Comparison of respiratory protection during workload between different wearing methods of replaceable particulate respirators and powered air-purifying respirators

Hiroka Baba*, Kazunori Ikegami, Shingo Sekoguchi, Taiki Shirasaka, Hajime Ando, Akira Ogami

Department of Work Systems and Health, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan

*Corresponding author

Hiroka Baba

1-1, Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan

Tel: +81-93-691-7471, Fax: +81-93-601-2667

E-mail: h-baba@med.uoeh-u.acjp

Short title: Respiratory protection at workplaces
Short title: comparison between replaceable particulate respirators and powered air-purifying respirators

Abstract

This study evaluated the difference in respiratory protection between replaceable particulate respirators (RPRs) and powered air-purifying respirators (PAPRs), with different wearing methods during workload. Participants wore RPRs or PAPRs in the ways that workers wore them in actual workplaces. We measured the number of particles inside and outside the respiratory protective equipment (RPE) during workload for each wearing variation. The fit factor (FF) of RPRs in the workload state was significantly lower than that in the resting state, indicating inadequate respiratory protection. In contrast, the FF of PAPRs during workload was significantly lower than that at rest; however, respiratory protection was maintained. PAPR did not show a significant decrease in FF owing to the wearing variations during workload. In conclusion, PAPRs were found to be superior to RPRs in terms of respiratory protection. PAPRs are better than RPRs for workers who have to wear RPE inappropriately due to health problems.
Key words: Particulate respirator, Powered air-purifying respirator, Fit factor, Respiratory disease.

Introduction

The number of cases of pneumoconiosis and occupational diseases due to complications of pneumoconiosis in Japan decreased to 164 in 2019; however, new cases are still occurring.¹

It is necessary to implement technical and work control measures to reduce the risk of pneumoconiosis and its complications. If such measures are not sufficient to reduce hazards, it is important to wear respiratory protective equipment (RPE), which helps to reduce workers' exposure to dust and toxic chemicals by inhalation and to prevent various occupational diseases. However, previous studies have shown that wearing methods that do not allow sufficient adhesion between the face and the RPE hinders adequate respiratory protection.²³ For this reason, in Japan, the Ministry of Health, Labour and Welfare (MHLW) has issued guidelines on matters to be considered in the selection and use of RPE.⁴ Previous studies have shown that those working in dusty workplaces in Japan wear RPE using various methods. We found that RPE was worn in several inappropriate ways, such as wearing a tightening strap over the helmet, or...
wearing RPE over a towel wrapped around the face in hot workplace environments. When the respiratory protection capacity of RPE is reduced, inhalation of dust, toxic chemicals, etc. can lead to the development of respiratory diseases such as pneumoconiosis and lung cancer. We evaluated the difference in protective performance between replaceable particulate respirators (RPRs) and powered air-purifying respirators (PAPRs) by having the participants wear them in various ways in a laboratory under two conditions, at rest and at workload. In this study, the average leakage rate of the RPR ranged from 1.82 to 10.92%, and that of the PAPR ranged from 0.18 to 0.42%. While there was a decrease in respiratory protection with RPR use due to differences in wearing methods, no significant decrease in respiratory protection was observed with PAPR use due to differences in wearing methods. This indicates that PAPRs can provide sufficient protection for workers who are unable to wear RPRs appropriately due to the work environment. Since PAPRs maintained very high respiratory protection regardless of the wearing method in a previous study that examined the effect of the wearing method on respiratory protection at rest, we thought it might be possible to maintain high respiratory protection even while working. In this previous study, we were unable to verify the effect of workload on respiratory protection. Therefore, we thought it is very important to verify the effect of RPE on
respiratory protection during workload, depending on the method of wearing RPE among workers. The purpose of this study was to measure the fit factor (FF) of RPRs and PAPRs during workload, in a laboratory, using various wearing methods, and to clarify the differences in respiratory protection and the wearing methods that maintain adequate respiratory protection.

Methods

Study design and setting

We conducted a crossover comparison study of 10 participants who agreed to participate in the experiment. Two physical states (resting and workload state) were used to measure the FF of each combination (hereafter called "wearing variation") of the RPE type and wearing method.

FF is the numerical result of a quantitative fit test performed on an RPE face piece, which indicates the effectiveness of the seal against the face.

The experiment was conducted from August to September 2018 in an artificial climate chamber at the University of Occupational and Environmental Health, Japan, in order to exclude environmental influences. The climatic conditions in the artificial climate chamber were set to maintain a room temperature of 20°C and a relative humidity of...
Participants

We recruited participants from the University of Occupational and Environmental Health, Japan. All participants were healthy adults over 20 years old and were non-smokers, to prevent tobacco dust from affecting the leakage rate measurement. Ten participants, eight males (mean age (SD): 32.1 [3.98] years) and two females (mean age [SD]: 34.0 [5.0] years), were eligible for this study.

Particulate respirator

The RPR selected for testing was the 1180–05 (Koken Ltd), and the PAPR was the BL–321S (Koken Ltd).

The RPR used was a model that complied with RL2, and the particulate filtering efficiency according to the Japanese standard for dust mask is 95%.

PAPR used was a model that complied with PL1, and the particulate filtering efficiency in the Japanese standard for PAPRs is 95%. The PAPR used has the following capacity: motor blower capacity: large airflow volume type (over 138 L/min), leakage rate: B class (less than 5.0%), filtering
efficiency: PL 1 (over 95.0%). The RPR selected for testing was the 1180–05 (Koken Ltd., Japan), filtering efficiency: RL 2 (over 95.0%). This RPR consisted of a half facepiece and a single filter with a similar shape to the BL–321S.

To minimize the influence of individual RPE fitting techniques, the participants used a mirror to standardize the fitting procedure. The tightness of the fastening straps was measured with a measuring instrument, and the tightness of the fastening straps was adjusted so that the force with which the fastening straps of the RPE pressurized the head was uniform.

Wearing variations

The method of wearing the RPEs is based on the commonly observed method of wearing it in the workplace, which was revealed in our previous study. They were as follows: the recommended method (R), in which the headband was placed on the area from the parietal region to the occipital region, with nothing between the facepiece cushion and the face; the method in which a knit cover is placed between the facepiece cushion and the face (K); and the method in which the headband was placed over a helmet (H).
We represented wearing variation as the combination of "RPR" or "PAPR" and "wearing method." For example, a PAPR worn according to the recommended method (R) was represented with PAPR-R. We conducted an experiment with six wearing variations. Finally, we set RPR-R, RPR-K, RPR-H, PAPR-R, PAPR-K, and PAPR-H as the six wearing variations.

Measurement procedure

We measured the FF of the RPE at two physical states, resting and workload, for six different wearing variations. We reported the experimental data of the resting state in a previous study. The workload state was set to exercise with an ergometer set at an 80 W load. The order of the FF measurements for each wearing variation was assigned using a random number table. Figure 1 illustrates the measurement procedure.

<table>
<thead>
<tr>
<th>Wearing variations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respirators</td>
</tr>
<tr>
<td>Wearing methods</td>
</tr>
</tbody>
</table>
Physical state

<table>
<thead>
<tr>
<th></th>
<th>Resting state</th>
<th>Workload state</th>
</tr>
</thead>
</table>

Measurements of fit factor (FF)

We measured FF while the participants performed the following five test exercises for one minute each;

1. Normal breathing
2. Deep breathing
3. Turning head side to side
4. Moving head up and down
5. Talking

Figure 1 Outline of the study

Measurement of fit factor

To measure FF, the subjects wore the particulate respirator and performed five actions (1. Normal breathing, 2. Deep breathing, 3. Turning the head side-to-side: 4. Moving head up and down, and 5. Talking). Each action was performed for 1 min. The measurement device measured the concentration of atmospheric dust inside and outside the particulate respirator.
The fit testing procedure according to the occupational safety and health administration (OSHA) specifies that seven motions should be performed to measure the FF. However, because the measurement was to be performed while working, the five motions of the Japan Industrial Standard (JIS) T8150 were adopted for safety reasons.

To avoid any influence on the measurements due to the fatigue in the participants, FF measurements while working were limited to two times per day, with an interval of at least one hour.

Measurement apparatus of fit factor

The leakage rate was measured using an MT–03 device (Sibata Scientific Technology Ltd.), which uses a light scattering system particle counter for the detection part and counts the particles present in the air inside and outside the RPE sucked at 1 l/min. After measuring the air outside the RPE for 17 s, the instrument measured the air inside the RPE for 17 s. The replacement time for the dust remaining in the pipe at the start of the measurement and when switching the measurement path was set to 10 s. The time required for each measurement was approximately 1 min. The particles measured by the device were atmospheric dust with a particle size of at least 0.5 μm. During the
measurement, incense sticks were burned to maintain a level of dust in an environment of more than 1000 count/3 s, which is the recommended value for MT-03. The concentration within the RPE was measured by sampling the air inside the facepiece using a tube joint set fixed to the sampling tube and the RPE. The concentration outside the RPE was measured by sampling the air outside the RPE using a sampling tube fixed with a string hung from the ceiling so that the end of the sampling tube was close to the RPE.

Calculating of fit factor

According to JIS T8150 ¹⁰ or fit testing procedure by OSHA, ⁹ the FF was calculated by dividing the concentration within the particulate respirator (Ni) by the concentration outside it (No):

\[\text{Fit factor} = \frac{\text{Number of test exercises}}{\frac{Ni}{No_1} + \frac{Ni}{No_2} + \frac{Ni}{No_3} + \frac{Ni}{No_4} + \frac{Ni}{No_5}} \]

The numbers between 1 to 5 represent test exercises 1-5.

OSHA indicated that the test subject should not be permitted to wear a half mask or quarter facepiece respirator unless a minimum FF of 100 is obtained. ⁹ In this study, we used FF ≥ 100 as the criterion to ensure that respiratory protection was maintained.
Variables

The outcome variable was FF, and the predictor variables were physical state (resting state and workload state) and wearing variations. We adjusted for sex as a confounding factor.

Statistical methods

Data were analyzed after they were log-transformed with a linear mixed model (LMM), with FF as the dependent variable. Among the independent variables, the random factor was the survey participants, and the fixed factors were sex, physical states, wearing variations, and interaction between physical states and wearing variations. The Bonferroni method was used for multiple comparisons. The estimated marginal means (EMM) by physical states or wearing variations were calculated by adjusting for the dependent variable of LMM. All statistical analyses were conducted using the IBM SPSS Statistics 23.0. The significance level was set at $p < 0.05$.

Results

Fit factor according to physical states and wearing variations

Table 1 shows the number of cases with FF > 100 and the mean (SD) of FF for each
physical condition and wearing variation.

We could not observe cases of FF ≥ 100 when the participants wore the RPE by RPR_K.

The number of cases with FF ≥ 100 was higher when wearing the PAPR than when wearing the RPR in both the resting state and working load state. In each of the three methods, when wearing the PAPR in the resting state, the FF was ≥100; however, 1 case of 10 when wearing the PAPR in working state had FF <100. The mean values (SD) of FF were also higher when wearing the PAPR than when wearing the RPR, and it was higher in the resting state than in the workload state.

Table 1 The number of cases with FF > 100 and the mean (SD) of FF for each physical condition and wearing variation.

<table>
<thead>
<tr>
<th>Wearing variations</th>
<th>Fit factor</th>
<th>Resting state</th>
<th>Workload state</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># of FF ≥100</td>
<td>M SD</td>
<td># of FF ≥100</td>
</tr>
<tr>
<td>RPR_H</td>
<td>3</td>
<td>118.7 (111.8)</td>
<td>2</td>
</tr>
<tr>
<td>RPR_K</td>
<td>0</td>
<td>12.3 (5.5)</td>
<td>0</td>
</tr>
<tr>
<td>RPR_R</td>
<td>4</td>
<td>145.3 (141.1)</td>
<td>3</td>
</tr>
</tbody>
</table>
Comparisons of the values of fit factor by physical states and wearing variations

Table 2 shows the results of the statistical comparison of the values of FF by physical states and wearing variations. We analyzed the interactions between the physical states and wearing variations. The value of FF was significantly lower when the RPE was worn in the workload state than when it was worn in the resting state. The FF was significantly the lowest when RPE was applied by RPR_K among all wearing variations. When fitted by RPR_R and RPR_H, the FF was significantly lower than when the PAPR was worn.

No significant difference in FF values was observed when the PAPR was worn by PAPR_H, PAPR_K, and PAPR_R. There was no significant interaction between physical state and wearing variations.
Table 2 The results of comparison of the values of FF among physical states and among wearing variations

<table>
<thead>
<tr>
<th>Variables</th>
<th>Ln (the values of FF)</th>
<th>EMM</th>
<th>95%CI</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical states</td>
<td>Resting</td>
<td>5.13</td>
<td>[4.54-5.71]</td>
<td><0.001</td>
</tr>
<tr>
<td>(PS)</td>
<td>Workload</td>
<td>4.62</td>
<td>[4.04-5.21]</td>
<td></td>
</tr>
<tr>
<td>Wearing variations</td>
<td>RPR_H</td>
<td>4.14</td>
<td>[3.53-4.75]</td>
<td><0.001</td>
</tr>
<tr>
<td>(WV)</td>
<td>RPR_K</td>
<td>2.29</td>
<td>[1.67-2.90]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RPR_R</td>
<td>4.29</td>
<td>[3.68-4.90]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PAPR_H</td>
<td>6.20</td>
<td>[5.59-6.81]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PAPR_K</td>
<td>6.13</td>
<td>[5.52-6.74]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PAPR_R</td>
<td>6.22</td>
<td>[5.61-6.83]</td>
<td></td>
</tr>
</tbody>
</table>

Interaction between PS and WV

0.795

Post hoc test: RPR_K < RPR_H/R < PAPR_H/K/R,
Discussion

In this study, we measured the FF of the RPR and PAPR used in the resting state and working state, using three different wearing variations. The FF of the RPR and PAPR in the workload state was significantly lower than that during the resting state. This may be due to the fact that the adhesion between the face and the RPE tends to decrease due to the workload. There was no significant interaction between the physical states and the wearing variations. It was suggested that, even when workers wear RPE properly, working reduces respiratory protection. Since there is a possibility that working may impair protection, employers should try to reduce the risk by implementing engineering measures.

The FF of the PAPR used in the workload state was greater than 100 in 9 of 10 cases for all wearing variations. There were three cases in which the FF of the RPR in the workload state was greater than 100, using the recommended wearing method. There were no cases in which the FF of the RPR was greater than 100 when the knit cover was attached to the RPR. The inside of the PAPR is always under positive pressure, which may maintain respiratory protection even if working impairs the adhesion between the PAPR and the face. It is clear that PAPRs are superior to RPRs in terms of respiratory protection.
protection. However, it has been reported that PAPRs are rarely used in the workplace because they are expensive, they are larger in size compared to RPR, and most workers complained about its heaviness, and these reasons may have hindered the use of PAPR.

The mean FF of wearing a knit cover in RPRs was 12.3, in the resting state and 9.3, in the workload state, which was significantly the lowest among all wearing methods. The FF was less than 100 in all participants, and this study also indicated that wearing a knit cover is a wearing method that can easily compromise the adhesion between the face and the RPR. When wearing a knit cover in PAPRs, the FF was more than 100 even during workload, and respiratory protection was maintained. If there is a risk of causing eczema or other skin problems by wearing RPE, workers are allowed to use a knit cover as long as there is good adhesion between the RPE and the face. Since this study showed that wearing a knit cover impairs adhesion to the RPR, it is recommended that workers with skin disorders who use a knit cover wear a PAPR.

There was no significant difference in the FF between the recommended method of wearing the RPR and the method of wearing the RPR over the helmet. In this study, we kept the pressure on the tightening cord constant among the participants, but there may be differences among individuals in the workplace. The RPR, PAPR, and helmet we
examined were of one model and they were unused. In this case, the RPE headband merely fits well with the helmet, and it is unclear whether the results are similar for the other models. It is also unclear how the degradation of the RPR or helmet affects the fit of the headband and helmet. Further study is required on these points, and we cannot yet recommend wearing RPE over a helmet. However, it has been reported that many workers in the workplace wore RPE over their helmets. Working in a dusty environment while wearing RPE with a poorly adherent attachment does not sufficiently prevent pneumoconiosis. It is important to provide continuous education and guidance to workers to ensure that they wear RPE with minimal leakage.

Recently, the concept of workplace protection factor (WPF) has emerged because of the importance of evaluating the respiratory protection of RPE in the workplace environment. WPF is a measure of the protection provided in the workplace when a properly functioning respirator is correctly fitted and used, and several studies on WPF have been reported. In this study, respiratory protection during workload was evaluated in an artificial climate chamber, and it is desirable to evaluate the respiratory protection of various methods of wearing RPE in the workplace.

Limitation
This study has some limitations. First, the number of participants was small, and type II errors may be larger, so we need to increase the sample size and examine it. Second, the RPRs, PAPRs, knit cover, and helmet we used were of only one type, so we thought it was necessary to verify with multiple types of RPE. Moreover, the RPE, knit cover, and helmet used were new. In the workplace, workers use the equipment for many years, so the deterioration of the silicone of the RPE, knit cover, and helmet may affect the FF. Third, participants may have worn the RPE more rigorously than the actual workers. To minimize the effect of the individual’s ability to accurately fit the RPE, the subjects wore the RPE while looking in a mirror during the survey. If the examiner noticed an abnormality, such as a twisted strap, the subject was asked to remove the RPE and re-attach it. The verification of WPF in actual workers who have no knowledge on how to wear the RPE is a subject for future study.

Conclusion

We evaluated the respiratory protection of RPRs and PAPRs during workload, using various wearing methods. The FF of RPRs in the workload state was significantly lower than that in the resting state, indicating inadequate respiratory protection. In contrast, the FF of PAPRs was significantly lower than that at rest, but respiratory protection was maintained. As in a previous study, PAPRs were found to be superior to RPRs in terms
of respiratory protection. Therefore, PAPRs are better than RPRs for workers who have to wear RPE inappropriately due to health problems.

Acknowledgements

We would like to thank Editage (http://www.editage.com) for editing and reviewing this manuscript for English language.

Declaration of Conflict interests

The authors declare no conflicts of interest

Ethical approval

The Ethics and Informed Consent Procedure for this study was approved by the Ethics Committee of Medical Research, University of Occupational and Environmental Health, Japan (Receipt No. H30-58). Informed consent was obtained from all the participants.

Funding

This study was funded by the Industrial Disease Clinical Research Grants.

References

9. Occupational Safety and Health Administration, Appendix A to §1910.134—Fit Testing Procedures (Mandatory),

