Abstract
Governments worldwide are implementing mass vaccination programs in an effort to end the novel coronavirus (COVID-19) pandemic. Although the approved vaccines exhibited high efficacies in randomized controlled trials1,2, their population effectiveness in the real world remains less clear, thus casting uncertainty over the prospects for herd immunity. In this study, we evaluated the effectiveness of the COVID-19 vaccination program and predicted the path to herd immunity in the U.S. Using data from 12 October 2020 to 7 March 2021, we estimated that vaccination reduced the total number of new cases by 4.4 million (from 33.0 to 28.6 million), prevented approximately 0.12 million hospitalizations (from 0.89 to 0.78 million), and decreased the population infection rate by 1.34 percentage points (from 10.10% to 8.76%). We then built a Susceptible-Infected-Recovered (SIR) model with vaccination to predict herd immunity. Our model predicts that if the average vaccination pace between January and early March 2021 (2.08 doses per 100 people per week) is maintained, the U.S. can achieve herd immunity by the last week of July 2021, with a cumulative vaccination coverage of 60.2%. Herd immunity could be achieved earlier with a faster vaccination pace, lower vaccine hesitancy, or higher vaccine effectiveness. These findings improve our understanding of the impact of COVID-19 vaccines and can inform future public health policies regarding vaccination, especially in countries with ongoing vaccination programs.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
H.H. is supported by the startup grant from the City University of Hong Kong (grant no. 7200689).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Our study use publicly available data, including statistics published by the government and collected from open-sourced platforms.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.