ABSTRACT
The emergence of the novel coronavirus pneumonia (Covid-19) pandemic at the end of 2019 led to chaos worldwide. The world breathed a sigh of relief when some countries announced that they had obtained the appropriate vaccine and gradually began to distribute it. Nevertheless, the emergence of another wave of this disease has returned us to the starting point. At present, early detection of infected cases has been the paramount concern of both specialists and health researchers. This paper aims to detect infected patients through chest x-ray images. The large dataset available online for Covid-19 (COVIDx) was used in this research. The dataset consists of 2,128 x-ray images of Covid-19 cases, 8,066 normal cases, and 5,575 cases of pneumonia. A hybrid algorithm was applied to improve image quality before conducting the neural network training process. This algorithm consisted of combining two different noise reduction filters in the images, followed by a contrast enhancement algorithm. In this paper, for Covid-19 detection, a novel convolution neural network (CNN) architecture, KL-MOB (Covid-19 detection network based on MobileNet structure), was proposed. KL-MOB performance was boosted by adding the Kullback–Leibler (KL) divergence loss function at the end when trained from scratch. The Kullback–Leibler (KL) divergence loss function was adopted as content-based image retrieval and fine-grained classification to improve the quality of image representation. This paper yielded impressive results, overall benchmark accuracy, sensitivity, specificity, and precision of 98.7%, 98.32%, 98.82%, and 98.37%, respectively. The promising results in this research may enable other researchers to develop modern and innovative methods to aid specialists. The tremendous potential of the method proposed in this research can also be utilized to detect Covid-19 quickly and safely in patients throughout the world.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported in part by the National Natural Science Foundation [61572177].
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.