Development of a parent-reported screening tool for Avoidant/Restrictive Food Intake Disorder (ARFID): Initial validation and prevalence in a Japanese birth cohort

Running head: Development of a parent-reported screening tool for ARFID

Lisa Dinkler, MSc1,2, Kahoko Yasumitsu-Lovell, MSc, MA1,2, Masamitsu Eitoku, PhD2, Mikiya Fujieda, MD, PhD3, Narufumi Suganuma, MD, PhD2, Yuhei Hatakenaka, MD, PhD1,4, Nouchine Hadjikhani, MD, PhD1,5, Rachel Bryant-Waugh, PhD6, Maria Råstam, MD, PhD1,7, Christopher Gillberg, MD, PhD1,2

1 Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
2 Department of Environmental Medicine, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, Japan
3 Department of Pediatrics, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, Japan
4 Faculty of Humanities and Sociologies, University of the Ryukyus, Nishihara, Okinawa, Japan
5 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, US
6 Maudsley Centre for Child and Adolescent Eating Disorders, South London and Maudsley NHS Foundation Trust, London, UK
7 Department of Clinical Sciences Lund, Lund University, Lund, Sweden

Corresponding Author: Lisa Dinkler, Gillberg Neuropsychiatry Centre, Kungsgatan 12, floor 2, 41119 Gothenburg, Sweden, +46707466373, lisa.dinkler@gu.se

Declaration of interest: None.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Development of a parent-reported screening tool for ARFID

Abstract (max 280 words)

The prevalence of Avoidant/Restrictive Food Intake Disorder (ARFID) in the general child population is still largely unknown and validated screening instruments are lacking. The aims of this study were to investigate the prevalence of children screening positive for ARFID in a Japanese birth cohort using a newly developed parent-reported screening tool, and to provide preliminary evidence for the validity of the new screening tool. Data were collected from 3,728 4-7-year-old children born in Kochi prefecture (response rate was 56.5%), Japan, between 2011 and 2014; a sub-sample of the Japan Environment and Children’s Study (JECS). Parents completed a questionnaire including the ARFID screener and several other measures to assess convergent validity. The point prevalence of children screening positive for ARFID was 1.3%; half of them met criteria for ARFID based on psychosocial impairment alone, while the other half met diagnostic criteria relating to physical impairment (and additional psychosocial impairment in many cases). Sensory sensitivity to food characteristics (63%) and/or lack of interest in eating (51%) were the most prevalent drivers of food avoidance. Children screening positive for ARFID were lighter in weight and shorter in height, they showed more problem behaviors related to mealtimes and nutritional intake, and they were more often selective eaters and more responsive to satiety, providing preliminary support for the validity of the new screening tool. This is the largest screening study to date of ARFID in children up to 7 years. Future studies should examine the diagnostic validity of the new ARFID screener using clinically ascertained cases. Further research on ARFID prevalence in the general population is needed.

Key words

Avoidant/Restrictive Food Intake Disorder, prevalence, screening, impairment, Japan Environment and Children’s Study
Abbreviations

ARFID Avoidant/Restrictive Food Intake Disorder
ARFID-BS ARFID-Brief Screener
BPFAS Behavioral Pediatric Feeding Assessment Scale
CEBQ Child Eating Behavior Questionnaire
EDY-Q Eating Disorder in Youth-Questionnaire
JECS Japan Environment and Children's Study
K-SADS-E Kiddie Schedule for Affective Disorders and Schizophrenia-Epidemiological version
Development of a parent-reported screening tool for ARFID

1. Introduction

Avoidant/Restrictive Food Intake Disorder (ARFID) was added to the DSM-5 in 2013 as a feeding and eating disorder diagnosis (American Psychiatric Association, 2013) and despite a burgeoning body of research, the prevalence of ARFID in the general population is still largely unknown. Having relatively precise estimates of ARFID prevalence in the population is important to assess the impact of ARFID on the population and to appropriately organize health care. However, large epidemiological studies require a lot of time and effort, and most importantly, screening tools for ARFID need further development and validation (Eddy et al., 2019).

Studies on the rate of self-reported ARFID symptoms in the general population have reported a point prevalence between 0.3% and 5.5%. Using the Eating Disorder in Youth-Questionnaire (EDY-Q; van Dyck et al., 2013)—a self-report scale for ARFID symptoms based on the DSM-5 criteria and the Great Ormond Street Hospital criteria (Lask & Bryant-Waugh, 2000)—ARFID symptoms were present in 3.2% of Swiss (Kurz, van Dyck, Dremmel, Munsch, & Hilbert, 2015) and 5.5% of German school age children, respectively (Schmidt, Vogel, Hiemisch, Kiess, & Hilbert, 2018). Another study recorded an ARFID prevalence of 0.3% in Taiwanese school-age children (Chen, Chen, Lin, Shen, & Gau, 2019), using the epidemiological version of the Kiddie Schedule for Affective Disorders and Schizophrenia (K-SADS-E; Ambrosini, 2000) in Mandarin. In adults, three estimates have been reported. In an Australian adult population (≥15 years) the 3-month-prevalence of ARFID was 0.3% both in 2014 and 2015 (Hay et al., 2017). Using the EDY-Q with German adults, the prevalence of ARFID symptoms was 0.8% (Hilbert, Zenger, Eichler, & Brähler, 2020), and in Singapore, ARFID was estimated to be present in 4.1% of adults using the Stanford-Washington University Eating Disorder Screen (SWED) (Chua, Fitzsimmons-Craft, Austin, Wilfley, & Taylor, 2021; Graham et al., 2019). The applied screenings assessments differ significantly in number and type of questions and in their focus on assessing the diagnostic criteria (i.e., consequences of avoidant/restrictive eating and exclusion criteria) versus the drivers of avoidant/restrictive eating (e.g., lack of appetite, sensory sensitivity to food characteristics), which might explain the relatively broad range of prevalence.
Development of a parent-reported screening tool for ARFID

estimates. Importantly, none of the screening tools has yet been validated against clinically ascertained diagnoses.

In younger children, self-reports of ARFID symptoms are not feasible, and parent-reported instruments are therefore needed. Only one epidemiological study to date used a parent-reported questionnaire, which consisted of five items covering main ARFID symptoms answered with yes or no, of which four items were used to identify ARFID (Gonçalves et al., 2019). ARFID symptoms were present in 15.5% of 330 Portuguese children between 5 and 10 years. Considering all other reported prevalence estimates, this estimate seems disproportionately high. The authors argue that the response format of the questions in combination with generally high concern of Portuguese parents about their children’s eating and weight might have led to an overestimation of the prevalence. Furthermore, no questions regarding the DSM-5 exclusion criteria were included in the parental questionnaire. In summary, the prevalence of ARFID in children younger than 7 years in the general population is still completely unknown and there is a clear need for parent-reported screening tools in young children.

Moreover, there has been some discussion as to whether DSM-5 criterion A4 (marked interference with psychosocial functioning) would be sufficient to meet criterion A in the absence of criteria A1-A3 which are related to the physical impact of avoidant and/or restricted eating (e.g., weight loss, nutritional deficiency, dependence on enteral feeding). The way criterion A is worded in the DSM-5 is somewhat ambiguous; however, in the upcoming DSM-5-TR it will be clarified that criterion A4 alone is sufficient to meet criterion A (R Bryant-Waugh 2021, personal communication, 1 April), that is, physical consequences are not required for an ARFID diagnosis, which is also the case in ICD-11 (World Health Organization, 2018). Criterion A4 might also be the criterion that is most challenging to assess, and its operationalization is not entirely clear (Eddy et al., 2019). Especially, in young children, this criterion might be difficult to evaluate, as parents and other caregivers often make wide-ranging accommodations to the child’s needs and wishes around food, so that the psychosocial functioning of the child might not be impacted significantly, while the psychosocial functioning of the family might well be. When assessing the criterion, it is therefore important to differentiate between consequences for the child versus for the family/caregivers. Concerns have also been raised regarding
over-diagnosis of ARFID due to potential over-reporting of impairment by some parents on behalf of their children (Eddy et al., 2019). It is so far not known what impact it has on ARFID prevalence whether physical consequences of avoidant/restrictive eating (criteria A1-3) are required to be present or not.

The aims of this study were (1) to investigate the prevalence of children screening positive for ARFID in a large birth cohort of Japanese children aged 4-7 years using a newly developed parent-reported screening instrument, (2) to examine the impact of required physical consequences of avoidant/restrictive eating on prevalence, and (3) to provide preliminary evidence for the validity of the new screening tool.

2. Method

2.1 Participants

This study included a sub-sample of the Japan Environment and Children's Study (JECS), an ongoing nationwide birth cohort study following approximately 100,000 children from pregnancy/birth until the age of 13. JECS includes 15 Regional Centers that recruited pregnant women via the collaborating local health care providers and local government offices where women registered their pregnancy. The Regional Centers were requested to cover more than 50% of pregnancies in the defined area of study (Kawamoto et al., 2014; Michikawa et al., 2018). In collaboration with the Kochi Regional Centre of the JECS at Kochi Medical School we collected additional data in the Kochi cohort, a sub-cohort of the JECS including 6,633 children born in Kochi prefecture between July 2011 and December 2014. A questionnaire was sent out to all parents in the Kochi cohort in December 2018. Responses were collected until 31st October 2019. The response rate was 56.5% (n=3,746), an attrition analysis can be found in Supplement 1. This study was approved by the ethics committee at Kochi Medical School (ERB-102925 and ERB-104083). Participants gave informed consent before taking part in the study.

1 At the start of JECS, 7,094 children were registered in the Kochi cohort. At the time our questionnaire was sent out, 6,633 of these were still participating in the JECS.
Development of a parent-reported screening tool for ARFID

2.2 Measures

2.2.1 Development of the ARFID screener

The questionnaire developed for this study is intended to screen for ARFID in children by parent-report. The items map closely onto the diagnostic criteria for DSM-5 ARFID and also examine the presence of the three known drivers of food avoidance: sensory sensitivity to characteristics of food, lack of interest in eating, and fear of aversive consequences of eating (Thomas et al., 2017). Most criteria and the drivers of food avoidance were assessed with one item each, while two criteria were assessed with two items each. Table 1 shows items, response options, and required responses to meet the respective criterion. Criterion B (the eating disturbance is not due to lack of available food or a culturally sanctioned practice) was not assessed because we considered our cohort (a) affluent enough for food shortage to be relatively unlikely, and (b) culturally homogenous enough with no particular food restriction practice.

Children were identified with ARFID if the following criteria were met: (1) parents indicated that their child currently had an eating disturbance characterized by avoidance or restriction of food intake (criterion A), (2) the eating disturbance currently caused physical or psychosocial impairment for the child (criteria A1-A3, at least one of them had to be met), (3) the eating disturbance was not attributable to weight/shape concerns (criterion C), and (4) the eating disturbance was not attributable to a concurrent medical condition (criterion D). In addition, we differentiated between ARFID with physical impairment (at least one of criteria A1-A3 had to be met) and ARFID without physical impairment (criterion A4 was met, but not criteria A1-A3).

As criterion A4 requires “marked inference with psychosocial functioning” (American Psychiatric Association, 2013), this criterion was considered to be met if at least one of the two items assessing this criterion was rated “Yes, a lot” (Table 1). For criterion C, we considered it sufficient to check for weight and shape concerns in order to exclude the possibility of the eating disturbance occurring “exclusively during the course of anorexia nervosa or bulimia nervosa” (American Psychiatric Association, 2013), since anorexia nervosa and bulimia nervosa are very unlikely to occur.
Development of a parent-reported screening tool for ARFID

in this age group of 4 to 7 years. If criteria A, A1-A4, and C were met, criterion D was assessed; medical conditions reported by the parents were evaluated carefully for sufficiently explaining an eating disturbance causing problems with weight, growth, or nutrition. For example, although food allergies lead to some restriction of food intake, they were not considered sufficient to explain problems with weight, growth, or nutrition, as it is possible to consume substitutes for allergenic foods; criterion D was therefore considered as met.

The presence of any of the three drivers of food avoidance was not required to meet criteria for ARFID, as they are considered examples and not intended to be exhaustive (American Psychiatric Association, 2013; Bourne, Bryant-Waugh, Cook, & Mandy, 2020). A driver of food avoidance was considered present if the corresponding item was rated at least “sometimes” on a 5-point scale from “never” to “always” (Table 1). Drivers do not necessarily need to be present with all foods at all times, for example, there can be sensory-based avoidance of some foods, but not all or most foods. In this instance the parent might respond with “sometimes”, which is why we chose this response as the threshold to indicate evidence for a certain driver.

Initially, the ARFID screener was designed to assess both current and previous ARFID symptoms, in order to be able to determine point and lifetime prevalence of ARFID. Parents were therefore asked whether a problem was present currently or previously. During data analysis, we realized that the data basis to identify previous ARFID was insufficient. For example, as we had no indication of when certain problems were previously present, we could not ascertain that the ARFID criteria were met simultaneously at some point. Furthermore, almost all items were worded from a current perspective, providing a strong basis to evaluate current ARFID, but a less strong basis to evaluate previous ARFID. One item (assessing criterion A3) had to be excluded from the diagnostic algorithm, as the response options provided no indication of whether this problem was currently present or not (see documentation for item A3-c in Table S1).

Please note that in this study, “prevalence of ARFID” and “children with ARFID” refer to children screening positive for ARFID by meeting the diagnostic criteria as described above.
2.2.2 Measurements to assess convergent validity

In addition to the questions screening for ARFID, parents filled in the child part of the Behavioral Pediatric Feeding Assessment Scale (BPFAS; William Crist et al., 1994; W. Crist & Napier-Phillips, 2001; with the permission of William Crist), which measures children’s restrictive-type eating behaviors, including problem behaviors related to mealtimes and nutritional intake. BPFAS items are rated on two scales: (1) a 5-point frequency scale from “never” to “always”; summing these ratings yields the BPFAS Child Frequency Score, and (2) a problem scale (“Is this a problem for you?” no=0, yes=1); summing these ratings yields the BPFAS Child Problem Score. Two BPFAS items relating to the food types eaten by the child were adapted slightly for the current study to enhance cultural relevance by adding more examples to the respective food group. Item 6 “Eats meat and/or fish” was changed to “Eats protein (e.g., meat, fish, eggs, beans, tofu)”, and item 18 “Eats starches (e.g. potato noodles)” was changed to “Eats starches (e.g., potatoes, rice, bread, pasta)”. The BPFAS has previously been shown to discriminate well between 2- to 7-year-old children with ARFID and a normative population (Dovey, Aldridge, Martin, Wilken, & Meyer, 2016). Children screening positive for ARFID were therefore expected to have significantly higher scores than children screening negative for ARFID on both BPFAS scales.

Parents also completed the following five subscales of the Child Eating Behavior Questionnaire (CEBQ; Carnell & Wardle, 2007; Wardle, Guthrie, Sanderson, & Rapoport, 2001): Food Responsiveness, Food Fussiness, Satiety Responsiveness, Emotional Undereating, Emotional Overeating. CEBQ items are rated on a 5-point frequency scale from “never” to “always”. Convergent validity would be evidenced if children screening positive for ARFID scored significantly higher on the scales Food Fussiness (selective eating, food neophobia), Satiety Responsiveness (feeling full quickly), and Emotional Undereating (eating less when having negative emotions), and if they scored significantly lower on the scales Food Responsiveness (having good appetite/being attracted by food, overeating) and Emotional Overeating (eating more when having negative emotions). The CEBQ scales Enjoyment of Food and Slowness in Eating could potentially have provided additional
information on convergent validity, but were not included in the questionnaire to keep the questionnaire as concise as possible and to reduce the burden for participants.

Lastly, parents were asked to report their child’s height and weight at the time of answering the questionnaire. Although ARFID is not a low-weight disorder per se, children with ARFID are expected to be of lower weight and height on average, especially those meeting criterion A1 (weight loss or failure to grow/gain weight).

2.2.3 Translation of the questionnaire into Japanese

The ARFID screener was originally developed in English. A Japanese native speaker (experienced child psychiatrist specialized in neurodevelopmental disorders and fluent in English) translated the ARFID screener, the BPFAS, and the CEBQ scales into Japanese. A native Swedish speaker with excellent knowledge of Japanese and English, working as a scientific English translator in our research center, translated back into English. Finally, the first author, the translator, and the back-translator discussed and resolved discrepancies.

2.3 Statistical Analyses

Point prevalence of ARFID was determined according to the algorithm described above and in Table 1. As the BPFAS and the CEBQ have not been used in Japan before, their psychometric properties were evaluated. Internal consistency of the total mean scores of the BPFAS and CEBQ scales was calculated using Cronbach’s alpha. Factorial validity of the CEBQ scales was examined using Principal Component Analysis (PCA) with orthogonal Varimax rotation. Extraction of factors was based on Eigenvalues >1 and scree plot inspections. Two-tailed Welch’s t-tests and Hedge’s g for effect size were used to investigate differences in BPFAS and CEBQ scale mean scores between children screening positive versus negative for ARFID. The significance level was set at 0.05. Using the parent-reported current height and weight of their child, height and body mass index (BMI) were evaluated using Japanese norm data collected in a national survey that included 14,000 0-6 year-olds and 695,600 6-17 year-olds (Kato, Murata, Kawano, Taniguchi, & Ohtake, 2004). The norm data are
split by sex and month of age, and provide height in standard deviations (SDs) and BMI in percentile groups. Stata 16.1 was used for data analysis (StataCorp, 2019).

3. Results

3.1 Participant characteristics

Data were available from 3,746 children aged between 49 and 95 months (M=68.1, SD=11.0; 4 year-olds: 26.6%, 5 year-olds: 34.1%, 6 year-olds: 28.0%, 7 year-olds: 11.3%). 49.1% of the sample were female. Questionnaires were almost always filled in by mothers (98.1%), followed by fathers (1.8%), and in three cases by grandmothers. The mother was also indicated as a main caregiver for 98.1% of children (fathers: 60.1%; multiple answers were possible).

3.2 Prevalence of ARFID

The frequencies of responses to the single diagnostic criteria in the total cohort are shown in Table 1. A response to criterion A was missing in 14 children and in four children it was unclear whether criterion D was met. These 18 children were excluded from the analyses, leaving a total sample of 3,728 children. The point prevalence of ARFID was 1.3% (n=49). ARFID was slightly more common in girls (1.5%) than in boys (1.2%). ARFID with physical impairment (51%, n=25) was equally common as ARFID without physical impairment (49%, n=24; Table 2). Criterion A1 (concerns about weight gain/growth) was met in almost all children with ARFID with physical impairment (96.0%, n=24), only a minority had nutritional deficiencies (criterion A2, 8%, n=2) or were dependent on nutritional supplements (criterion A3, 12% n=3). About a quarter (28%, n=7) of children with ARFID with physical impairment also experienced significant psychosocial impairment (criterion A4). Almost two thirds (63%, n=31) of all children with ARFID met criterion A4.

3.3 Drivers of food avoidance

84% of children with ARFID reported at least one of the three drivers of food avoidance (boys: 82%, girls: 85%). Sensory sensitivity to food characteristics was the most common driver (63%), followed
Development of a parent-reported screening tool for ARFID

by lack of interest in eating (51%), while fear of aversive consequences of eating was much less
frequent (14%; Table 2). Sensory sensitivity to food characteristics was somewhat more common in
boys (77%, girls: 52%), while lack of interest in eating was somewhat more common in girls (59%,
boys: 41%). While most children with ARFID (47%) showed evidence for only one of the drivers,
29% of the children had two drivers and 8% had three drivers.

3.4 Psychometric properties of the BPFAS and the CEBQ

Internal consistencies of the BPFAS scales were α=.80 for both the Child Frequency Score and the
Child Problem Score; internal consistencies of the CEBQ scales ranged from α=.65 to α=.86 (Table
S2). In the PCA for the five CEBQ scales, Eigenvalues suggested a five-factor solution accounting for
58% of the total variance, while the Screeplot suggested six factors accounting for 62% of the
variance. We decided to explore item fits for the five-factor solution in order to enhance
interpretability with the original CEBQ scales. The original scales were largely reproduced, except
Food Responsiveness, where only two of the five items supposed to measure this scale had loadings
larger than .30 (for details see Table S2).

3.5 Convergent validity of the ARFID screener

Children with ARFID had significantly higher values than children screening negative for ARFID on
the BPFAS Child Frequency Score (gHedge=1.25) and the BPFAS Child Problem Score (gHedge=1.50;
Table 3). On average, parents of children with ARFID considered six different mealtime behaviors to
be a problem, compared to two problematic mealtime behaviors in children screening negative for
ARFID. As for the CEBQ scales, children with ARFID scored significantly higher than children
without ARFID on Satiety Responsiveness (gHedge=0.98), Food Fussiness (gHedge=0.86), and Emotional
Undereating (gHedge=0.38). No significant differences were found for the scales Food Responsiveness
and Emotional Overeating. No significant differences in BPFAS and CEBQ scale scores were found
between children with ARFID with physical impairment and children with ARFID but without
physical impairment, however, due to the small groups, the power for these analyses was low, leading
to wide confidence intervals.
Development of a parent-reported screening tool for ARFID

On average, children screening positive for ARFID were shorter in height and had noticeably lower BMIs than children screening negative for ARFID (Table 4). However, this difference was mainly driven by the ARFID group with physical impairment. The proportion of children with a BMI below the 10th percentile (for sex and age) was 9.4% in the total sample, 13.6% in the ARFID group without physical impairment, but 36.4% in the ARFID group with physical impairment. Similarly, the proportion of children having a height of less than 2 SD below the mean (for sex and age) was 4.3% in the total sample, 4.4% in the ARFID group without physical impairment, but 26.1% in the ARFID group with physical impairment.

3.6 Modification of the screening tool – the ARFID-Brief Screener (ARFID-BS)

Based on the experience using the screening tool in the Japanese cohort and the data presented above, we have modified the original screener. The revised tool is called ARFID-Brief Screener (ARFID-BS, Supplement 2); it is intended to screen for ARFID in children from 2 years and up. Table S1 provides an item-by-item comparison of the original screener and the ARFID-BS, describes the modifications we made, and presents the diagnostic algorithm for the ARFID-BS.

4. Discussion

The current study describes the development of a parent-reported screening tool for ARFID in children and its application in a large birth cohort of Japanese children aged 4 to 7 years. This is the largest prevalence study of ARFID for this age range, and the first to compare prevalence estimates for ARFID depending on the presence or absence of physical impairment.

Using the newly developed screener the point prevalence of children screening positive for ARFID was 1.3%. As ARFID prevalence might depend on age, this estimate is difficult to compare to previous studies. The use of different screening tools further reduces comparability across studies, as might also potential cultural differences. The only other study with an age range similar to that in our cohort showed a considerably higher rate (15.5% in 5-10 year-olds) (Gonçalves et al., 2019); however, this rate seems disproportionately high in comparison to other prevalence estimates as discussed in the
Development of a parent-reported screening tool for ARFID

Introduction. Studies on older children (7-14 years) found higher (3.2-5.5%) in Germany and Switzerland; Kurz et al., 2015; Schmidt et al., 2018) as well as lower estimates (0.3% in Taiwan; Chen et al., 2019). The German and the Swiss study used the EDY-Q to assess ARFID symptoms. That our study resulted in a significantly lower point prevalence might be explained by our stricter criteria for ARFID; for example, as opposed to the EDY-Q, our ARFID screener evaluates exclusion criterion D and directly addresses actual restriction of food intake. Alternatively cultural differences could have contributed to the different estimates, but it is unclear in what way.

Whether physical consequences of avoidant and/or restrictive eating were required to be present had a large impact on ARFID prevalence: the number of children with ARFID doubled if physical consequences were not required, that is, if marked interferences with psychosocial functioning (criterion A4) was sufficient for screening positive for ARFID. This finding is difficult to compare, as previous epidemiological studies have not differentiated prevalence estimates by the presence or absence of physical consequences. Apart from the impact on prevalence, future studies should also try to understand the association of physical consequences being present or absent with ARFID severity and other clinical characteristics (e.g., drivers of food avoidance). It is important to keep in mind that in this study, judgements regarding an interference with psychosocial functioning were made by parents, who might potentially overestimate the impact of their child’s eating pattern on their child’s stress and functioning by confusing it with their own stress and worry regarding their child’s eating. Especially in small children, criterion A4 can be difficult to evaluate, as parents often put a lot of effort into adjusting (family) life to their child’s demands around eating. More detailed guidelines on how to operationalize the A4 criterion in different age groups would be helpful for future research.

Our results supported convergent validity of our ARFID screener with several measures. Children screening positive for ARFID displayed more problems related to restrictive-type eating and nutritional intake as measured with the BPFAS. According to the CEBQ scales, children with ARFID were more often selective eaters and food neophobic (Food Fussiness), they were more likely to have lower levels of appetite and to eat less because of being sensitive to satiety (Satiety Responsiveness),
and they tended to eat less when experiencing negative emotions (Emotional Undereating). While food fussiness is what we would expect to see mainly in children with sensory sensitivity, satiety responsiveness, and emotional undereating are largely associated with the lack-of-interest-in-eating-presentation of ARFID (Thomas et al., 2017). This was also found by He and colleagues (He, Zickgraf, Ellis, Lin, & Fan, 2021) who compared the Nine-Item ARFID screen (NIAS) (Zickgraf & Ellis, 2018)—which assesses the three drivers of food avoidance with three items each—with the adult version of the CEBQ in Chinese adults. Against our expectation, children with ARFID did not differ significantly from children without ARFID on the Food responsiveness scale; a likely explanation for this is that this factor showed to be very instable in the PCA. He et al. found significant but small associations of the Food responsiveness scale with both sensory sensitivity and lack of interest in eating in adults. Furthermore, parent-reported height and weight data confirmed that children with ARFID with physical impairment (i.e., weight/height and nutrition problems) were in fact lighter in weight and shorter in height, while this was not the case for children with ARFID without physical impairment. This is in line with the results by Becker et al. (2019) who found that the average BMI of children with clinically diagnosed ARFID was in the normal range when allowing psychosocial impairment to be sufficient for ARFID diagnosis. Lastly, there were no significant differences in BPFAS and CEBQ scale scores between the ARFID group with and the ARFID group without physical impairment, indicating that also children with psychosocial impairment alone had highly problematic eating behaviors. Together, these data provides preliminary support for the newly developed screening tool used in this study. It differs from previously used instruments in two aspects. First, ARFID symptoms are parent-reported as opposed to self-reported. Second, previously used instruments focus strongly on the three known drivers of food avoidance, while consequences of avoidant/restrictive eating and exclusion criteria are included to a varying degree (e.g., EDY-Q, NIAS, SWED). In contrast, our ARFID screener is designed along the DSM-5 ARFID criteria and does not require the presence of any of the drivers of food avoidance.

As opposed to anorexia nervosa, where females are 3-10 times more often affected than males (Bulik et al., 2010; Hudson, Hiripi, Pope, & Kessler, 2007; Preti et al., 2009), the male-female ratio for
Development of a parent-reported screening tool for ARFID

ARFID in our sample was approximately 1:1. This is in line with previous epidemiological studies in children and adults (Chua et al., 2021; Hilbert et al., 2020; Kurz et al., 2015). Also studies from child and adolescent eating disorder programs, which are inherently female-based, found higher rates of males in patients with ARFID than in patients with anorexia nervosa (Fisher et al., 2014; Forman et al., 2014; Nicely, Lane-Loney, Masciulli, Hollenbeak, & Ornstein, 2014; Norris et al., 2014). In children referred to hospital-based pediatric feeding disorder programs, boys even seem to be in the majority (Sharp et al., 2020; Williams et al., 2015). The relatively much higher proportion of males in ARFID as compared with anorexia nervosa might be explained by two reasons. First, while overvaluation of body weight or shape and drive for thinness are part of the anorexia nervosa diagnostic criteria, they are exclusion criteria for the ARFID diagnosis. Such symptoms are known to be more common in females than in males (Anderson & Bulik, 2004; Nunez-Navarro et al., 2012), and this in itself might lead to a higher rate of diagnosable anorexia nervosa in females. Second, the ARFID symptoms selective eating and sensory sensitivity show strong associations with neurodevelopmental disorders (Ghanizadeh, 2011; Little, Dean, Tomchek, & Dunn, 2018; Robertson & Baron-Cohen, 2017; Sharp et al., 2013; Smith, Rogers, Blissett, & Ludlow, 2020), conditions that are generally present at higher rates in males than in females (Loomes, Hull, & Mandy, 2017; Polanczyk, de Lima, Horta, Biederman, & Rohde, 2007).

That sensory-based food avoidance was most common, while fear-based food avoidance was least common, is concordant with previous studies in the general population (Kurz et al., 2015), but in contrast to studies of somewhat older children in partial hospitalization programs for eating disorders, where fear of aversive consequences has been found to be much more prevalent or even the most prevalent driver of food avoidance (Norris et al., 2018; Zickgraf, Lane-Loney, Essayli, & Ornstein, 2019). A reason for this might be that cases with acute onset—often triggered by a specific fear related to an aversive somatic experience—are overrepresented in clinical samples from intensive treatment programs, which might only represent a subgroup of children with ARFID in the general population. In addition, it can be speculated that fear-based food avoidance usually develops later (e.g., in combination with a triggering incident) than sensory-based and lack-of-interest-based food avoidance,
which is why the latter two are more common in younger children like the ones in our sample.

Having more than one driver of food avoidance was very common (36.8%), although less common than in a clinical study of pediatric patients with ARFID (64.4%), which explicitly aimed to investigate the overlap between drivers of food avoidance using somewhat more detailed questions (Reilly, Brown, Gray, Kaye, & Menzel, 2019). These observations contradict the notion of mutually exclusive ARFID subtypes, but are in line with the view that several drivers of food avoidance often occur together, with more drivers potentially exacerbating the condition (Thomas et al., 2017). A significant proportion (17.9%) did not show evidence for any of the three drivers. This could reflect the relatively simplistic measurement of possible drivers in this study with one question each, and/or indicate the existence of other potential and yet unknown reasons for food avoidance. In order to acknowledge the hypothesis that the three known drivers of food avoidance are not exhaustive (Bourne et al., 2020), our screening tool does not include questions relating to the drivers of food avoidance into the algorithm to identify children with potential ARFID, which is different from other tools (e.g., the EDY-Q). Future clinical studies should test if further drivers of food avoidance can be identified; if not, the three known drivers should be included into algorithms to identify ARFID.

This study has several limitations. First, the ARFID prevalence estimates reported in this study have to be considered preliminary until future studies provide evidence for the diagnostic validity of the ARFID-BS using clinically ascertained ARFID diagnoses. However, we found promising initial evidence of convergent validity with a range of relevant measures assessing restrictive-type eating as well as with weight and height. It should also be pointed out that the ARFID screening items used here are closely mapped onto the DSM-5 ARFID criteria and they therefore likely have high content validity. This method (i.e., to create screening items that almost verbatim reflect the DSM diagnostic criteria) has been used previously for a parent-reported questionnaire on neurodevelopmental disorders and led to high criterion validity for diagnoses of ASD and ADHD (Mårland et al., 2017). Second, the question applied to assess criterion D only partially reflected the exclusion criterion, that is, it did not link any concurrent medical condition to the food avoidance/restriction as such and it did not address other mental disorders (even though mental disorders other than autism spectrum disorder and Attention-
Development of a parent-reported screening tool for ARFID

Deficit/Hyperactivity Disorder are very infrequently diagnosed in this young age group). This might have led to an underestimation of children with medical or mental conditions that directly account for their eating disturbance, hence we possibly slightly overestimated the prevalence of ARFID. In the revised version of the screener, the ARFID-BS, we have adjusted this question to more accurately reflect DSM-5 criterion D (Supplement 2). Third, height and weight data were parent-reported and not objectively measured, which can be a source for (social desirability) bias, for instance, as parents tend to report higher weights for underweight children and lower weights for overweight children (van Leeuwen, van Middelkoop, Paulis, Bindels, & Koes, 2019; Wright, Glanz, Colburn, Robson, & Saelens, 2018). Considering that children with ARFID in our sample were more often underweight, we could have underestimated the difference in BMI between children with and without ARFID. Lastly, although the initially enrolled JECS cohort is representative for the Japanese population (Michikawa et al., 2018), response rates have declined with increasing time of follow-up, in line with other large longitudinal cohort studies on child development in Europe (Fraser et al., 2013; Olsen et al., 2019); the response rate in the current study was 56.5%. Mothers who dropped out during the first year of the JECS and their children seem to be less healthy on average (Kigawa et al., 2019). Our attrition analysis furthermore showed that mothers still participating in the JECS, but not responding to our questionnaire, might be slightly less well-functioning than responders, as indicated by lower socio-economic status and a few maternal health variables. Hence, it is possible that the children in our sample are slightly healthier than the average Japanese child population and that we therefore somewhat underestimated the prevalence of ARFID.

In summary, this study contributes to the small body of literature on the prevalence of ARFID in the general population and addresses the lack of parent-reported screening tools for ARFID. We present a newly developed tool and initial evidence for its validity, although its validation against clinically ascertained cases of ARFID is still pending. In a large birth cohort of 4-7-year-old Japanese children, 1.3% of children screened positive for ARFID. About half of these children showed evidence of physical consequences of the avoidant and/or restrictive eating. Further research on the prevalence of ARFID in the general population is needed.
Acknowledgements

We would like to express our gratitude to all of the JECS study participants in the Kochi cohort and to the staff members at Kochi Regional Centre, who sent out and collected the questionnaires. Furthermore, we gratefully thank Theo Gillberg for back-translating the Early Eating Behavior Questionnaire (EEBQ) from Japanese. In addition, we thank Nadia Micali, who consulted us on the EEBQ in the early stages of its development.

Author Contributions

L.D., M.R. and C.G. designed the study.
L.D., M.R. and C.G. obtained funding for this study.
L.D. performed the data analysis and drafted the manuscript.
K.Y.-L. coordinated the data collection.
K.Y.-L., M.E., M.F., N.S. and Y.H. provided administrative support for the data collection.
R.B.-W., M.R. and C.G. supervised the study and provided clinical expertise.
All authors critically revised the manuscript for important intellectual content and approved the final manuscript.

Funding

This work was supported by the Swedish Research Council (M.R., 2018-02544; C.G., 538-2013-8864), Torsten Söderbergs Foundation (C.G., M151/14), AnnMari and Per Ahlqvist Foundation (C.G., 2018), Japan Society for the Promotion of Science (M.F., 18KK0263), Scandinavia-Japan Sasakawa Foundation (L.D., 2016), Samariten Foundation (L.D., 2017-0283), Wilhelm and Martina Lundgrens Foundation (L.D., 2017-1738), Petter Silfverskiölds Memorial Foundation (L.D., 2017-093 & 2018-142), Professor Bror Gadelius Memorial
Development of a parent-reported screening tool for ARFID

Foundation (L.D., 2019 & 2020), and Solstickan Foundation (L.D., 2020). The Japan Environment and Children’s Study was funded by the Ministry of the Environment, Japan. The funding sources had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Declaration of interest

None

Data availability

Data are unsuitable for public deposition due to ethical restrictions and legal framework of Japan. It is prohibited by the Act on the Protection of Personal Information (Act No. 57 of 30 May 2003, amendment on 9 September 2015) to publicly deposit the data containing personal information. Ethical Guidelines for Medical and Health Research Involving Human Subjects enforced by the Japan Ministry of Education, Culture, Sports, Science and Technology and the Ministry of Health, Labour and Welfare also restricts the open sharing of the epidemiologic data. All inquiries about access to data should be sent to: jecs-en@nies.go.jp. The person responsible for handling enquiries sent to this e-mail address is Dr Shoji F. Nakayama, JECS Programme Office, National Institute for Environmental Studies.

Previous peer-review

A previous version of this study has been peer-reviewed by the journal European Eating Disorders Review. We have changed the paper significantly and addressed the reviewers’ comments to the extent it was possible.
Development of a parent-reported screening tool for ARFID

References

Development of a parent-reported screening tool for ARFID

disorders: report of the national eating disorders quality improvement collaborative. *Journal of Adolescent Health, 55*(6), 750-756. doi:10.1016/j.jadohealth.2014.06.014

Development of a parent-reported screening tool for ARFID

previous and predictive validity. *BMC Psychiatry*, 17(1), 403. doi:10.1186/s12888-017-1563-0

StataCorp. (2019). Stata Statistical Software: Release 16. College Station, TX: StataCorp LLC.

Development of a parent-reported screening tool for ARFID

Table 1 Items used to screen the DSM-5 diagnostic criteria for Avoidant/Restrictive Food Intake Disorder (ARFID), including response options, required responses for meeting the criteria, and prevalence of each response option in the total cohort

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Item</th>
<th>Possible response optionsa</th>
<th>Prevalence in total cohort (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - Avoidance or restriction of food intake</td>
<td>Do you think your child has an eating or feeding disturbance characterized by avoidance or restriction of food intake? (avoidance and restriction can relate to the range of foods eaten as well as the overall amount eaten)</td>
<td>Yes, currently; Yes, earlier; No, never</td>
<td>4.1; 2.8; 93.0</td>
</tr>
<tr>
<td>A1 - Significant weight loss (or failure to grow/gain weight)</td>
<td>Over the past 3 months has there been concern that your child has not gained weight or grown as he/she should?</td>
<td>Yes, currently; Yes, earlier; No, never</td>
<td>1.7; 2.2; 96.1</td>
</tr>
<tr>
<td>A2 - Significant nutritional deficiency</td>
<td>Has your child been identified by a health professional as having any nutritional deficiency?</td>
<td>Yes, currently; Yes, earlier; No, never</td>
<td>0.2; 1.6; 98.2</td>
</tr>
</tbody>
</table>
| A3 - Dependence on enteral feeding or oral nutritional supplements | a) Has your child been prescribed dietary supplements (e.g., vitamins, minerals) to address nutritional deficiencies?
b) Did your child ever need nutritional supplement drinks (or other high-energy drinks) to be able to maintain/gain weight? | Yes, currently; Yes, earlier; No, never | 0.2; 1.2; 98.6 |
| A4 - Marked interference with psychosocial functioning | a) Do you believe that your child's current eating pattern causes any distress for your child?
b) Does your child's current eating pattern interfere with his/her social functioning (e.g. attending preschool, affecting meals in preschool, making friends, play, activities)? | Yes, a lot; Yes, somewhat; Not at all | 2.2; 1.6; 96.2 |
| C - Eating disturbance not attributable to weight/shape concerns | My child says that he/she feels fat, even if other people do not agree with him/her. (item from Eating Disorder in Youth-Questionnaire, EDY-Q) | Never; Rarely; Sometimes; Often; Always | 83.7; 10.4; 4.5; 1.0; 0.4 |
| D – Eating disturbance not attributable to concurrent medical condition | If your child has any problems with weight, growth or nutrition, is this primarily due to a current medical problem?
Medical problem: (specify) | Yes; No | 1.3; 98.7 |

Diagnostic algorithm

ARFID: A + (A1 or A2 or A3-a or A3-b or A4-a or A4-b) + C + D

ARFID with physical impairment: at least one of A1, A2, A3-a or A3-b has to be met

ARFID without physical impairment: A4-a and/or A4-b are met, but not A1, A2, A3-a or A3-b

Driver - Lack of interest in eating	My child enjoys eating. (item from Behavioral Pediatric Feeding Assessment Scale, BPFAS; reverse item)	Never; Rarely; Sometimes; Often; Always	1.1; 1.4; 12.4; 34.4; 50.7
Driver - Sensory sensitivity	My child dislikes to eat food with a specific smell, taste, appearance, temperature, or a certain consistency/texture (e.g., crispy or soft).	Never; Rarely; Sometimes; Often; Always	46.1; 23.4; 22.3; 5.7; 2.4
Driver - Fear of aversive consequences	My child is afraid of eating because of worries about what might happen (e.g., choking, vomiting, stomach aches, diarrhea, or allergic reactions etc.).	Never; Rarely; Sometimes; Often; Always	79.3; 13.2; 6.3; 1.1; 0.1

*a The responses required to meet the respective criterion are printed in bold.
Development of a parent-reported screening tool for ARFID

Table 2 Prevalence of Avoidant/Restrictive Food Intake Disorder (ARFID) with and without physical impairment (PI) in Japanese children aged 4-7 years, met diagnostic criteria, and drivers of food avoidance

<table>
<thead>
<tr>
<th></th>
<th>ARFID</th>
<th>ARFID with PI (n=25)</th>
<th>ARFID without PI (n=24)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
</tr>
<tr>
<td>Prevalence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All (n=3,728)</td>
<td>49</td>
<td>1.31</td>
<td>25</td>
</tr>
<tr>
<td>Boys (n=1,889)</td>
<td>22</td>
<td>1.16</td>
<td>11</td>
</tr>
<tr>
<td>Girls (n=1,829)</td>
<td>27</td>
<td>1.48</td>
<td>14</td>
</tr>
<tr>
<td>Met criteria A1-A4*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>24</td>
<td>49.0</td>
<td>24</td>
</tr>
<tr>
<td>A2</td>
<td>2</td>
<td>4.1</td>
<td>2</td>
</tr>
<tr>
<td>A3</td>
<td>3</td>
<td>6.1</td>
<td>3</td>
</tr>
<tr>
<td>A3-a</td>
<td>3</td>
<td>6.1</td>
<td>3</td>
</tr>
<tr>
<td>A3-b</td>
<td>1</td>
<td>2.0</td>
<td>1</td>
</tr>
<tr>
<td>A4</td>
<td>31</td>
<td>63.3</td>
<td>7</td>
</tr>
<tr>
<td>A4-a</td>
<td>25</td>
<td>51.0</td>
<td>6</td>
</tr>
<tr>
<td>A4-b</td>
<td>19</td>
<td>38.8</td>
<td>4</td>
</tr>
<tr>
<td>Drivers of food avoidance*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensory sensitivity</td>
<td>31</td>
<td>63.3</td>
<td>12</td>
</tr>
<tr>
<td>Lack of interest in eating</td>
<td>25</td>
<td>51.0</td>
<td>11</td>
</tr>
<tr>
<td>Fear of aversive conseq.</td>
<td>7</td>
<td>14.3</td>
<td>4</td>
</tr>
<tr>
<td>Number of drivers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>8</td>
<td>16.3</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>23</td>
<td>46.9</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>28.6</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>8.2</td>
<td>2</td>
</tr>
</tbody>
</table>

*multiple answers possible
Development of a parent-reported screening tool for ARFID

Table 3 Comparison of Behavioral Pediatric Feeding Assessment Scale (BPFAS) scores and Child Eating Behavior Questionnaire (CEBQ) scores in children screening positive vs. negative for Avoidant/Restrictive Food Intake Disorder (ARFID), and in children screening positive for ARFID with vs without physical impairment (PI)

<table>
<thead>
<tr>
<th>ARFID vs. no ARFID</th>
<th>ARFID (n=49)</th>
<th>no ARFID (n=3,679)</th>
<th>Group comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M (SD)</td>
<td>M (SD)</td>
<td>Welch’s t (df)</td>
</tr>
<tr>
<td>BPFAS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child Frequency Score</td>
<td>53.8 (11.1)</td>
<td>43.2 (8.4)</td>
<td>6.6 (48.8)</td>
</tr>
<tr>
<td>Child Problem Score</td>
<td>6.3 (4.2)</td>
<td>2.2 (2.7)</td>
<td>6.5 (44.5)</td>
</tr>
<tr>
<td>CEBQ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food Responsiveness</td>
<td>2.2 (0.6)</td>
<td>2.5 (0.7)</td>
<td>-2.8 (49.8)</td>
</tr>
<tr>
<td>Satiety Responsiveness</td>
<td>3.2 (0.9)</td>
<td>2.5 (0.7)</td>
<td>5.2 (48.8)</td>
</tr>
<tr>
<td>Food Fussiness</td>
<td>3.4 (1.0)</td>
<td>2.8 (0.8)</td>
<td>4.9 (48.9)</td>
</tr>
<tr>
<td>Emotional Undereating</td>
<td>2.5 (0.8)</td>
<td>2.3 (0.7)</td>
<td>2.2 (48.9)</td>
</tr>
<tr>
<td>Emotional Overeating</td>
<td>1.5 (0.5)</td>
<td>1.4 (0.4)</td>
<td>1.1 (49.3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARFID with vs. without PI</th>
<th>ARFID with PI (n=25)</th>
<th>ARFID without PI (n=24)</th>
<th>Group comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M (SD)</td>
<td>M (SD)</td>
<td>Welch’s t (df)</td>
</tr>
<tr>
<td>BPFAS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child Frequency Score</td>
<td>51.2 (11.3)</td>
<td>56.6 (10.4)</td>
<td>-1.7 (48.9)</td>
</tr>
<tr>
<td>Child Problem Score</td>
<td>5.5 (4.2)</td>
<td>7.1 (4.2)</td>
<td>-1.3 (44.8)</td>
</tr>
<tr>
<td>CEBQ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food Responsiveness</td>
<td>2.2 (0.5)</td>
<td>2.2 (0.6)</td>
<td>-0.1 (45.1)</td>
</tr>
<tr>
<td>Satiety Responsiveness</td>
<td>3.1 (1.0)</td>
<td>3.3 (0.8)</td>
<td>-0.6 (45.8)</td>
</tr>
<tr>
<td>Food Fussiness</td>
<td>3.2 (1.0)</td>
<td>3.7 (0.8)</td>
<td>-2.0 (47.4)</td>
</tr>
<tr>
<td>Emotional Undereating</td>
<td>2.3 (0.7)</td>
<td>2.8 (0.9)</td>
<td>-2.0 (45.5)</td>
</tr>
<tr>
<td>Emotional Overeating</td>
<td>1.5 (0.5)</td>
<td>1.6 (0.4)</td>
<td>-0.5 (49.0)</td>
</tr>
</tbody>
</table>

^a Computed using Welch’s formula to approximate the degrees of freedom (i.e., assuming unequal group variances).

Note. Possible score ranges: BPFAS Child Frequency Score: 25-125, BPFAS Child Problem Score: 0-25, CEBQ scales: 1-5
Table 4 Distribution of height in standard deviations (SDs) and body mass index (BMI) percentile groups in the total sample and in children screening positive for Avoidant/Restrictive Food Intake Disorder (ARFID) with and without physical impairment (PI) using Japanese norm data

<table>
<thead>
<tr>
<th>Height in SDs from the mean (M)</th>
<th>Total sample (n=3,728)</th>
<th>ARFID (n=49)</th>
<th>ARFID with PI (n=25)</th>
<th>ARFID without PI (n=24)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n valid</td>
<td>% cumul.</td>
<td>n valid</td>
<td>% cumul.</td>
</tr>
<tr>
<td>< -3 SD</td>
<td>26</td>
<td>0.8</td>
<td>3</td>
<td>6.5</td>
</tr>
<tr>
<td>-3 to -2 SD<sup>a</sup></td>
<td>124</td>
<td>3.6</td>
<td>4</td>
<td>8.7</td>
</tr>
<tr>
<td>-2 to -1.5 SD</td>
<td>268</td>
<td>7.7</td>
<td>4</td>
<td>8.7</td>
</tr>
<tr>
<td>-1.5 to -1 SD</td>
<td>457</td>
<td>13.2</td>
<td>8</td>
<td>17.4</td>
</tr>
<tr>
<td>-1 SD to M</td>
<td>1309</td>
<td>37.8</td>
<td>14</td>
<td>30.4</td>
</tr>
<tr>
<td>M to 1 SD</td>
<td>955</td>
<td>27.6</td>
<td>10</td>
<td>21.7</td>
</tr>
<tr>
<td>1 to 1.5 SD</td>
<td>203</td>
<td>5.9</td>
<td>1</td>
<td>2.2</td>
</tr>
<tr>
<td>1.5 to 2 SD</td>
<td>87</td>
<td>2.5</td>
<td>1</td>
<td>2.2</td>
</tr>
<tr>
<td>> 2 SD</td>
<td>32</td>
<td>0.9</td>
<td>1</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Valid n (n missing) 3,461 (267) 46 (3) 23 (2) 23 (1)

<table>
<thead>
<tr>
<th>BMI percentile group</th>
<th>Total sample (n=3,728)</th>
<th>ARFID (n=49)</th>
<th>ARFID with PI (n=25)</th>
<th>ARFID without PI (n=24)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n valid</td>
<td>% cumul.</td>
<td>n valid</td>
<td>% cumul.</td>
</tr>
<tr>
<td>< 3rd</td>
<td>118</td>
<td>3.4</td>
<td>4</td>
<td>9.1</td>
</tr>
<tr>
<td>3rd - 10th</td>
<td>204</td>
<td>5.9</td>
<td>7</td>
<td>15.9</td>
</tr>
<tr>
<td>10th - 25th</td>
<td>475</td>
<td>13.8</td>
<td>8</td>
<td>18.2</td>
</tr>
<tr>
<td>25th - 50th</td>
<td>975</td>
<td>28.4</td>
<td>9</td>
<td>20.5</td>
</tr>
<tr>
<td>50th - 75th</td>
<td>946</td>
<td>27.6</td>
<td>8</td>
<td>18.2</td>
</tr>
<tr>
<td>75th - 90th</td>
<td>506</td>
<td>14.7</td>
<td>4</td>
<td>9.1</td>
</tr>
<tr>
<td>90th - 97th</td>
<td>181</td>
<td>5.3</td>
<td>1</td>
<td>2.3</td>
</tr>
<tr>
<td>97th - 100th</td>
<td>28</td>
<td>0.8</td>
<td>3</td>
<td>6.8</td>
</tr>
</tbody>
</table>

Valid n (n missing) 3,433 (295) 44 (5) 24 (3) 22 (2)

^aThe norm data were originally split into two categories here: [-3 to -2.5 SD] and [-2.5 to -2 SD]. However, none of the children with ARFID fell into the category [-3 to -2.5 SD], therefore the two categories were collapsed.