are indicated.
Introduction:

In 2019, an estimated 16% of live births worldwide (>20 million) were exposed to some form of glucose intolerance in pregnancy (1). This category includes mothers with type 1 and type 2 diabetes as well as gestational diabetes mellitus (GDM, defined as glucose intolerance first recognized during pregnancy) (2). Maternal diabetes has well-described adverse effects on pregnancy outcomes and is thought to contribute to a cascading epidemic of obesity and diabetes in the offspring (3-6). Both genetic and non-genetic mechanisms (intrauterine programming) are likely to contribute to this, and studies in Pima Indians suggest that the influence of the intrauterine environment may outweigh that of genetic markers (3-6). Obesity and glucose intolerance are strongly related in mothers from the western world, and it is difficult to distinguish between these two related yet distinct, exposures. Recent reports suggest that the effects of obesity and glucose intolerance may be independent of one another, but have not shown this conclusively (7-11). Clarity may come from non-obese diabetic mothers from populations with a lower BMI, such as those in India. Previous studies have tended to focus exclusively on the phenotype of the mother, and analysis of paternal influences should improve our understanding of these complex inter-generational connections.

GDM is common in India, affecting some 10 - 15% of pregnancies, and Indian mothers with GDM are younger and have a lower BMI than Europeans (12). In a small Indian follow-up study, 45 offspring of mothers with GDM had increased adiposity and were more often glucose intolerant than controls (13, 14), but maternal and paternal effects were not distinguished. In addition, forms of diabetes other than GDM were not represented.

Our specialized Diabetes Unit treats hundreds of diabetic pregnancies, and we were able to follow the fortunes of offspring born to mothers with different types of diabetes and matched controls born to non-diabetic pregnancies together with both mothers and fathers. We were
thus able to look for possible independent effects of maternal and paternal phenotypes on obesity and glucose intolerance in the offspring.

Methods:

Study participants:

As part of the InDiaGDM (Intergenerational programming of diabesity in offspring of women with Gestational Diabetes Mellitus) study, we reviewed records of 1000 diabetic pregnancies (GDM, type 1 diabetes and type 2 diabetes) treated in our department over last 30 years. We attempted to contact all eligible mothers by telephone or by postal mail to request participation in the study. Friends, classmates or neighbours of ODM were included as controls (Offspring of Non- Diabetic Mothers, ONDM) if their mothers were not diagnosed with diabetes in pregnancy. ONDM were matched for age (±1 year), sex and socioeconomic status. We studied child, mother and father from the participating families.

Participants were advised normal food intake for 3 days prior to the test. They reported to the Diabetes Unit after an overnight fast (water permitted). We recorded medical history in the children and parents and recorded history of menarche in female children. Socioeconomic status (SES) of the family was evaluated using the Standard of Living Index (SLI), a tool developed for the National Family Health Survey of India (15, 16), higher score denotes higher SES.

Anthropometric measurements: A trained observer made all measurements as described before (17). An average of two readings was used for analysis. Following measurements were made: weight (Electronic weighing scales, ATCO Healthcare Ltd, Mumbai, India); standing height (wall mounted Harpenden stadiometer, CMS Instruments Ltd, London, UK); circumferences (waist and hip, non-stretchable fiberglass tape, CMS Instruments, London, UK); skinfold thicknesses (bicep, tricep, subscapular and suprailiac, Harpenden skinfold...
calipers, CMS Instruments, London, UK). Pubertal staging (Tanner) was done for those between 8 to 18 years of age by a medical officer (18).

Overweight-obesity was defined using International Obesity Task Force (IOTF) method for 2-18 years (cutoff of BMI ≥ 25 kg/m²) (19) and World Health Organization (WHO) criteria for those >18 years (BMI ≥ 25 kg/m²) (20).

Body composition: Dual Energy X-ray Absorptiometry (DXA) scans were performed on offspring in pediatric/adult mode, as appropriate, using Lunar Prodigy fan beam machine (GE Medical Systems, Madison, WI, USA) to measure total bone, fat and lean mass.

Metabolic measurements:

In children younger than 10 years of age, capillary blood glucose (fasting or random) was measured on a calibrated glucometer. In those ≥10 years, an oral glucose tolerance test (OGTT) was performed in fasting state, using 1.75 g of anhydrous glucose per kg body weight up to a maximum of 75 g. Parents also underwent a 75g glucose OGTT. Fasting, 30 min and 120 min venous samples were collected in children and fasting and 120 min samples in parents. OGTT (children >10y and parents) was interpreted using American Diabetes Association (ADA) 2014 criteria (21). For those already diagnosed with diabetes, only fasting and post-breakfast venous blood samples were collected.

Plasma glucose, total and HDL cholesterol and triglyceride concentrations were measured using standard enzymatic methods (Hitachi 902, Roche Diagnostics GmbH, Germany). LDL cholesterol was calculated using the Friedewald-Fredrickson formula (22). All the measurements were subject to external quality control (EQAS) and all measurements had a coefficient of variation (CV) <5%. Plasma insulin was measured using ELISA kits (Mercodia AB, SE-754 50 Uppsala, Sweden) with an intra- and inter-assay CV <7% (external quality
control through UK-NEQAS). HbA1c was measured by HPLC (Bio-Rad D-10, Hercules, California).

In children \(\geq 10 \) years, we used HOMA models to calculate insulin sensitivity (HOMA-S) and beta cell function (HOMA-\(\beta \)) using the iHOMA2 calculator (https://www.phc.ox.ac.uk/research/technology-outputs/ihoma2, August 2019) (23). We also calculated insulin sensitivity by the Matsuda Index (24), and insulin secretion by the insulinogenic index \{modified to allow for non-linearity in the data, \(\frac{\ln\{\text{Insulin (30 min/fasting)} / \text{Glucose (30 min/fasting)}\}}{\text{Matsuda index}} \} \) (25). We calculated disposition index \[(\text{Insulinogenic index} + \log\text{(Matsuda index)})\] as a measure of compensatory insulin secretion for prevalent insulin sensitivity.

We measured Glutamic Acid Decarboxylase (GAD) antibodies by Enzyme-linked immunosorbent assay (ELISA, RSR Ltd. Llanishen, Cardiff, UK) in children who were diagnosed with prediabetes or diabetes, and in all children of type 1 diabetic mothers, to investigate islet autoimmunity.

Maternal and offspring measurements during pregnancy and delivery:

We noted the type of maternal diabetes (type1, 2 or GDM), maternal age, type of delivery and baby’s birthweight. Type 1 and Type 2 diabetes were defined by ADA clinical criteria (21). GDM was diagnosed by WHO criteria till 2012 (26) and by IADPSG criteria thereafter (27). Small for gestational age (SGA) and large for gestational age (LGA) was defined using INTERGROWTH-21 study criteria (28).

Control mothers provided this information by recall and by referring to their own medical records, if available.
Statistical methods:

We calculated sample size based on differences in outcomes (BMI and glucose concentrations) between ODM and ONDM. Studying 350 children (175 ODMs and ONDMs each) would allow us to detect a difference of 0.3 SD in BMI at 80% power, and 0.5 SD in glucose concentration difference of 0.5 SD at 90% power, at the 5% significance level.

Data are presented as mean (SD) for normally distributed variables and as median (25th–75th percentile) for skewed variables; skewed data was normalized before analysis. Given the wide age range, standard deviation (SD) scores for anthropometric and metabolic-endocrine measurements were calculated by residual approach adjusting for age, gender and pubertal stage.

We were able to classify glucose tolerance by ADA criteria only in children >=10 years of age. To classify glucose tolerance for all children, we calculated separate SD scores for the two age groups (using random or fasting capillary glucose in those <10 years and fasting glucose in >= 10 years). Those above median SD score were classified as glucose intolerant.

Differences between groups were tested by ANOVA, adjusting for covariates as necessary. Associations of overweight-obesity and glucose intolerance in the offspring with parental characteristics and birthweight were tested by multiple logistic regression adjusting for SES. We combined diabetic and non-diabetic pregnancies in the regression. Parental exposures were classified as neither parent abnormal, one parent abnormal, and both parents abnormal. For glucose intolerance, maternal status during pregnancy and paternal status at follow up were considered, overweight-obesity for both parents was measured at follow up. We used SPSS version 21.0 (IBM corporation, Armonk, NY).
The study protocol was approved by the Institutional Ethics Committee (EC 1333/2014) and registered with ClinicalTrials.gov (NCT03388723). Children over 18 years and parents signed an informed consent. For children below 18 years, we obtained parental consent, children between 12 and 18 years also signed an informed assent.

Results:

Subjects:

We reviewed 861 records of mothers treated for diabetes during pregnancy, and could contact 346 mothers, of whom 176 (20.4% of total) agreed to participate. Compared to 685 who could not be studied, these 176 women had similar age (29.4 vs. 29.5 years, p=0.827), BMI (24.1 vs. 25.2 Kg/m^2, p=0.131), height (154.3 vs. 154.9 cm, p=0.433), glucose concentrations at diagnosis of GDM (FPG, 5.9 vs. 6.0 mmol/L, p=0.649, 2 hour glucose, 10.4 vs. 10.0, p=0.490) and birth weight of babies (2.82 vs. 2.89 Kg, p=0.191).

We studied a total of 200 ODMs (176 born in the index pregnancy and 24 younger siblings born in a subsequent diabetic pregnancy). Of 176 index ODMs, 133 were born in a GDM pregnancy, and 43 in a pre-gestational diabetic pregnancy (22 type 1 diabetes and 21 type 2 diabetes). Of 24 siblings, 20 were born to GDM, 3 to type 1 diabetes and 1 to type 2 diabetes mothers. We also investigated these 176 mothers and 150 fathers of ODMs; 177 ONDMs and their mothers (n=177) and fathers (n=163) (Supplemental figure 1).

Comparison of ODM and ONDM:

ODMs had higher rates of preterm (34.4% vs. 19.9%, p=0.002) and caesarean deliveries (70.4% vs. 46.9%, p<0.001) compared to ONDMs. Birth weights of ODM and ONDM were comparable (mean 2.82 ± 0.64 kg and 2.85 ± 0.56 kg respectively, p=0.620). However,
prevalence of SGA was significantly lower (22.7% vs. 33.7%, p=0.021) and of LGA insignificantly higher (14.1% vs. 8.7%, p=0.101) in ODM compared to ONDM.

At the time of study, ODM and ONDM had comparable distribution of age, sex ratio, pubertal stage and SES (supplementary table 1). Twenty ODM and 20 ONDM females had achieved menarche (at mean age of 12.2 ± 1.1 years and 12.2 ± 1.2 years respectively, p=0.947).

Body size and composition (Figure 1a):

ODM were larger in all obesity related measurements (weight, BMI, WHR) but not in height compared to ONDM. Prevalence of overweight + obesity was higher in ODM compared to ONDM (24% vs. 15%). DXA measurements showed that ODM had higher adiposity (body fat percent) and higher BMD compared to ONDM. When analyzed separately by sex, anthropometric differences were significantly different only in boys. (Supplemental Figure 2)

Metabolic parameters (Table 1, Figure 1b):

Three (4%) ODM were receiving treatment for diabetes (diagnosed between 10-25 years of age). All were being treated with oral anti-diabetic agents and one required additional insulin. In addition, one more ODM (less than 15 years of age) was diagnosed with diabetes on OGTT. All four diabetic ODMs were clinically classified as type 2 diabetes, and all were born to GDM mothers. None of these were positive for circulating GAD or ZnT8 antibodies.

ODMs had higher prevalence of glucose intolerance (glucose concentration > median) of 65.2% compared to 32.8% in ONDMs. Younger ODMs (<10 years) had higher capillary glucose concentrations compared to ONDM (median 5.6 vs. 5.1 mmol/L, p<0.001). The older ODMs (≥ 10 years) had higher HbA1c concentrations and glucose intolerance (4 DM, 14 IFG, 12 IGT and 4 both IFG and IGT) compared to ONDM, (0 DM, 7 IFG, 9 IGT and 1 both IFG and IGT). Indices of insulin sensitivity (HOMA-S and Matsuda index) and insulin secretion...
(HOMA-beta and insulinogenic index) were similar in ODM and ONDMs but ODM had lower disposition index compared to ONDM. ODM also had higher total and LDL cholesterol and triglyceride concentrations. ODM boys had a wider spectrum of metabolic abnormalities (higher glycemia, fasting insulin, HbA1c and triglyceride concentrations) while ODM girls had only higher glycemia (fasting, 30 and 120 min plasma glucose) compared to ONDMs. (Supplemental Figure 3).

Glucose intolerant ODMs (>= 10 years, n= 47) had higher adiposity-obesity and triglyceride concentrations, and lower insulin sensitivity, disposition index and HDL concentrations compared to normoglycemic ODMs (n= 32) (Supplementary Table 5).

Type of maternal diabetes (Figure 1c):

Unlike children of GDM and type 2 diabetes mothers, children of type 1 diabetic mothers were not obese, centrally obese or adipose compared to ONDM. On the other hand, type of maternal diabetes did not influence glucose intolerance in their children. Concordance of overweight obesity and glucose intolerance was more common in the children of GDM (19.3%) and type 2 diabetic mothers (22.7%) compared to children of type 1 diabetic mothers (8.0%). Pre-diabetic children of type 1 diabetic mothers (n=3) were all negative for GAD and ZnT8 antibodies.

Maternal characteristics (Supplemental-Table 2 &Table 3):

Mothers of ODM were older and heavier (except type 1 diabetes) than mothers of ONDM.

Eighty-one (61%) GDM mothers had diabetes at follow up (61 previously diagnosed, 20 newly diagnosed), while 32 (24%) had prediabetes. In comparison, 14 (8%) mothers of ONDM had diabetes and 46 (27%) had pre-diabetes. GDM mothers also had higher metabolic syndrome (74 vs. 33%).
Paterna characteristics (Supplemental Table 2):

Fathers of ODM had more prediabetes (49 vs. 33%, p=0.004) but similar diabetes prevalence (17 vs 23%, p>0.05) compared to fathers of ONDM. Overweight-obesity and central obesity were similar in the two groups.

Parental influence on child’s overweight-obesity and glucose intolerance (Table 2, Figure 2)

There was an incremental influence of maternal and paternal overweight-obesity and glucose intolerance on the corresponding phenotype of the child. The prevalence of overweight-obesity rose progressively with the number of parents being overweight-obese (none < one < both parents). Similar trend was observed for glucose intolerance (Figure 2).

Multivariate analysis also showed that there was no independent influence of parental overweight-obesity on child’s glucose intolerance and vice versa, when adjusted for corresponding parental phenotype. Child’s birth weight was positively associated only with risk of overweight-obesity and not with glucose intolerance. SES was not associated with either outcome (Table 2).

Discussion:

Salient findings

We confirmed that the offspring of Indian mothers with diabetes were more likely to be overweight or obese and glucose intolerant than the offspring of non-diabetic mothers, and that this effect is apparent from early childhood. In addition, we found that the two outcomes
(obesity and glucose intolerance) are not necessarily concordant, the children of mothers with type 1 diabetes tended, for example, to be glucose intolerant but not overweight. There was also evidence of mirror-imaging, i.e. obesity and/or glucose intolerance in one generation was reflected in the next. Last but not least, the father has an independent influence upon the child’s phenotype over and above the maternal influence.

Fathers have rarely been studied in this context, and we found an independent association of paternal size with overweight or obesity in the offspring. When allowance was made for parental size, we found no independent association between parental glycemia and adiposity in the child. It was particularly striking that the children of thin type 1 diabetic mothers were not overweight, although they had been exposed to much higher glucose levels during intrauterine life than children of mothers with GDM and type 2 diabetes. Overweight or obesity in the child was also associated with its own birthweight, although only 14.1% of ODM were large for gestational age and none had macrosomia (> 4000g). Thus, our results indicate a bi-parental influence on post-natal overweight-obesity in ODM, uninfluenced by parental glycemia. Furthermore, the effect appears to be specific for adiposity, given that the height and lean mass of offspring of diabetic and non-diabetic mothers were similar. The only comparable Indian follow up study (the Parthenon Cohort) made serial anthropometric measurements in ODM and ONDM and found that the offspring of diabetic mothers weighed more at birth, with a ‘catch-down’ in infancy and a rebound in early childhood, especially in girls (13, 14). In contrast, European studies have reported increased adiposity in both sexes or restricted to boys (29). It would be interesting to explore this further.

The offspring of diabetic mothers were more glucose intolerant than the offspring of non-diabetic mothers, and the difference was already apparent in early life; early-onset type 2 diabetes (<20 years) was seen only in ODM. Offspring glycemia also mirrored parental glycemia in that it was associated with maternal diabetes in pregnancy and paternal glucose
intolerance, but not with parental obesity. Offspring of non-obese mothers with type 1 diabetes were glucose intolerant but not overweight-obese. Of the glucose intolerant children, only 8% born in a type 1 diabetic pregnancy were also obese, compared to 24% born in a GDM or type 2 diabetic pregnancy. Of interest, birth size was unrelated to glucose intolerance in childhood. These findings suggest that glucose intolerance and overweight are ‘programmed’ independently of each other (whether genetically and/or epigenetically), and that the high concordance rate for both conditions in ODMs in the western world simply reflects the frequent coexistence of the two conditions in the parents.

Several populations have reported an increased prevalence of glucose intolerance in the offspring of diabetic pregnancies (3, 13, 14), and there is ongoing debate about the relative contribution of genes, intra-uterine environment and post-natal family environment to this risk. The best evidence for a predominant role of intra-uterine epigenetic programming comes from studies in Pima Indians in whom children born to diabetic mothers had a higher risk of obesity and diabetes compared to 1) non-diabetic pregnancies, 2) siblings born before the mother became diabetic (and therefore genetically predisposed but not exposed to intrauterine glucose intolerance), and 3) children born to diabetic fathers (genetically predisposed) (30, 31). Norbert Freinkel called this non-genetic transmission ‘fuel mediated teratogenesis’ with reference both to short term outcomes like macrosomia, and long term outcomes such as obesity and diabetes (32).

Pregnancy diabetes is estimated to contribute up to 40% of diabetes in the young Pima Indians (33). Our results show that glucose intolerance in ODM can be attributed to lack of a compensatory increase in insulin secretion in response to prevailing insulin insensitivity (i.e. a lower disposition index) rather than to an absolute reduction in insulin secretion. The relatively higher reduction in fasting insulin sensitivity (HOMA-S) compared to that shown by the Matsuda index (post glucose challenge) could be interpreted as relatively higher
contribution from hepatic than muscle insulin insensitivity. Higher triglycerides in ODMs might suggest a role for adiposity and hepatic insulin insensitivity.

Follow up studies in children from the Glucose intolerance and Adverse Pregnancy Outcomes (HAPO) study have reported independent associations of maternal BMI and pregnancy glycemia (across the range) with obesity-adiposity and glycemia in the children (7-9). Maternal overweight or obesity are more strongly associated with the child’s adiposity than maternal glycemia: conversely, maternal glycemia had a stronger effect on child’s glycemia than maternal weight (10). HAPO also showed a mediating role for birth size in the association between maternal BMI and a child’s BMI (11). It did however lack paternal data (other than history of diabetes) nor did they analyze discordant maternal exposures (thin diabetic mothers or obese-low glucose mothers). Our study was much smaller, but enabled us to explore these interesting exposures.

Strengths and limitations

Ours is the largest Indian follow up of children born to both ‘pre-gestational’ (type 1 and 2 diabetic) and GDM mothers. Differences in maternal phenotype gave us the opportunity to disentangle the effects of maternal obesity and glucose intolerance on corresponding phenotypes in the offspring. Inclusion of fathers helped to define their role in a condition which is usually ascribed only to maternal diabetes. The wide age range of the ODMs revealed that abnormalities in body size and metabolism are manifest from early childhood. Our study had the limitation that only a fifth of eligible women could be followed up, although their pregnancy characteristics (both mothers and babies) were similar to those who could not be studied, thus ensuring representativeness within the cohort. As a hospital-based study we are likely to have enrolled more severe cases and more severe outcomes. Changing criteria for diagnosis of GDM may also have introduced some heterogeneity. ‘Non-diabetic’ controls were classified based only on recall, as pregnancy records were often not available. The low
prevalence of diabetes and prediabetes in these women at follow up argues against substantial misclassification during pregnancy.

In summary, we have shown that overweight and glucose intolerance in Indian ODMs is influenced by both parents in a manner that is both independent and additive. There is, in addition, evidence of independent mirror-imaging of both size and glycemia between parents and children. Our results explain why children of thin type 1 diabetic mothers are at higher risk of diabetes but not overweight or obese. It will be important to define genetic, epigenetic and environmental mechanisms contributing to these associations and to investigate windows of opportunity to modify these effects.

This investigation was part of the InDiaGDM grant of the Department of Biotechnology, New Delhi, India (BT/IN/Denmark/02/CSY/2014).

We are grateful to Prof. Edwin Gale for informative discussions. We also acknowledge Neelam Memane, Deepa Raut, Dr. Smita Dhadge, Dr. Meenakumari, Aboli Bhalerao, Swati Alekar, Alma Baptist, Preeti Kalel, Ajay, Abhay, Dr. Rohan Shah, Rupali Joshi for their valuable contributions to the study.
References:

Table 1: Characteristics of Offspring of Diabetic mothers (ODM) and Offspring of Non-Diabetic mothers (ONDMs)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Boys</th>
<th>Girls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ODM (n=121)</td>
<td>ONDM (n=103)</td>
</tr>
<tr>
<td>Overweight+obesity n (%)</td>
<td>28 (23.7%)</td>
<td>11 (10.8%)</td>
</tr>
<tr>
<td>Glucose > median n (%)</td>
<td>77 (65.3%)</td>
<td>30 (29.1%)</td>
</tr>
<tr>
<td></td>
<td>ODM (n=79)</td>
<td>ONDM (n=74)</td>
</tr>
<tr>
<td>Overweight+obesity n (%)</td>
<td>19 (24.1%)</td>
<td>14 (18.9%)</td>
</tr>
<tr>
<td>Glucose > median n (%)</td>
<td>51 (65.4%)</td>
<td>28 (37.8%)</td>
</tr>
</tbody>
</table>

< 10 year old offspring (n=212)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Boys</th>
<th>Girls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ODM (n=76)</td>
<td>ONDM (n=55)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>5.5 (3.8-7.4)</td>
<td>5.9 (4.7-8.2)</td>
</tr>
<tr>
<td>Overweight+obesity n (%)</td>
<td>10 (13.7%)</td>
<td>1 (1.9%)</td>
</tr>
<tr>
<td>Capillary glucose (mmol/L)</td>
<td>5.66 (5.33-6.00)</td>
<td>5.05 (4.50-5.72)</td>
</tr>
<tr>
<td>Capillary glucose > median n (%)</td>
<td>45 (61.6%)</td>
<td>17 (30.9%)</td>
</tr>
<tr>
<td></td>
<td>ODM (n=43)</td>
<td>ONDM (n=38)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>4.6 (3.2-6.9)</td>
<td>7.0 (3.9-8.7)</td>
</tr>
<tr>
<td>Overweight+obesity n (%)</td>
<td>9 (20.9%)</td>
<td>4 (10.5%)</td>
</tr>
<tr>
<td>Capillary glucose (mmol/L)</td>
<td>5.58 (5.33-5.94)</td>
<td>5.13 (4.52-5.79)</td>
</tr>
<tr>
<td>Capillary glucose > median n (%)</td>
<td>29 (69.0%)</td>
<td>13 (34.2%)</td>
</tr>
</tbody>
</table>

>=10 year old offspring (n=165)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Boys</th>
<th>Girls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ODM (n=45)</td>
<td>ONDM (n=48)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>13.8 (11.9-18.6)</td>
<td>13.6 (11.7-18.2)</td>
</tr>
<tr>
<td>Fasting glucose (mmol/L)</td>
<td>5.38 (5.16-5.61)</td>
<td>5.00 (4.78-5.26)</td>
</tr>
<tr>
<td>30 min glucose (mmol/L)</td>
<td>8.58 (7.65-9.34)</td>
<td>7.88 (7.17-8.72)</td>
</tr>
<tr>
<td></td>
<td>ODM (n=36)</td>
<td>ONDM (n=36)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>12.1 (10.8-17.9)</td>
<td>12.9 (11.3-17.4)</td>
</tr>
<tr>
<td>Fasting glucose (mmol/L)</td>
<td>5.25 (4.97-5.50)</td>
<td>4.88 (4.68-5.22)</td>
</tr>
<tr>
<td>30 min glucose (mmol/L)</td>
<td>8.50 (7.22-9.22)</td>
<td>7.44 (6.88-8.22)</td>
</tr>
<tr>
<td></td>
<td>ODM</td>
<td>ONDM</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>120 min glucose (mmol/L)</td>
<td>6.39 (5.63-8.13)</td>
<td>6.11 (5.50-7.38)</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>5.4 (5.2-5.7)</td>
<td>5.3 (5.1-5.5)</td>
</tr>
<tr>
<td>HbA1C (mmol/mol)</td>
<td>36 (33-39)</td>
<td>34 (32-37)</td>
</tr>
<tr>
<td>Prediabetes n (%)</td>
<td>19 (42.2)</td>
<td>11 (2.9)</td>
</tr>
<tr>
<td>Diabetes n (%)</td>
<td>3 (6.6)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Fasting insulin (pmol/L)</td>
<td>58.8 (36.7-94.8)</td>
<td>41.4 (32.4-66.0)</td>
</tr>
<tr>
<td>30 min insulin (pmol/L)</td>
<td>703.2 (364.2-1039.5)</td>
<td>639.6 (450.6-848.6)</td>
</tr>
<tr>
<td>120 min insulin (pmol/L)</td>
<td>400.8 (177.6-629.1)</td>
<td>347.4 (208.2-603.6)</td>
</tr>
<tr>
<td>HOMA-β</td>
<td>84.0 (61.9-117.0)</td>
<td>79.1 (68.3-112.8)</td>
</tr>
<tr>
<td>HOMA-S</td>
<td>88.2 (57.6-142.6)</td>
<td>127.5 (80.4-160.5)</td>
</tr>
<tr>
<td>Insulinogenic index</td>
<td>2.03 (1.72-2.37)</td>
<td>2.33 (1.95-2.50)</td>
</tr>
<tr>
<td>Matsuda index</td>
<td>10.8 (6.9-23.2)</td>
<td>14.6 (9.4-22.1)</td>
</tr>
<tr>
<td>Disposition Index</td>
<td>4.63 (3.72-5.18)</td>
<td>4.89 (4.35-5.39)</td>
</tr>
<tr>
<td>Total cholesterol (mmol/L)</td>
<td>3.88 (3.08-4.29)</td>
<td>3.52 (2.90-3.80)</td>
</tr>
<tr>
<td>HDL cholesterol (mmol/L)</td>
<td>2.07 (1.70-2.58)</td>
<td>1.99 (1.65-2.34)</td>
</tr>
<tr>
<td>Triglycerides (mmol/L)</td>
<td>0.98 (0.72-1.37)</td>
<td>0.70 (0.56-0.89)</td>
</tr>
</tbody>
</table>

Figure 1a and 1b shows age, gender and pubertal status standardized scores of these characteristics for statistical comparison.

ODM: Offspring of diabetic mothers, ONDM: Offspring of non-diabetic mothers, IFG: impaired fasting glucose, IGT: impaired glucose tolerance, NGT: normal glucose tolerance, HOMA: Homeostatic model for assessment, HDL: high density lipoprotein

Prediabetes: IFG+IGT+Both, Diabetes: Known + newly diagnosed, Disposition Index: [(Insulinogenic index + log (Matsuda index)]
Table 2: Multivariate Logistic Regression for factors associated with overweight-obesity and glucose intolerance in offspring

<table>
<thead>
<tr>
<th>Exposures</th>
<th>Overweight-obesity (IOTF + WHO)</th>
<th>Glucose intolerance (Glucose SD score > median)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neither overweight-obese</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>One parent overweight-obese</td>
<td>8.27 (1.88-36.00)</td>
<td>1.27 (0.70-2.32)</td>
</tr>
<tr>
<td>Both overweight-obese</td>
<td>11.77 (2.67-51.91)</td>
<td>0.95 (0.49-1.80)</td>
</tr>
<tr>
<td>Neither glucose intolerant</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>One parent glucose intolerant</td>
<td>1.62 (0.72-3.64)</td>
<td>3.26 (1.81-5.88)</td>
</tr>
<tr>
<td>Both glucose intolerant</td>
<td>1.63 (0.69-3.84)</td>
<td>5.49 (2.81-10.72)</td>
</tr>
<tr>
<td>Higher socioeconomic score</td>
<td>0.57 (0.30-1.09)</td>
<td>1.33 (0.82-2.16)</td>
</tr>
<tr>
<td>Cesarean delivery</td>
<td>1.17 (0.34-2.13)</td>
<td>1.69 (1.07-2.69)</td>
</tr>
<tr>
<td>Birthweight SD score >median</td>
<td>1.99 (1.10-3.59)</td>
<td>1.03 (0.65-1.62)</td>
</tr>
</tbody>
</table>

Results expressed as Odds ratio (95% Confidence intervals). Significant results are shown in bold.

Exposures included: Parental overweight-obesity (BMI>=25 Kg/m²), glucose intolerance in father (OGTT, ADA criteria) and maternal diabetes during pregnancy, higher socioeconomic status (T3 vs. T1+T2), higher offspring birth weight (SD score of birth weight adjusted for gestational age at delivery and gender of baby) and mode of delivery (cesarean delivery)

SD-Standard deviation, BMI-Body mass index, WHO-World Health Organization, IOTF: International Obesity Task Force,
Figure 1: Mean SD differences with 95% CI between ODM and ONDM (reference group) adjusted for age, gender and pubertal stage.

a): Anthropometric and DXA measurements

b): Biochemical measurements including glucose and insulin

c): Selected maternal and offspring characteristics by type of maternal diabetes

Figure 2 shows effect of parental overweight-obesity and glucose intolerance on the corresponding phenotype in the offspring. Data of diabetic and non-diabetic pregnancies is combined. For glucose intolerance, maternal status during pregnancy and paternal status at follow up were considered, overweight-obesity for both parents was measured at follow up. Offspring: overweight-obesity were classified using IOTF (2-18 years) and WHO criteria (>18 years). Glucose intolerance was defined as glucose concentration above median for the age group.