Title page

Is mRankin scale correlated with mTICI? A systematic review and meta-regression on RCTs and registries.

Authors

Gianluca De Rubeis MD°, Enrico Pampana MD°, Prof, Luca Prosperini MD², Sebastiano Fabiano MD¹, Luca Bertaccini MD¹, Sabrina Anticoli MD³, Luca Saba MD, Prof⁴, Claudio Gasperini MD², Prof, and Enrico Cotroneo MD¹

° Co-first author, equally contribution to the manuscript

Affiliations

1: Department of Diagnostic, UOC of Diagnostic and Interventional Neuroradiology, San Camillo-Forlanini Hospital, Rome, Italy

2: Department of Neuroscience, UOC Neurology, S Camillo Forlanini Hospital, Rome Italy

3: Emergency Department, UOSD Stroke Unit, S. Camillo-Forlanini Hospital, Rome, Italy

4: Department of Medical Imaging, Azienda Ospedaliero Universitaria (A.O.U.) of Cagliari-Polo di Monserrato, Cagliari, Italy

Keywords

Stroke

Cerebral Infarction

Randomized Controlled Trial

Observational Study

Mechanical Thrombolysis

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background and Purpose

mTICI ≥2b/3 is one of the strongest positive predictors of mRS ≤2. Quantitative analysis is poorly investigated. Reconcile results from RCT and registries is still a challenge. The purpose was to evaluate the numeric correlation between mTICI ≥2b/3 and mRS ≤2 in RCT and registries.

Methods

Literature research was performed on Pubmed for studies in 2015-2020. mTICI, mRS and sample size were recorded. Exclusion criteria were monocentric study, not-human and not-English. Studies quality were assessed with MINORS and RoB2. Meta-logistic and meta-linear regressions were used to correlate mTICI and mRS in both RCTs and registries. Z-test was used for comparing coefficients between RCTs and registries.

Results

Twenty-six studies were evaluated (13 registries; 14 RCTs) for 24423 patients (21914 from registries [average per registry 1685±1277]; 2509 from RCTs [average per RCT 179±160]). RCTs involved anterior circulation only, 7/13 (53.8%) registries considered also posterior one.

The OR of obtaining a mRS ≤2 for a singular increased of mTICI ≥2b rate was 1.65 (CI95% 1.22-2.01) for all studies, 1.65 (CI95% 1.10-2.46) for RCTs and 1.50 (CI95% 1.00-2.23) for registries. mTICI ≥2b and mRS had a positive correlation with a coefficient of 0.49 (CI95% 0.19-0.80, p=0.001) for all studies, 0.54 (CI95% 0.09-1.00) for RCTs and 0.42 (CI95% 0.04-0.81) for registries. No differences were found in the coefficients between RCTs and registries (p=0.63; p=0.65; respectively).

Conclusions

Unitary increased of mTICI ≥2b rate correspond to an augment of mRS ≤2 by 0.50 (CI95% 0.19-0.89) with OR of obtaining mRS ≤2 of 1.65 (CI95% 1.22-2.01), without significantly differences in coefficients.
Manuscript

Introduction

Since the publication in 2015 of the successful 5 randomized controlled trials (RCT)[1] on the endovascular mechanical thrombectomy, the new era of stroke treatment has begun. In the following years, a submergent literature has been published including RCTs and registries. mRankin scale (mRS) at 90 days is the functional primary endpoint in all RCTs and, generally, it is dichotomized into 0-2 (good functional outcome) and ≥3[1,2]. However, from procedural side, the goal is modified thrombolysis in cerebral infarction (mTICI) of ≥2b[3] (successful revascularization). Although, a positive correlation between mTICI v and mRS≤2 is well established[4-6], a numerical analysis is poorly investigated.

RCTs is the gold standard for medical research, however registries could represented the “real-world” clinical practise[7]. A reconciliation between results originating from RCTs and registries is still a challenging in medicine[8]. Although, a Cochrane’s systematic review[7] showed little differences in healthcare outcomes between these two types of study (rate of odds ratio: 1.08), Deb-Chatterji et al[9] demonstrated a worst performance for functional independency and mortality in stroke registry data comparing with the “first five” trials and HERMES meta-analysis data.

The aim of the present study was to evaluate the numerical correlation between successful recanalization (mTICI≥2b/3) and good functional outcome (mRS≤2) in both RCTs and registries using meta-regressions.

Methods

The study protocol was available upon request by mailing the corresponding author. The data used for the systematic review and the meta-regressions were publicly available.

Literature research in Pubmed was performed for published multicentric RCTs and registries, from 2015 (first publication of successful RCT in endovascular stroke) to 2020, on mechanical thrombectomy in stroke. The keywords were “stroke”, “thrombectomy”, “randomize controlled trial” and “registry”. The inclusion criteria for the studies were: English literature, humans, and mechanical thrombectomy in at least one of the study’s arm. Title and abstract were reviewed for considering inclusion. Further the full text was analysed. Monocentric studies were excluded. For ASTER[10] and COMPASS[11] trials, which compared contact aspiration and stent retriever, the data were considered unitary. For DIRECT-MT trial[12] which confronted
endovascular treatment with or without Alteplase administration, the data were considering unified. The detailed flowchart was described in Figure 1.

Study quality assessment

Studies quality was assessed with methodological index for non-randomized studies (MINORS) criteria[13] for registry and with Risk of Bias 2 (RoB2) tool[14] for RCT. The results of the assessment were described in Table 1.

Data extraction, statistical analysis, and results interpretation

For each study, the percentage of successful revascularization (mTICI≥2b), rate of good functional outcome at 90 days (mRS≤2) and the number of patients enrolled were recorded (Table 1.). Data were divided into two categories: RCT and registry. The data extraction were performed by two interventional neuroradiologist in consensus (BLIND and BLIND, 4 and 5 years of experiences, respectively).

The data were analysed using meta logistic regression analysis with random effect model, using as covariate: mTICI≥2b, studies involved also posterior circulation and types of studies (RCTs and registries). Since, the mRS percentage across the studies are continuous data and follow a normal distribution (Kolmogorov-Smirnov test), these data respect also the assumption of central limit theorem to perform a meta linear regression analysis[15]. Both linear and logistic meta-regressions were performed. Z’s test proposed by Clogg et al[16] was used for comparing the coefficient of the two meta-regressions. p≤0.05 was considered as significant. R-Studio (R-project http://www.R-project.org) and OpenMeta version 12.11.14 (http://www.cebm.brown.edu/openmeta/index.html) were used as statistical software. The graphs were plotted with Microsoft Excel (Office 365, Microsoft Corporation, Redmond, USA).

Meta-regression was performed using both linear and logistic setting (according to the central limit theorem) due the different interpretation of the data resulted by the analysis. In particular, the coefficient of meta linear regression described the numerical correlation between mTICI percentage and 3-months mRS rate, more specifically the coefficient corresponds to how much the percentage of mRS≤2 increases per single increase in mTICI≥2b rate. On the contrary the odd ratio, derived from the meta logistic regression, represents the constant effect of a mTICI≥2b percentage, on the likelihood that mRS≤2 rate will occur; in the other words, the augmented chances of obtaining mRS≤2 per single increase of mTICI≥2b percentage.

Study’s Outcomes
The primary outcome was to evaluate the correlation and the numeric relationship between successful revascularization (mTICI≥2b) and good functional outcome at 90 days (mRS≤2).

The secondary outcome was to observe if the correlation and the numeric relationship varied between RCTs and registries.

Results

Study population

The final population encompassed 27 studies (14 registries and 13 RCTs) for a total number of patients of 24423 divided into 21914 from registries (average per registry 1685±1277) and 2509 from RCTs (average per RCT 179±160) (Flowchart 1.). All RCTs were focused only anterior circulation while 7/13 (53.8%) of the registries considered also posterior one. (Table 1). A detailed list of inclusion criteria of the studies were described in Table 1.

Results

The heterogeneity of the studies was high with an I²=92.8%, which decreased to I²=75.9% considering RCTs only and increased to I²=95.7% for registries.

The coefficient of the meta-logistic regression analysis for mTICI≥2b was 0.50 (CI95% 0.20-0.70, p=0.001) for all studies, with a corresponding Odd-Ratio (OR) of 1.65 (CI95% 1.22-2.01) (Figure 2); no other covariates were significant (Table 2). By performing meta logistic regression using mTICI and trial type as covariates, the coefficient for registries was -4.00 (CI95% -9.0-1.0, p=0.12) with an OR 0.018 (CI95% 0.0001-0.37). For RCTs, the coefficient was 0.50 (CI95% 0.10-0.90, p=0.02) with an OR of 1.65 (CI95% 1.10-2.46) and for registries was 0.40 (CI 95% 0.0-0.80, p=0.03) with an OR of 1.5 (CI95% 1.00-2.23). No differences were highlighted between the two coefficients (z=0.35; p=0.63)

The coefficient of the meta-linear regression analysis for mTICI≥2b was 0.49 (CI95% 0.19-0.80, p=0.001) (Figure 2), by means that on average an increase of 1% of mTICI≥2b will increase the chance of obtaining a good functional outcome (mRS≤2) by 0.49%; no other covariates were significant (Table 3.). After performing the meta linear regression using as covariates mTICI and trial type only, the coefficient for registries was -4.54 (CI95% -9.89-0.80, p=0.10). For RCTs, the coefficient was 0.54 (CI95% 0.09-1.00, p=0.02) and for registries was 0.42 (CI 95% 0.04-0.81, p=0.03). No differences were demonstrated between the two coefficients (z=0.39; p=0.65)
Discussion

The OR of obtaining a functional independency (mRS≤2) for a unitary increased of mTICI ≥2b was 1.65 (CI95% 1.22-2.01) for all studies and 1.65 (CI95% 1.10-2.46) for RCTs and 1.5 (CI95% 1.00-2.23) for registries. A linear positive correlation was found between mTICI≥2b and mRS with a coefficient of 0.49 (CI95% 0.19-0.80, p=0.001) for all studies, 0.54 (CI95% 0.09-1.00) for the RCTs and 0.42 (CI 95% 0.04-0.81, p=0.03) for registries, without significant differences between the two coefficients (p>0.05).

Successful revascularization (mTICI≥2b) is considered one of the strongest predictor of functional independency (mRS≤2)[6], for this reason the AHA/ASA guidelines[3] addressed mTICI≥2b as the angiographic goal for maximizing the chance of obtaining good functional clinical outcome. A linear relationship between mTICI and mRS in RCTs was already observed; although, without numeric analysis[17 18]. The present meta-linear regression numerically confirmed the significantly correlation defining a comprehensive coefficient of 0.49 (CI95% 0.19-0.80, p=0.001). In addition, applying the meta-logistic regression the OR of obtain functional independency was 1.65 (CI95% 1.22-2.01).

Despite, RCTs is considered the gold standard for medical research, the problem of transporting results to “real-life world” is still an unsolved problem in medicine[19]. Basically, the internal validity of RCT may limit its external validity due to the different conditions and homogeneity of a RCT compared to the more complex and heterogeneous setting of a registry[20 21]. Moreover, performance bias is a matter of concern in both RCTs and registries, especially for non-pragmatic RCT in which the issues of “structured environment” may limited results generalization[22-24]. In addition, RCTs’ patients are generally strictly monitored and more sensitized on the disease comparing with observational registries[25]. In addition, mRS has several limitations including long time span between treatment and outcome assessment and lack of stroke-specificity disability[26]. In addition, mRS is influenced also by post-stroke care and rehabilitation[27-30]. The present data regarding mechanical thrombectomy in stroke partially confirmed these results. In fact, both the OR (meta-logistic regression) and the coefficient (meta-linear regression) were higher in RCT vs registries (OR: 1.65 [CI95% 1.10-2.46] vs 1.5 [CI95% 1.00-2.23], respectively) (coefﬁcient: 0.54 [CI95% 0.09-1.00] vs 0.42 [CI 95% 0.04-0.81], respectively) (Figure 2.). These findings meaned that by increasing of 1% in mTICI≥2b rate the corresponding chance of augment of mRS≤2 was 0.54 for RCTs and 0.42 registries. Namely, an angiographic success in mechanical thrombectomy has a higher impact on the clinical functional outcome if the patient is enrolled in a RCT despite in a registry. Despite its clinical importance,
these differences remained not statistically significant in this present study due to small sample size. Interestingly, the lowest performance of mRS≤2 was reported by MR-CLEAN trial[31], the sole RCT who explicitly affirmed its pragmatic design. Under these lights, a direct comparison of a 3 months functional scale between real world (registries) and experimental setting (RCTs) is difficult to establish.

These discrepancies in clinical outcome may arise from several points. Firstly, RCTs and registries design (structured vs real world). Secondly, RCTs’ centres may be more expert in mechanical thrombectomy than registries’ one with a higher number of procedures per year which is a known prognostic factor[32]. Thirdly, the post-stroke care could be more effective in a high-volume centre. Fourthly, since a double-blind design is unfeasible, an assignment bias may impact on the results.

The current study presents several limitations. Firstly, the literature research was performed on PubMed and the authors did not have the access to original data. Secondly, the post-stroke care quality was not possible to assess, since was not reported in any papers. Thirdly, the studies presented different inclusion criteria which may slightly influence the enrolment. Fourthly, the ecological bias is a known and intrinsic limitation of meta regression analysis[33], since average patient characteristics are regressed against average trial outcomes and the data were extracted not at patients level[34]

Conclusions

For each unitary increased of mTICI≥2b rate, the percentage of mRS<2 augment by 0.49 (CI95% 0.19-0.80) and the OR of obtaining a good functional outcome was 1.65 (CI95% 1.10-2.26), without significant differences between RCTs and registries performance.
Contributorship Statement:

Conceptualization, GDR and EP; methodology, GDR, LP and CG; software, GDR and LP.; validation CG, EP, SF, SA and EC.; formal analysis, GDR and LP; investigation GDR, LB, SF, EP; resources LB; data curation, GDR, LB and LP.; writing—original draft preparation, GDR, EP; writing—review and editing CG; SA and EC.; visualization GDR, LP.; supervision, EP, CG, SF, SA EC;

Funding Statement:

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Competing Interests Statement:

NA

All authors have read and agreed to the published version of the manuscript.

Ethical approval:

Not applicable, since this is a meta-regressions based on literature research

Data sharing:

Data are available upon request to the corresponding author
References

7. Anglemyer A, Horvath HT, Bero L. Healthcare outcomes assessed with observational study designs compared with those assessed in randomized trials. Cochrane Database of Systematic Reviews 2014(4) doi: 10.1002/14651858.MR000034.pub2 [published Online First: Epub Date].

Figures’ legend

Figure 1.
Study flowchart

Figure 2.

Bubble plot of the meta regression in RCTs (a) registries (b). As observed, the was a linear correlation between mTICI ≥ 2b and mRS > 2 using both analyses with a trending minor slope in registries. The size of the bubble represented the numerosity of the study.
<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Trial type</th>
<th>Year</th>
<th>Risk of Bias</th>
<th>Number of patients</th>
<th>Comparison for RCT</th>
<th>Non-comparison for Registry</th>
<th>Inclusion criteria</th>
<th>mTICI (\geq 2b) (%)</th>
<th>90 days mRS (\leq 2) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXTEND-D-IA*</td>
<td>RCT</td>
<td>Prospective, blind end-point evaluation</td>
<td>2015</td>
<td>Low</td>
<td>35</td>
<td>SR + Alteplase vs Alteplase alone</td>
<td>Alteplase within 4.5 hours from the onset; Anterior circulation</td>
<td>86</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>REVASCAT</td>
<td>RCT</td>
<td>Prospective, sequential, blind end-point evaluation</td>
<td>2015</td>
<td>Low</td>
<td>103</td>
<td>SR vs medical therapy</td>
<td>Treated within 8 hours from the onset; Anterior circulation</td>
<td>65.7</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>MR CLEAN</td>
<td>RCT</td>
<td>Prospective, pragmatic, blind end-point evaluation</td>
<td>2015</td>
<td>Low</td>
<td>233</td>
<td>SR or Thrombolytic Agent vs medical therapy</td>
<td>Treated within 6 hours from the onset; Anterior circulation</td>
<td>58.7</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>ESCAPE</td>
<td>RCT</td>
<td>Prospective, blind end-point evaluation</td>
<td>2015</td>
<td>Low</td>
<td>165</td>
<td>SR vs medical therapy</td>
<td>Treated within 12 hours from the onset; Anterior circulation</td>
<td>72.4</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>SWIFT-PRIME</td>
<td>RCT</td>
<td>Prospective, blind</td>
<td>2015</td>
<td>Low</td>
<td>98</td>
<td>SR + Alteplase vs Alteplase alone</td>
<td>Treated within 6 hours from the onset; Anterior circulation</td>
<td>88</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Therapy</td>
<td>Study Type</td>
<td>Design</td>
<td>Eligibility</td>
<td>End-point Evaluation</td>
<td>Hours from Onset; Anterior Circulation</td>
<td>N1</td>
<td>N2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>--------</td>
<td>-------------</td>
<td>----------------------</td>
<td>--</td>
<td>----</td>
<td>----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THRACE</td>
<td>RCT</td>
<td>Prospective</td>
<td>Eligible for alteplase; Anterior circulation; NIHSS ≥8</td>
<td>Mechanical thrombectomy + alteplase vs alteplase</td>
<td>Treated within 5 hours from the onset; Anterior circulation</td>
<td>69</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASTER</td>
<td>RCT</td>
<td>Prospective, blind end-point evaluation</td>
<td>CA vs SR</td>
<td>Treated within 6 hours from the onset; Anterior circulation</td>
<td>84.8</td>
<td>47.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PISTE</td>
<td>RCT</td>
<td>Prospective, blind end-point evaluation</td>
<td>Eligible for alteplase; Anterior circulation</td>
<td>Mechanical thrombectomy + alteplase vs alteplase</td>
<td>87.4</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STRATIS</td>
<td>Registry</td>
<td>Prospective</td>
<td>SR (Solitaire)</td>
<td>Treated within 8 hours from the onset</td>
<td>87.9</td>
<td>56.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Registry</td>
<td>Type</td>
<td>Year</td>
<td>Patients</td>
<td>Procedure</td>
<td>Criteria</td>
<td>Success</td>
<td>P-value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------</td>
<td>------</td>
<td>----------</td>
<td>--</td>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SITS-TBY</td>
<td>Registries</td>
<td>2017</td>
<td>1053</td>
<td>Mechanical thrombectomy</td>
<td>Anterior and posterior circulation</td>
<td>74</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTUAL Registries</td>
<td>Registries</td>
<td>2018</td>
<td>698</td>
<td>Mechanical thrombectomy</td>
<td>European guidelines; anterior circulation</td>
<td>83.8</td>
<td>43.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trevo 2000 Registries</td>
<td>Registries</td>
<td>2018</td>
<td>1192</td>
<td>SR (TREVO)</td>
<td>Center-based indications</td>
<td>92.8</td>
<td>55.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR CLEAN</td>
<td>Registries</td>
<td>2018</td>
<td>1628</td>
<td>Mechanical thrombectomy</td>
<td>Treated within 6.5 hours from the onset; anterior circulation</td>
<td>58.7</td>
<td>37.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEFUSE 3 RCT</td>
<td>RCT, blind end-point evaluation</td>
<td>2018</td>
<td>Low 92</td>
<td>Mechanical thrombectomy</td>
<td>6-16 hours from the onset; imaging mismatch; anterior circulation</td>
<td>76</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETIS</td>
<td>Registries</td>
<td>2019</td>
<td>1541</td>
<td>Mechanical thrombectomy</td>
<td>AHA/ASA</td>
<td>76.6</td>
<td>44.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Registry</td>
<td>Type</td>
<td>Design</td>
<td>Year</td>
<td>Group</td>
<td>Treatment</td>
<td>Anterior and posterior circulations percentage</td>
<td>Procedure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
<td>-------------------</td>
<td>------</td>
<td>-------</td>
<td>---</td>
<td>---</td>
<td>-----------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPASS</td>
<td>RCT</td>
<td>Prospective, blind end-point evaluation</td>
<td>2019</td>
<td>Low</td>
<td>CA vs SR</td>
<td>80.7</td>
<td>Mechanical thrombectomy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Treated within 6.5 hours from the onset; Anterior and posterior circulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Track</td>
<td>Registry</td>
<td>Retrospective and prospective</td>
<td>2019</td>
<td>13</td>
<td>624</td>
<td>80.7</td>
<td>SR (TREVO)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AHA/ASA indications; Anterior and posterior circulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEYOND SWIFT</td>
<td>Registry</td>
<td>Retrospective</td>
<td>2019</td>
<td>11</td>
<td>2046</td>
<td>71.4</td>
<td>Mechanical thrombectomy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AHA/ASA indications; Anterior and posterior circulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>German</td>
<td>Registry</td>
<td>Prospective</td>
<td>2019</td>
<td>13</td>
<td>2794</td>
<td>83</td>
<td>Mechanical thrombectomy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AHA/ASA indications; Anterior and posterior circulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moscow</td>
<td>Registry</td>
<td>Retrospective</td>
<td>2019</td>
<td>12</td>
<td>742</td>
<td>75</td>
<td>Mechanical thrombectomy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AHA/ASA indications; Anterior and posterior circulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Registry</td>
<td>Type</td>
<td>Year</td>
<td>NC</td>
<td># of Participants</td>
<td>Procedure</td>
<td>Indications; Anterior and posterior circulations</td>
<td>AHA/ASA Indications; Anterior and posterior circulations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>----</td>
<td>------------------</td>
<td>-----------</td>
<td>---</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAR</td>
<td>Registry</td>
<td>Unknown</td>
<td>2020</td>
<td>12</td>
<td>3850</td>
<td>Mechanical thrombectomy</td>
<td>84</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRETAS</td>
<td>Registry</td>
<td>Retrospective</td>
<td>2020</td>
<td>13</td>
<td>4429</td>
<td>Mechanical thrombectomy</td>
<td>75.1</td>
<td>43.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resiliet</td>
<td>RCT</td>
<td>Prospective</td>
<td>2020</td>
<td>Low</td>
<td>111</td>
<td>Mechanical thrombectomy vs standard care</td>
<td>82</td>
<td>35.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TREAT</td>
<td>Registry</td>
<td>Prospective</td>
<td>2020</td>
<td>11</td>
<td>328</td>
<td>Mechanical thrombectomy</td>
<td>83.3</td>
<td>43.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIRECT MT</td>
<td>RCT</td>
<td>Prospective</td>
<td>2020</td>
<td>Low</td>
<td>622</td>
<td>Mechanical thrombectomy vs Mechanical thrombectomy + Alteplase</td>
<td>82.0</td>
<td>47.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circulation</td>
<td>SR: stent retriever; CA: contact aspiration; × Contact aspiration; °Stent retriever; α interrupted early; NIHSS: National Institute Health Stroke Scale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. List of the studies
Table 2. Meta logistic regression

<table>
<thead>
<tr>
<th>mTICI</th>
<th>Coefficient (n [CI95%])</th>
<th>p</th>
<th>Omnibus p</th>
</tr>
</thead>
<tbody>
<tr>
<td>mTICI</td>
<td>0.50 [0.20-0.70]</td>
<td>0.001</td>
<td>0.006</td>
</tr>
<tr>
<td>Posterior circulation Registry</td>
<td>-1.9 [-10.9-7.20]</td>
<td>0.685</td>
<td>0.006</td>
</tr>
<tr>
<td>Registry</td>
<td>-2.5 [-10.1-5.1]</td>
<td>0.515</td>
<td>0.006</td>
</tr>
</tbody>
</table>

mTICI modified thrombolysis in cerebral infarction, CI 95% confidence interval 95%
<table>
<thead>
<tr>
<th></th>
<th>Coefficient (n [CI95%])</th>
<th>p</th>
<th>Omnibus p</th>
</tr>
</thead>
<tbody>
<tr>
<td>mTICI</td>
<td>0.49 [0.19-0.80]</td>
<td>0.002</td>
<td>0.006</td>
</tr>
<tr>
<td>Posterior</td>
<td>-1.89 [-11.11-7.33]</td>
<td>0.69</td>
<td>0.006</td>
</tr>
<tr>
<td>circulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Registry</td>
<td>-3.34 [-12.31-5.64]</td>
<td>0.47</td>
<td>0.006</td>
</tr>
</tbody>
</table>

mTICI modified thrombolysis in cerebral infarction, CI 95% confidence interval 95%

Table 3. Meta linear regression
«Stroke» AND «Thrombectomy» AND «REGISTRY»

438 Studies

294 Studies

13 Registries

«Stroke» AND «Thrombectomy» AND «RCT»

426 Studies

332 Studies

14 RCT

Exclusions

2015-2020
Not Humans
Not English

Title + Abstract revision