Characterization of the skin microbiota in bullous pemphigoid patients and controls reveals novel microbial indicators of disease

Meriem Belheouane, PhD1,2,3,*, Britt M. Hermes, MS1,2,*, Nina Van Beek, MD4, Sandrine Benoit, MD5, Philippe Bernard, MD, PhD6, Kossara Drenovska, MD, PhD7, Sascha Gerdes, MD8, Regine Gläser, MD8, Matthias Goebeler, MD9, Claudia Günther, MD9, Anabelle von Georg, MD4, Christoph M. Hammers, MD, PhD1,10, Maike M. Holtsche, MD1, Bernhard Homey, MD10, Orsolya N. Horváth, MD, PhD11, Franziska Hüblner, MD4, Beke Linnemann, MD4, Pascal Joly, MD12, Dalma Mártón, MD13, Aikaterini Patsatsi, MD, PhD14, Claudia Pföhler, MD15, Miklós Sárda, MD11,13, Laura Hulilaj, MD, PhD16, Snejina Vassileva, MD, PhD7, Detlef Zilliken, MD4,17, Saleh Ibrahim, MD, PhD17,18,19, Christian D. Sadik, MD4,17, Enno Schmidt, MD, PhD4,17,18+, John F. Baines, PhD1,2+

Author Affiliations

1 Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
2 Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Arnold-Heller-Str. 3, 24105 Kiel, Germany
3 Research Center Borstel, Leibniz Lung Center, Parkallee 1-40, 23845, Borstel, Germany.
4 Department of Dermatology, Allergy, and Venereology, University of Lübeck, 23538 Lübeck, Germany
5 Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
6 Department of Dermatology, Reims University Hospital, University of Reims Champagne-Ardenne, Reims, France
7 Department of Dermatology and Venereology, Medical University - Sofia, 1, St. G. Sofiiski str., 1431 Sofia, Bulgaria
8 Department of Dermatology, Venereology and Allergology, University of Kiel, 24105 Kiel, Germany
9 Department of Dermatology, University Hospital, TU Dresden, 01307 Dresden, Germany
10 Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf
11 Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
12 Department of Dermatology, Rouen University Hospital, INSERM U1234, Normandie University, Rouen France
13 Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
14 Autoimmune Bullous Diseases Unit, 2nd Dermatology Department, Aristotle University School of Medicine, Papageorgiou General Hospital, 56403 Thessaloniki, Greece
15 Department of Dermatology, University of Saarland, Homburg/ Saar, Germany
16 PEDEGO Research Unit, University of Oulu; Department of Dermatology and Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
17 Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, 23538 Lübeck, Germany
18 Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
College of Medicine and Sharjah Institute for Medical Research, University of Sharjah, 27272 Sharjah, UAE.
*Authors contributed equally to this work.
+Authors contributed equally to this work.

Corresponding author: baines@mpg.evolbio.de

Short title: Characterization of skin microbiota in bullous pemphigoid

Abbreviations: AI: autoimmune; BP: bullous pemphigoid; AIBD: Autoimmune blistersing disease; EBA: Epidermolysis bullosa acquisita; DF: degrees of freedom; IS: indicator species, ASV: amplicon sequence variant
ABSTRACT

Bullous pemphigoid (BP) is an autoimmune skin blistering disease affecting mostly the elderly and is associated with significantly increased mortality. Here, we conducted the most extensive sampling effort of skin microbiota in BP to date to analyze whether intra-individual, body-site-specific, and/or geographical variation contributes to the emergence of BP. We find marked differences in the skin microbiota of BP patients compared to that of control subjects, and moreover that disease status rather than skin biogeography governs the skin microbiota composition in BP. Our data reveal a discernible transitional stage between normal and diseased skin in BP characterized by a loss of protective microbiota and an increase in sequences matching *Staphylococcus aureus*, a known inflammation-promoting species. Notably, *S. aureus* is ubiquitously associated with disease status, suggesting that this taxon is an important indicator of BP. Importantly, differences in a few key indicator taxa are able to reliably discriminate between BP patients and controls, characterized by their opposing abundance patterns. This may serve as valuable information for assessing disease risk and treatment outcomes. Future research will focus on the functional analysis of host-microbe and microbe-microbe interactions and the relevance of the host genome for microbiota abundances to identify novel BP treatment approaches.
INTRODUCTION

Bullous pemphigoid (BP) is the most common autoimmune skin blistering disease (AIBD) in Europe, with an annual incidence of about 20 new cases per million in this region (Joly et al., 2012; Schmidt and Zillikens, 2013; van Beek et al., 2021). It occurs when autoantibodies attack two structural hemidesmosomal proteins of the epidermal basement membrane, i.e. BP180 (type XVII collagen) and BP230, resulting in subepidermal blistering (Schmidt and Zillikens, 2013; Stevens et al., 2019; Amber et al., 2018). The severity of this highly pruritic AIBD considerably affects quality of life and is associated with significantly increased mortality (Amber et al., 2018). The incidence of BP is increasing with the ageing European population (van Beek et al., 2021; Schmidt and Zillikens, 2013). It is thus intriguing that a recent multinational study of 9,000 participants showed that the skin microbiota are a predictor of age, more so than oral or gut microbiota (Huang et al., 2020).

The observation of age-dependent changes in the skin microbiota as well as the skin microbiota’s involvement in other inflammatory skin disorders raise the possibility that it may play a role in the emergence of AIBD. Previous efforts by Srinivas et al. (2013) demonstrated that genotype-dependent microbiota affect disease susceptibility in a mouse model of epidermolysis bullosa acquisita (EBA), an AIBD similar to BP. Similarly, Miodovnik et al. (2017) present pilot human data suggesting that skin microbiota contribute to the pathogenesis of BP. However, identification of candidate bacterial taxa or important changes in microbial diversity associated with BP remain uncharacterized.

Here, we conducted a large-scale investigation of BP patients and age- and sex-matched control subjects within Europe to clarify relationships between microbiota and BP pathogenesis. By examining perilesional sites and comparing them to unaffected but BP-susceptible body sites...
in patients and in matched controls, we reveal clear microbial indicators of BP patients versus controls. Genetic detection of microbial signatures associated with AIBD could enable early intervention and thus, better clinical outcomes.

RESULTS

Sampling

Two-hundred twenty individuals with BP and 190 age- and sex-matched control subjects from fourteen study sites across Europe were included (Methods). We performed 16S rRNA gene sequencing on bacterial genomic DNA derived from swabbing four categories of body sites (Figure 1a). These include areas adjacent to a fresh blister or erosion (“perilesional”), unaffected skin from the contralateral site from the same patient (“contralateral”), and the same body site of an age- and sex-matched control subject (“corresponding”). Sites that are typically unaffected by BP (forehead, upper back, and antecubital fossa) were sampled to obtain a better picture of BP across skin biogeography (Figure 1a).
Figure 1. Sampling of various body sites for patients and controls; Box plots of Shannon (alpha) diversity. 1a. Grey figure represents age-and sex-matched control; orange figure represents BP patient. Sites typically unaffected by BP include the forehead (purple), upper back (turquoise), and antecubital fossa (dark blue) are represented on both figures. An example perilesional sampling site (red), unaffected contralateral site (yellow), and control matched corresponding site (green) are shown. 1b. Shannon diversity at the ASV-level for sites typically unaffected by BP for controls and BP patients. 1c. Shannon diversity at the ASV-level for patient perilesional, patient contralateral, and control corresponding sites. Significance represented by: * ≤ 0.05; ** ≤ 0.01; *** ≤ 0.001; **** ≤ 0.0001. Supplementary Table S1 reports summary statistics.
Reduced alpha diversity within lesional and BP-susceptible sites

At the ASV-level, we found that the Shannon (Figure 1b) and Chao1 (Supplementary Figure S1a) indices are similar at sites typically unaffected by BP in patients and controls. In contrast, control corresponding sites display higher bacterial diversity than patient contralateral sites, which in turn are more diverse than perilesional sites for Shannon (Figure 1c) and Chao1 indices (Supplementary Figure S1b).

Critically, study center, disease status, and sex significantly correlate with Shannon diversity for patient perilesional and contralateral sites as well as for control corresponding sites ($F_{37,1118} = 7.24; R^2_{adj} = 0.17; p < 0.001$), with disease status explaining 8.25% of the variance. Likewise, disease status and study center significantly correlate with Chao1 richness ($F_{37,1118} = 6.03; R^2_{adj} = 0.14; p < 0.001$), with study center explaining 7.86% and disease status explaining 1.41% of the Chao1 variance. Disease status associates with a decrease in Shannon diversity in patient perilesional and contralateral sites ($\beta = -0.72, -0.38$, respectively), and a decrease in Chao1 richness, whereby perilesional and contralateral sites display a similar reduction in diversity ($\beta = -39.38, -30.90$, respectively). Thus, disease status associates with a significant decrease in alpha diversity, which is still present after accounting for potential confounding variables.

Supplementary Material R1 reports results for sites typically unaffected by BP. Analysis of sum of squares shows that the effects of disease status on alpha diversity does not extend to sites typically unaffected by BP and that skin biogeography likely characterizes microbial diversity at these sites.

Beta diversity in relation to disease, individual, and sampling features
We conducted a non-parametric multivariate analysis of variance using distance matrices analysis (PERMANOVA) applied to the Bray-Curtis index as a measure of beta (between sample) diversity of the sites typically unaffected by BP to evaluate effects of potential confounding variables (Supplementary Material R2). Analysis of disease status per body site reveals a significant association with disease status (adonis: Bray-Curtis~disease status: body site; $R^2=0.003; p < 0.001$). Partial constrained principal coordinate analysis reveals that patients and controls cluster according to body site along the first and second axes and that forehead and upper back (typical sebaceous zones) are more similar to each other compared to the antecubital fossa (Figure 2b). These findings suggest that the microbial variation among sites typically unaffected by BP is likely linked to skin biogeography rather than disease or study center (Figure 2a, 2c).

After analyzing beta diversity between perilesional, contralateral, and corresponding sites as described above (Supplementary Material R2), significant associations with disease and blistering status are observed (i.e., perilesional and contralateral sites within patients), which explain 2.12% and 0.29% of the variance, respectively (adonis: disease status $R^2=0.02$; blistering status $R^2=0.003; p < 0.001$). However, study center explains 3.41% of the variance (adonis: $R^2=0.03; p < 0.001$), suggesting environmental effects. Analysis of interaction between variables reveals that disease status accounts for significant differences between study centers (adonis: disease status: study center, $R^2=0.03; p < 0.001$). Additionally, partial constrained principal coordinate analysis reveals that on the first and second axes control corresponding sites are distinguishable from patient contralateral and perilesional sites, which largely cluster together (Figure 2d, e). Figure 2f, on the other hand, shows comparatively little clustering according to study center.
Figure 2. Partial constrained principal coordinate analyses of Bray-Curtis

2a to 2c. Body sites typically unaffected by BP. (anova.cca, Full model: $p = 0.0009$; terms: disease status, body site (constrained inertia=5.04%, conditioned inertia=4.5%), study center: $p < 0.001$; axes: CAP1, CAP2: $p = 0.09$; 1,000 permutations). 2d to 2f. Patient perilesional, contralateral sites and control corresponding sites. (anova.cca, Full model: $p < 0.001$; terms: disease status, blistering status, study center: $p < 0.001$; axes: CAP1, CAP2: $p = 0.009$; 1,000 permutations). “+” represents centroid. SD: standard deviation. Site abbreviations: Budapest, Hungary (BUD); Düsseldorf, (D), Dresden, (DD), Freiburg, (FR), Lübeck, (HL), Homburg, (HOM), Kiel, (KI), München, (M), Würzburg (WUE), all Germany; Oulu, Finland (OU); Reims, (RE), Rouen, (RO), both France, Sofia, Bulgaria (SO), Thessaloniki, Greece, (TH).

Indicator species of BP patients and controls

We conducted four indicator species analyses at the ASV-level (Methods). To refine taxonomic classification of indicator ASVs, we queried representative sequences using RDP SeqMatch (Supplementary Table S2). ASVs strongly associated with BP patients or controls (Supplementary Table S3) are shown in Figure 3.
Several indicator ASVs known to be human commensals associate with sites typically unaffected by BP. Importantly, we identify a greater number of ASVs associating with control sites, coherent with the loss of diversity in BP. ASV_1, which closely matches Propionibacterium acnes (P. acnes) [now Cutibacterium acnes; (Scholz and Kilian, 2016)], is an indicator for controls for all sampling categories. Among sites unaffected by BP, body site is associated with 13% of the variance in P. acnes abundance; abundance is accordingly higher at sebaceous sampling sites (forehead, upper back). Disease status accounts for 0.79% variance of P. acnes abundance ($F_{39,1123} = 11.58; R^2_{adj} = 0.26; p < 0.001$). Interestingly, disease status accounts for 0.63% of the variance in P. acnes abundance among sites unaffected by BP (interaction model, $F_{5,1157} = 39.06; R^2_{adj} = 0.14; p < 0.001$) and is associated with a decrease in P. acnes abundance at the upper back ($\beta = -0.11$).

Important patterns are also apparent among corresponding, patient perilesional, and patient contralateral sites. P. acnes abundance is associated with study center, blistering status, and sex ($F_{37,1118} = 5.40; R^2_{adj} = 0.12, p < 0.001$), with sex explaining 7.17% of the variance. Furthermore, its relative abundance is higher at corresponding sites and relatively lower at perilesional sites ($\beta = +0.03, -0.003$, respectively). Additionally, ASV_4 [which closely matches Corynebacterium tuberculostearicum (C. tuberculostearicum)] is an indicator for control corresponding sites and for patient contralateral sites. Study center, blistering status, and sex are significantly associated with C. tuberculostearicum abundance ($F_{37,1188} = 3.92; R^2_{adj} = 0.09; p < 0.001$), with blistering status explaining 4.06% of the variance and correlating with an increase in abundance in corresponding sites, but a decrease in perilesional sites ($\beta = +0.05, -0.04$, respectively).
Figure 3. Bar plots of mean relative abundance for ten most important indicator species. 3a. Bar plot showing relative abundance of important indicator species, at the ASV-level, for controls and BP patients, at sites typically unaffected by BP [antecubital fossa (AF), forehead (FH), and upper back (UB)]. 3b. Bar plot showing the relative abundances of important indicator species at the ASV-level for patient perilesional, contralateral sites and control corresponding sites. RDP SeqMatch results for the representative ASV sequences are shown in the legend and provided in full in Supplementary Table S2. Supplementary tables S3, S4 provide statistical parameters for indicator species analyses and summary statistics of all indicator ASVs, respectively.

Contrasting patterns of *Staphylococcus* ASVs in BP patients and controls

Among the indicator ASVs, six belong to *Staphylococcus* and display contrasting patterns associated with disease status. *Staphylococcus* ASV_5 (which closely matches *S. hominis*) correlates with disease status at control corresponding and typically unaffected body sites. Both disease status and body site are significantly associated with *Staphylococcus* ASV_5 abundance ($F_{39,1123} = 6.45; R^2_{adj} = 0.16; p < 0.001$). However, body site explains a greater proportion of
variance (11.17%) compared to disease status (1.24%), whereby the latter is associated with a decrease in abundance ($\beta = -0.04$).

In contrast, *Staphylococcus* ASV_2 (which closely matches *S. aureus*) is a strong indicator for disease even at the sites unaffected by BP. Here, disease status associates with the abundance of *Staphylococcus* ASV_2 (7.36%), but body site only slightly associates with this indicator (1.52%; $F_{39,1123} = 5.12; R^2_{adj} = 0.12; p < 0.001$). Disease status associates with an increase in *Staphylococcus* ASV_2 abundance at sites unaffected by BP ($\beta = 0.08$). Among perilesional, contralateral and corresponding sites, body site associates with the greatest amount of variance for *Staphylococcus* ASV_2 abundances, followed by study center (6.45%) and sex (0.77%; $F_{37,1118} = 9.09; R^2_{adj} = 0.21, p < 0.001$). This is characterized by a decrease of *Staphylococcus* ASV_2 abundance in corresponding sites ($\beta = -0.12$) compared to an increase at perilesional sites ($\beta = +0.07$).

Because individual members of *Staphylococcus* can display antagonistic interactions in the context of inflammatory skin disorders (Nakatsuji et al., 2017), we examined pairwise correlations among the top ten indicator ASVs (Supplementary Figures S3, S4; Supplementary Table S6). Importantly, *Staphylococcus* ASV_2 and ASV_5 display significant negative correlations among patient perilesional, contralateral, and antecubital fossa sites, whereas no significant correlation is present among any control sites. Furthermore, *Staphylococcus* ASV_2 is significantly negatively correlated with sequences matching *P. acnes* (ASV_1) at all categories of patient sites, which is absent at all control sites. This suggests a fundamental alteration in the nature of community interactions among members of *Staphylococcus* in the context of BP.

Staphylococcus ASVs predict disease status in random forest classification
Random forest classification analyses (Methods) reveal indicator ASVs to accurately classify samples (mtry = 15; 849/868 controls and 1,443/1,451 BP patients; mean classification accuracy 99.00%) when applied to all sampling sites. Prediction accuracy approaches 100% when applied to only corresponding, contralateral, and perilesional sites (mtry = 18; 324/334 controls and 822/822 BP patients; mean classification accuracy 99.15%; Supplementary Figures S2a, S2b). By inspecting the mean decrease accuracy components for ASVs, those belonging to the *Staphylococcus* genus are identified as being most important to both models (Supplementary Table S5).

To estimate the discriminatory power of *Staphylococcus* ASVs alone, we limited the random forest classification analyses to *Staphylococcus* ASVs with an abundance greater than 2% within each sample. We found that *Staphylococcus* ASVs accurately distinguish between controls and BP patients (mtry = 52; 790/868 controls and 1,446/1,451 BP patients; mean classification accuracy 96.40%) when applied to all sampling sites, and are similarly accurate when applied using only corresponding, perilesional, and contralateral sites (mtry = 62; controls 294/334 and 819/822 BP patients; 96.20%; Supplementary Figures S2c, S2d). Notably, inspection of mean decrease accuracy components indicates that *S. aureus* ASV_2 is the most important ASV for model accuracy.

DISCUSSION

This study reveals marked differences in the skin microbiota of BP patients compared to that of sex- and age-matched control subjects with non-inflammatory/ non-infectious dermatoses. This was accomplished by conducting a large-scale sampling- and bacterial 16S rRNA gene analysis, utilizing a sampling scheme that accounts for both skin biogeography and disease status (Figure 1a). This study represents the most substantial sampling effort of skin microbiota in BP to date.
Among the first notable results is that we observe a significant reduction in alpha diversity at both perilesional sites and contralateral sites in BP patients compared to site-matched areas from control subjects. Furthermore, blistering status (i.e., patient perilesional versus unaffected, contralateral sites) is associated with a fewer number of indicator ASVs compared to matched sampling sites from control subjects. This reduction in alpha diversity in BP patients is consistent with findings from other studies of inflammatory skin diseases, including psoriasis (Quan et al., 2020; Yerushalmi et al., 2019), atopic dermatitis (Clausen et al., 2018) as well as a mouse model of the BP-like disease EBA (Srinivas et al., 2013).

BP blisters characteristically occur on the flexor surfaces of the extremities and the trunk (Schmidt and Zillikens, 2013). The clear biogeography of human skin microbiota, whereby distinct assemblages colonize different body sites depending upon numerous factors, suggest that conditions affecting the skin micro-environment, and thereby skin microbiota, may influence susceptibility to blistering (Kong and Segre, 2017; Oh et al., 2014). Our data show that in the control subjects’ skin areas that correspond to blistering sites in BP patients, biogeography—rather than disease effect—is associated with a greater proportion of variance in *P. acnes* and *S. hominis* abundances, both of which can act as beneficial skin commensals (Nakatsuji et al., 2017; O’Neill and Gallo, 2018).

Our data reveal that BP might also lead to a loss of protective microbiota in sites typically unaffected by BP. At the upper back, an interaction model revealed that the effect of disease status significantly associates with a decrease in *P. acnes* relative abundance in BP patients. This is notable given that the upper back represents a sebaceous skin zone where we would expect relatively high amounts of *P. acnes* (McLaughlin et al., 2019; O’Neill and Gallo, 2018). Although *P. acnes* is commonly thought of as a potential pathogenic species responsible for acne, it also acts
as an important commensal that aids in preventing the colonization and invasion of pathogens via the production of antimicrobials and hydrolysis of triglycerides (Gribbon et al., 1993; O’Neill and Gallo, 2018), as well as the production of short-chain fatty acids (Nakamura et al., 2020; Shu et al., 2013). For *S. hominis*, we found that disease status is associated with a decrease in abundance at typically unaffected sites. In contrast, *S. aureus* relative abundance is increased at these sites. It is thus possible that the nature of antagonistic effects between different *Staphylococcus* species may be fundamentally altered in BP patients, e.g. based on strain-level differences in the production of antimicrobials as in atopic dermatitis (Nakatsuji et al., 2021, 2017). Decreased commensal microbiota perhaps translate to fewer protective immune functions in the skin, which in turn could allow for an increased colonization of inflammation-promoting species like *S. aureus* (Nakatsuji et al., 2017), which can exacerbate or accelerate blister formation. Thus, our observations might be capturing a transitional step between areas without lesions and areas with blisters or erosions in BP patients.

Accordingly, *S. aureus* is known to dominate the skin microbiota of patients with atopic dermatitis and exacerbates the disease through inflammation (Kong et al., 2012; Nakatsuji et al., 2017). Our data suggest that *S. aureus* may similarly drive the development of BP lesions. Notably, we found that *S. aureus* is associated with disease status regardless of sampling site, suggesting that this taxon is an important indicator of BP. The mean relative abundance of *S. aureus* is increased in sites typically unaffected by BP as well, as in the perilesional and contralateral sites. The specific role of this microbe and its functional components, e.g., how it might drive BP pathogenicity, will require further exploration.

In addition to cutaneous micro-environmental differences, geographic locations of BP patients should be considered, as there is significant global variation in microbial colonization,
especially as it relates to disease susceptibility (Blaser et al., 2013; Chen and Tsao, 2013; Hospodsky et al., 2014; Rehman et al., 2016). Population differences observed in the gut microbiota in patients with inflammatory bowel disease, for example, suggest a complex interplay between geography and gut diseases that are in part driven by microbial factors (Rehman et al., 2016). Therefore, a broad-scale sampling of BP patients across regions with variable incidences could reveal population-specific characteristics that might affect disease predisposition. We found that the study center is significantly associated with the relative abundances of S. aureus, C. tuberculostearicum, and P. acnes within perilesional and contralateral sites in BP patients as well as control corresponding sites, suggesting an interplay between disease status, skin biogeography, and human geography. Further, an interactive analysis of beta diversity profiles reveals that disease status significantly differs between study centers. We recognize that geography represents an assemblage of factors including diet, culture, ancestry, and environmental features. Our results suggest the need for a large, global study in order to disentangle the relative importance of these features on the assembly of the skin microbiota, especially as it pertains to disease onset in AIBD.

In summary, our study provides evidence that the cutaneous microbiota may play an important role in the emergence of skin lesions in BP. Given the clear discriminatory power provided by differences in a few key indicator taxa, their relative proportions have the potential to provide critical information for assessing disease risk as well as treatment outcomes. Future research may focus on functional analysis of host-microbe and microbe-microbe interactions as a means to identify novel treatment approaches for BP.

MATERIALS AND METHODS

Study participants
Four-hundred twenty-seven volunteers were recruited from fourteen study centers across Europe (Supplementary Methods M1), approved by the University of Lübeck ethics committee (15-051, 18-046), as well as the respective committees of the study centers, following the Declaration of Helsinki. Written, informed consent was obtained from each participant. BP patients (n = 227) included 114 males, 112 females, and one sex “unspecified” participant, average age 80 years, with newly diagnosed or relapsed BP without previous systemic treatment of prednisolone, dapsone, doxycycline, immunosuppressants, and/or use of topical therapies for more than seven days prior to sampling or topical antiseptic use within the last two weeks. Inclusion and exclusion criteria are described in detail in Supplementary Methods M1. Age- and sex-matched subjects (n = 190) included 104 males and 86 females with non-inflammatory/non-infectious dermatoses (mostly basal cell or squamous cell carcinoma), with an average age of 80 years. Contemporaneous controls were sought for each BP subject in minimal time after sampling, which was largely successful (controls per case for males and females are 0.91 and 0.77, respectively). None of the study participants received systemic antibiotics within seven days of sampling.

Sampling, DNA extraction, and 16S rRNA sequencing

Briefly, cotton swabs were used to sample skin surfaces, placed in buffer solution, and stored at –80°C. Ambient air (n = 19) and negative extraction controls (n = 43) were processed alongside samples. ZymoBIOMICS Microbial Community Standard cells (Zymo Research) were used as extraction and sequencing controls to assess contamination (Karstens et al., 2019). Hypervariable regions V1-V2 of the bacterial 16S rRNA gene were amplified and sequencing was performed using the dual-index sequencing strategy for amplicon sequencing on the MiSeq Illumina platform (Kozich et al., 2013). Final sample sizes included 2,319 skin swabs comprising 1,451 patient and
868 matched control subject swabs. Detailed methods are described in Supplementary Methods M2.

Data processing and taxonomic classification

Data processing and statistical analyses were performed using R (version 4.0.2). Briefly, sequences were processed using DADA2 (version 1.16.0), resulting in abundance tables of ASVs (Callahan et al., 2016). To normalize sequencing coverage, random sub-sampling to 5,000 sequences per sample was performed (Belheouane et al., 2020). Decontam (version 1.8.0; (Davis et al., 2018) was used within Phyloseq (version 1.32.0; (McMurdie and Holmes, 2013) to identify potential contaminant ASVs, according to the prevalence method (Karstens et al., 2019). ASVs classified to families Halomonadaceae (n = 1,040) and Shewanellaceae (n = 211) were removed, following recommendations of Weyrich et al. (2019). Taxonomic assignment of ASVs was completed in DADA2 with the Bayesian classifier using the NR Silva database training set, version 138 (Quast et al., 2013). Representative 16S rRNA gene sequences were queried via the Ribosomal Database Project (RDP; release 11.6; (Wang et al., 2007) SeqMatch (version 3; (Cole et al., 2005); Supplementary Table S2). Further details of 16S rRNA gene sequence processing are described in Supplementary Methods M3.

Ecological and statistical analyses

Alpha diversity was measured using Shannon and Chao1 indices with vegan (version 2.5-6) on absolute abundance data. Beta diversity was calculated using the Bray-Curtis dissimilarity index. We performed a non-parametric multivariable analysis of variance using distance matrices (PERMANOVA) using the “adonis” function with 1,000 permutations and a partial constrained
principal coordinate analysis of beta diversity measures using the “capscale” function in vegan (Oksanen et al., 2005). The significance of models, axes, and terms were assessed using the “anova.cca” function with 1,000 permutations.

Indicator species analysis was applied using indicspecies (version 1.7.9) with the “r.g.” function (Cáceres and Legendre, 2009) and 100,000 permutations. Random Forest classification and regression analyses were performed using randomForest (version 4-6-14; (Liaw and Wiener, 2002). Models were constructed with 100,000 trees, with “mtry” parameter set for each model and linear models constructed to evaluate potential disease effects. Adjusted R² values reported, beta coefficient values express directionality. Further details of ecological and statistical analyses are given in Supplementary Methods M4.

Funding sources: This work was supported by the German Research Foundation (DFG), through Clinical Research Unit 303, project number 269234613, subproject P2, jointly awarded to Prof. Dr. John F. Baines and Prof. Dr. Dr. Enno Schmidt.

DATA AVAILABILITY

Datasets related to this article can be found under BioProject accession number PRJNA715468 at https://www.ncbi.nlm.nih.gov/bioproject/, an open-source online data repository hosted at the NCBI SRA BioProject database.

ORCiDS

John F. Baines: https://orcid.org/0000-0002-8132-4909

Meriem Belheouane: https://orcid.org/0000-0002-2939-4862
Philippe Bernard: https://orcid.org/0000-0002-9115-0690

Beke Linnemann: https://orcid.org/0000-0002-1921-8726

Franziska Hüblner: https://orcid.org/0000-0003-2886-9499

Miklós Sárđy: https://orcid.org/0000-0003-4306-5093

CONFLICTS OF INTEREST

The authors state no conflict of interest.

ACKNOWLEDGEMENTS

We would like to thank Jan Schubert, Katja Cloppenborg-Schmidt, and Olga Eitel for excellent technical assistance. We are grateful to Sarah Gaugel and Stephanie Freyher, Lübeck, for technical assistance with sample storage. We are indebted to Ana Luiza Lima, Kaan Yilmaz, and Onur Dikmen, Lübeck, for assistance with sample storage and communication with study centers during various phases of the study.

AUTHOR CONTRIBUTIONS

Conceptualization: JFB, ES, SI, CDS; **Data curation:** MB, BMH; **Formal analysis:** MB, BMH; **Funding acquisition:** JFB, ES, CDS; **Investigation:** MB, BMH; **Methodology:** JFB, ES, CDS; **Project administration:** JFB, ES, NVB, MB, CMH, CDS, MMH; **Resources:** MB, NVB, SB, PB, KD, SG, RG, MG, CG, AVG, CMH, MMH, BH, FH, BL, PJ, AP, CP, MS, LH, SV, CDS, ES; **Software:** MB, BMH; **Supervision:** JFB, ES, MB; **Validation:** JFB, MB; **Visualization:** JFB, MB, BMH; **Writing–Original draft preparation:** JFB, BMH, MB; **Writing–Review and editing:** JFB, BMH, MB, NVB, SB, PB, KD, SG, RG, MG, CG, AVG, CMH, MMH, BH, FH, BL, PJ, AP, CP, MS, LH, SV, CDS, ES
REFERENCES:

