Transmission Dynamics of COVID-19

The evidence on transmission dynamics of COVID-19 from pre and asymptomatic cases: protocol for a systematic review

Jefferson T1*, Plüddemann A1; Spencer EA1; Brassey J2; Rosca EC3; Onakpoya I, Heneghan C1, Evans DH4, Conly JC5

(Affiliations)

1. The University of Oxford.
2. Trip Database Ltd. https://www.tripdatabase.com
3. Victor Babes University of Medicine and Pharmacy of Timisoara
4. Li Ka Shing Institute of Virology and Dept. of Medical Microbiology & Immunology, University of Alberta
5. University of Calgary and Alberta Health Services, Calgary, Canada.

*Corresponding Author
Email: tom.jefferson@conted.ox.ac.uk

Keywords
COVID-19; SARS-CoV-2; Transmission.

Abstract

Background

The role of cases of SARS-CoV-2 who remain without symptoms throughout the active phase of the disease (asymptomatics) and those who have not developed symptoms yet when surveyed (pre-symptomatics) is at present unclear, despite the important role that they may play in infecting third parties. There is also a lack of clarity on the role of pauci-symptomatic persons with COVID-19 and the degree to which they may be associated with transmission compared to fully symptomatic persons.

Methods

We will search LitCovid, medRxiv, Google Scholar and the WHO Covid-19 database using Covid-19, SARS-CoV-2, transmission, and appropriate synonyms as search terms. We will also search the reference lists of included studies are searched for additional relevant studies.

We will include studies of people exposed to SARS CoV-2 within 2-14 days (incubation time) of close contact or suspected community or institutional exposure to index asymptomatic infected individuals, as defined in each study with secondary case(s) infected. We will only include studies which provide microbiological proof of transmission outcome (culturable virus and/or genic sequencing). The inclusion of higher-quality evidence should overcome the methodological shortcomings of lower quality studies.

We will assess quality of the chain of transmission evidence, microbiological proof and adequacy of follow up and symptom monitoring.

Expected results

We intend to present the evidence in three distinct packages: study description, methodological quality assessment and data extracted. We intend summarising the evidence and drawing conclusions.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Transmission Dynamics of COVID-19

Background
COVID-19 is a new disease, distinct from other diseases caused by coronaviruses, such as Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS). The SARS-CoV-2 virus is more contagious and has spread more widely leading us into the current pandemic in which we find ourselves.

The overarching aim of the WHO’s Global Strategic Preparedness and Response Plan for COVID-19 is to prevent transmission of SARS-CoV-2 and prevent associated illness and death. However, transmission of the SARS-CoV-2 virus and the disease it causes is not completely understood, and public health measures for restricting transmission are based on limited data with relatively few high-quality systematic reviews on the transmission of the SARS-CoV-2 virus available. The role of cases who remain without symptoms throughout the active phase (asymptomatics) and those who have not developed symptoms yet when surveyed (pre-symptomatics) is at present unclear, partly because of poor methodologies employed in the studies. In addition there is a lack of clarity on the role of pauci-symptomatic persons with COVID-19 and the degree to which they may be associated with transmission compared to fully symptomatic persons.

There is a need to conduct regularly updated systematic reviews with the latest knowledge to inform public health recommendations using the most up-to-date reliable and highest quality information.

We have carried out reviews of airborne, orofecal, close contact and fomite transmission.

Objectives: To provide a rapid summary and evaluation of relevant data on the transmission of SARS-CoV-2 from pre and asymptomatic individuals, report important policy implications, and highlight research gaps of highest priority.

Methods
Search Strategy

The following electronic databases will be searched: LitCovid, medRxiv, Google Scholar and the WHO Covid-19 database. Search terms are Covid-19, SARS-CoV-2, transmission, and appropriate synonyms. The reference lists of included studies are searched for additional relevant studies.

 The global literature cited in the WHO COVID-19 database is updated daily (Monday through Friday) from searches of bibliographic databases, hand searching, and the addition of other expert-referred scientific articles.

 A curated literature hub for tracking up-to-date scientific information about the 2019 novel Coronavirus. It is a comprehensive resource on the subject, providing central access to relevant articles in PubMed.

- **medRxiv** (https://www.medrxiv.org/)
 A free online archive and distribution server for complete but unpublished manuscripts (preprints) in the medical, clinical, and related health sciences.

- **Google Scholar** (https://scholar.google.com/)
 Provides a broad search for scholarly literature across many disciplines and sources: articles, theses, books, abstracts and court opinions, from academic publishers, professional societies, online repositories, universities and other web sites.

We will also search the bibliographies of retrieved systematic reviews.

Inclusion criteria
Transmission Dynamics of COVID-19

Population: people exposed to SARS CoV-2 within 2-14 days (incubation time) of close contact or suspected community or institutional exposure to index asymptomatic infected individuals, as defined in the study.

Reference: secondary case infected

Target: level 3 / level 4 evidence with confirmed transmission outcome

Level 3/4 evidence with confirmed transmission pertains to higher-quality evidence that overcomes the methodological shortcomings of lower quality studies. More certainty is provided by cell culture and observation of the effects of inoculation of respiratory and other relevant clinical specimens (level 3 evidence), and immunohistochemistry directed at specific viruses. Genome sequencing can assist in excluding co-infection and provides a high probability of the correct identification of the agent and can assess viral similarity between donor and recipient (level 4 evidence)\(^5\). If we do not identify any level 3/4 evidence, then the review will be expanded to include evidence that only provides quantitative PCR or antigen results (level 2 evidence) and if serial values have been obtained. Focussing on higher-quality evidence provides links in a chain that can reduce the uncertainties over transmission and increase confidence in establishing the degree to which asymptomatic and pre-symptomatic transmission are driving the spread of the pandemic\(^9\).

We will include prospective or retrospective observational studies including case series and ecological designs or interventional including randomised trials and clinical reports, outbreak reports, case-control studies and experimental studies. Studies incorporating models to describe observed data are included. Studies reporting solely predictive modelling are excluded.

Quality Assessment

There are no formal quality assessment and reporting criteria for transmission studies, a situation reminiscent of the early days of Evidence Based Medicine\(^8\). Some authors have adapted observational checklists to assess quality\(^8\). However pre-existing tools and adaptations do not adequately account for the biases that might influence understanding of the chain of transmission and the need to obtain microbiological as well as clinical confirmation of transmission. This is even more important in the case of asymptomatic transmission. In addition, available gene sequencing technologies need to be harnessed appropriately to shed light on transmission and diminish the uncertainty on its likelihood by a certain means or in certain settings\(^9\).

On the basis of our experience to date in reviewing transmission studies and establishing a hierarchical framework for assessing transmission causality, we will assess quality based on three items: 1) Was transmission documented; 2) Were viable replicating viruses and/or phylodynamics documented and 3) Was follow-up adequate. The rationale for our three points is explained here\(^5\).

The following quality items will be assessed in duplicate as yes/no/unclear:

1. Transmission - was transmission documented?

1a Was the chain of transmission adequately described and reported

Demonstrable and replicable chain of transmission (Gwaltney’s postulates\(^10\) + 1 - replicability).

- Viral growth at the proposed anatomic site of origin.
- Culturable virus present in secretions or tissues shed from the site of origin.
- Infectious virus contamination and survival in or on environmental substrate or object.
- Viral Contaminant reaches portal of entry of new host.
- The results of the study are replicated independently on the basis of the methods detailed in the first study.
Transmission Dynamics of COVID-19

The last item should be considered an ideal aim, as most transmission studies are one off and observational. However, the body of high-quality evidence should be compatible with the conclusions on mode of transmission. Outlying studies, those that reach different conclusions, should be assessed to ascertain reasons for diversity.

1b. Are the circumstances of transmission adequately assessed and reported.

- Context (exposure takes place)
- Setting (outdoors/indoors, type of population)
- Environment (temperature, relative humidity, air exchanges, UV light etc)
- Route if known - report if multiple possible routes entertained or cannot be ruled out
- Presence of any physical interventions or degree of mitigating factors
- Circumstances of exposure, sample collection and signs and symptoms onset are recorded and reported
- Viral Contaminant capable of reaching portal of entry of new host
- The results of the study are replicated independently on the basis of the methods detailed in the first study
- Was both backwards and forward contact tracing performed?

2. Were viable replicating viruses and/or phylodynamics documented?

2a. Presence of a viable replicating virus with phylodynamics compatible with hypothesised source ascertained

- Cq, Ct, Log concentration or number of copies are assessed and reported.
- Observed structural changes in host cells caused by viral invasion that leads to visible cell lysis and/or other cytopathic phenomena or equivalent in culture.
- Evidence of virus replication consistent with expected growth kinetics in appropriate cell lines.
- Testing for evidence of contamination by other infectious agents.
- Testing for evidence of co-infection.

2b Serial Culture adequately described and reported

- Techniques measuring viral infectivity using appropriate cell lines (e.g., viral plaque assay, TCID50 and immunofluorescence),
- For guidance see section 11-b of Use of cell culture in virology for developing countries in the South-East Asia Region. New Delhi: World Health Organization, Regional Office for South-East Asia; 2. Licence: CC BY-NC-SA 3.0 IGO.

2c Genome Sequencing adequately described and reported [based on WHO Genomic sequencing of SARS-CoV-2\cite{1}: items]

- Genome sampling strategies and study design are considered and reported, including the risk of cross contamination [item 6.1]
- Appropriate metadata was collected and reported [item 6.2]
- The location of sequencing was appropriate [item 6.3.1]
- Biosafety and biosecurity issues were addressed and reported [item 6.3.2]
- Ethical considerations were addressed and reported as appropriate [item 6.3.3]
- Human resources considerations were addressed and reported [6.3.4]
- Appropriate material for the sequencing was chosen, stored and reported [6.4]
- Control samples were used and appropriately reported [6.4.2]
- The choice and rationale for sequencing reporting is explained [6.6]
- The choice of bioinformatic protocol used is reported and explained [6.7]
- Analysis tools choice is reported and explained [6.8]

3. Was there a precise definition of symptoms and signs used and follow up adequate?
Could the patient flow or data collection methods have introduced bias [based on QUADAS -2] and were measures to mitigate the bias introduced?12

- A follow-up period is required to assess the presence or absence of symptoms. Inadequate follow-up may misclassify pre-symptomatic individuals.3

- A discrete definition is required using a comprehensive list of symptoms and signs must be used and applied in each and every case with the use of ancillary data gathering for children, the elderly and those with cognitive impairment.

- An assessment of other underlying reasons for the presence of symptoms and signs should be applied in all cases.

- A self-administered questionnaire would not be considered adequate unless corroborated by interview process in a certain percentage with adequate correlation.

A reassessment of symptoms and signs should be recorded by another interviewer in a proportion of the cases as a data quality check.

Data extraction

Search yields will be screened in duplicate and included study data will be extracted into templates that include study characteristics and methodological quality of studies and a summary of the main findings. References will be included in alphabetical order as a web appendix that facilitates updating. We will follow PRISMA reporting guidelines as indicated for systematic or scoping reviews where applicable (PRISMA checklist).13 Data extraction will be performed by one author and independently checked by a second author. Where there is disagreement, a third author arbitrates.

Data synthesis and reporting

Outcomes of interest are listed in the inclusion criteria. We will summarise data narratively and report the outcomes as stated in the paper, including quantitative estimates where feasible and relevant. We will report the detection of a live culture of SARS-CoV-2 when reported (see also subgroups). Where possible, compatible datasets may be pooled for meta-analysis. We may write to authors for clarification of data, and also report research and policy implications.

Continual data release

As important new data accumulates, we will produce a report as an individual rapid review and aim to make all our work available by depositing the review findings in an open access repository (e.g., the Oxford Research Archive).

Funding

This work is at present unfunded.

Authors’ contributions

All authors contributed in equal part to the conceptualisation and development of the content. TJ and CH wrote the first draft. All authors contributed to the subsequent drafts and approved the final version.

Conflict of interest statements

TJ was in receipt of a Cochrane Methods Innovations Fund grant to develop guidance on the use of regulatory data in Cochrane reviews (2015 to 2018). In 2014 to 2016, he was a member of three advisory boards for Boehringer Ingelheim. TJ was a member of an independent data monitoring committee for a
Sanofi Pasteur clinical trial on an influenza vaccine. TJ is occasionally interviewed by market research companies about phase I or II pharmaceutical products for which he receives fees (current). TJ was a member of three advisory boards for Boehringer Ingelheim (2014 to 16). TJ was a member of an independent data monitoring committee for a Sanofi Pasteur clinical trial on an influenza vaccine (2015 to 2017). TJ is a relator in a False Claims Act lawsuit on behalf of the United States that involves sales of Tamiflu for pandemic stockpiling. If resolved in the United States favor, he would be entitled to a percentage of the recovery. TJ is coholder of a Laura and John Arnold Foundation grant for development of a RIAT support centre (2017 to 2020) and Jean Monnet Network Grant, 2017 to 2020 for The Jean Monnet Health Law and Policy Network. TJ is an unpaid collaborator to the project Beyond Transparency in Pharmaceutical Research and Regulation led by Dalhousie University and funded by the Canadian Institutes of Health Research (2018 to 2022). TJ consulted for Illumina LLC on next generation gene sequencings (2019 to 2020). TJ was the consultant scientific coordinator for the HTA Medical Technology programme of the Agenzia per i Servizi Sanitari Nazionali (AGENAS) of the Italian MoH (2007 to 2019). TJ is Director Medical Affairs for BC Solutions, a market access company for medical devices in Europe. TJ was funded by NIHR UK and the World Health Organization (WHO) to update Cochrane review A122, Physical Interventions to interrupt the spread of respiratory viruses. TJ is funded by Oxford University to carry out a living review on the transmission epidemiology of COVID 19. Since 2020, TJ receives fees for articles published by The Spectator and other media outlets. TJ is part of a review group carrying out Living rapid literature review on the modes of transmission of SARS CoV 2 (WHO Registration 2020/1077093 0). He is a member of the WHO COVID 19 Infection Prevention and Control Research Working Group for which he receives no funds. TJ is funded to co author rapid reviews on the impact of Covid restrictions by the Collateral Global Organisation.

CJH holds grant funding from the NIHR, the NIHR School of Primary Care Research, the NIHR BRC Oxford and the World Health Organization for a series of Living rapid review on the modes of transmission of SARs CoV 2 reference WHO registration No2020/1077093. He has received financial remuneration from an asbestos case and given legal advice on mesh and hormone pregnancy tests cases. He has received expenses and fees for his media work including occasional payments from BBC Radio 4 Inside Health and The Spectator. He receives expenses for teaching EBM and is also paid for his GP work in NHS out of hours (contract Oxford Health NHS Foundation Trust). He has also received income from the publication of a series of toolkit books and for appraising treatment recommendations in non NHS settings. He is Director of CEBM and is an NIHR Senior Investigator.

DE holds grant funding from the Canadian Institutes for Health Research and Li Ka Shing Institute of Virology relating to the development of Covid 19 vaccines as well as the Canadian Natural Science and Engineering Research Council concerning Covid 19 aerosol transmission. He is a recipient of World Health Organization and Province of Alberta funding which supports the provision of BSL3 based SARS CoV 2 culture services to regional investigators. He also holds public and private sector contract funding relating to the development of poxvirus based Covid 19 vaccines, SARS CoV 2 inactivation technologies, and serum neutralization testing.

JMC holds grants from the Canadian Institutes for Health Research on acute and primary care preparedness for COVID 19 in Alberta, Canada and was the primary local Investigator for a Staphylococcus aureus vaccine study funded by Pfizer for which all funding was provided only to the University of Calgary. He is a co investigator on a WHO funded study using integrated human factors and ethnography approaches to identify and scale innovative IPC guidance implementation supports in primary care with a focus on low resource settings and using drone aerial systems to deliver medical supplies and PPE to remote First Nations communities during the COVID 19 pandemic. He also received support from the Centers for Disease Control and Prevention (CDC) to attend an Infection Control Think Tank Meeting. He is a member of the WHO Infection Prevention and Control Research and Development Expert Group for COVID 19 and the WHO Health Emergencies Programme (WHE) Ad hoc COVID 19 IPC Guidance Development Group, both of which provide multidisciplinary advice to the WHO, for which no funding is received and from which no funding recommendations are made for any WHO contracts or grants. He is also a member of the Cochrane Acute Respiratory Infections Group.
Transmission Dynamics of COVID-19

JB is a major shareholder in the Trip Database search engine (www.tripdatabase.com) as well as being an employee. In relation to this work Trip has worked with a large number of organisations over the years, none have any links with this work. The main current projects are with AXA and Collateral Global.

ECR was a member of the European Federation of Neurological Societies(EFNS) / European Academy of Neurology (EAN) Scientist Panel, Subcommittee of Infectious Diseases (2013 to 2017). Since 2021, she is a member of the International Parkinson and Movement Disorder Society (MDS) Multiple System Atrophy Study Group and the Mild Cognitive Impairment in Parkinson Disease Study Group. She was an External Expert and sometimes Rapporteur for COST proposals (2013, 2016, 2017, 2018, 2019) for Neurology projects.

IJO, EAS, and AP have no interests to disclose.

Ethics committee approval.

No approval was necessary

Data Availability

All data included in the review will be provided in the tables and text.

References
