Pyridostigmine in adults with severe SARS-CoV-2 infection: the PISCO trial

Authors: Sergio Fragoso-Saavedra, M.D., Isaac Núñez, M.D., Belem M. Audelo-Cruz, M.D., Sarahi Arias-Martínez, M.D., Daniel Manzur-Sandoval, M.D., Alejandro Quintero-Villegas, M.D., H. Benjamín García-González, M.D., Sergio L. Carbajal-Morelos, M.D., Sergio Ponce de León-Rosales, M.D., José Gotés-Palazuelos, M.D., M.Sc., José A. Maza-Larrea, M.D., Yanink Caro-Vega, Ph.D., Isabella Batina, M.D., León Islas-Weinstein, M.D., Ph.D., David A. Iruegas-Nunez, M.D., Juan J. Calva, M.D., M.Sc., Pablo F. Belaunzarán-Zamudio, M.D., M.Sc., Juan Sierra-Madero, M.D., José C. Crispín, M.D., Ph.D., Sergio I. Valdés-Ferrer, M.D., Ph.D.

Affiliations:

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Address correspondence to: Sergio I. Valdés-Ferrer, Departamento de Neurología y Psiquiatría, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico. Phone: +52(55)5487-0900, ext. 4177. Email: sergio.valdesf@incmnsz.mx
Abstract

Background: Hospitalized patients with severe COVID-19 have an increased risk of developing severe systemic inflammatory response, pulmonary damage, and acute respiratory distress syndrome (ARDS), resulting in end-organ damage and death. Acetylcholine modulates the acute inflammatory response through a neuro-immune mechanism known as the inflammatory reflex. Pyridostigmine, an acetylcholine-esterase inhibitor, increases the half-life of endogenous ACh, chemically stimulating the inflammatory reflex. This trial aimed to evaluate whether pyridostigmine could decrease invasive mechanical ventilation (IMV) and death in patients with severe COVID-19.

Methods: We performed a parallel-group, multicenter, double-blinded, placebo-controlled, randomized clinical trial to evaluate if add-on pyridostigmine to standard treatment reduced the composite outcome of initiation of IMV and 28-day all-cause mortality among hospitalized patients with severe COVID-19.

Results: 188 participants were randomly assigned to placebo (n=94) or pyridostigmine (n=94). The composite outcome occurred in 22 (23.4%) vs. 11 (11.7%) participants, respectively (hazard ratio 0.46, 95% confidence interval 0.22-0.96, p=0.03). Most of the adverse events were mild to moderate, with no serious adverse events related to pyridostigmine; discontinuation of the study drugs was similar in both groups.

Conclusions: We provide evidence indicating that the addition of pyridostigmine to standard treatment resulted in a clinically significant reduction in the composite outcome (IMV/death) among patients hospitalized for severe COVID-19. (Funded by Consejo Nacional de Ciencia y Tecnología, México; ClinicalTrials.gov number: NCT04343963).
INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), may lead to severe systemic inflammatory response, acute respiratory distress syndrome, multiple-organ failure, resulting and death. Among several drugs evaluated in clinical trials to mitigate COVID-19 severity, dexamethasone has been shown to reduced mortality among patients requiring supplementary oxygen. However, its use is accompanied by frequent adverse effects such as hyperglycemia, psychosis, and gastrointestinal hemorrhage. Remdesivir, an antiviral, alone or in combination with baricitinib, a selective inhibitor of Janus kinases 1 and 2, accelerated recovery and reduced in-hospital stay, without a significant effect on mortality. Hence, therapeutic interventions able to ameliorate the morbidity and mortality caused by SARS-CoV-2 are urgently needed.

The central nervous system regulates the inflammatory response via the release of acetylcholine by the vagus nerve, reducing the production of inflammatory mediators, through the inflammatory reflex. Choline-acetyltransferase (ChAT)-expressing T cells modulate inflammation via in situ release of acetylcholine and this effect is critical in reducing viremia in animal models of viral infection. Pyridostigmine, an acetylcholinesterase inhibitor (i-ACh-e), increases acetylcholine (ACh) half-life by inhibiting its peripheral degradation. Pyridostigmine is used for the symptomatic treatment of myasthenia gravis and as pre-exposure prophylaxis for nerve gas poisoning. Importantly, pyridostigmine decreases inflammation in chronic human immunodeficiency virus (HIV)-1 infection. This study aimed to determine whether pyridostigmine administration could improve the outcome of patients with severe COVID-19.

METHODS

Aim, study design, and settings

Our main aim was to evaluate, in a controlled setting, the efficacy of pyridostigmine as an adjunct therapy to reduce the incidence of critical illness or death in hospitalized adults with severe COVID-19.
We performed a double-blinded, placebo-controlled, parallel randomized clinical trial. Participants were allocated (1:1 ratio) to receive, in addition to standard medical treatment, either oral pyridostigmine at a dose of 60 mg/day P.O. or a matching placebo (pharmaceutical-grade starch) until the occurrence of any of the prespecified outcomes, hospital discharge, or 14 in-hospital days. The primary outcome was a composite of invasive mechanical ventilation (IMV) or death in the 28 days following randomization (Fig. 1). Secondary outcomes were not prespecified and included: (a) the length of in-hospital days after randomization; (b) hospital discharge by day-28; (c) among those who required IMV, the number of days with, and the survival rate after IMV; (d) failure to complete treatment as expected due to adverse events (other than the primary composite outcome).

Adverse events (AEs) were collected using data obtained from the medical health records of each study participant. The events were evaluated and coded using the Medical Dictionary and Regulatory Activities (MedDRA) version 24.0 browser and the severity of the AEs was assessed by the National Cancer Institute Common Terminology Criteria for Adverse Events, version 5.0.

Although not used throughout the study, unblinding was allowed in case of severe adverse events at the request of either the treating group of physicians or the external Data and Safety Monitoring Board (DSMB). The study was conducted in two parts, as already described17: a phase 2 aimed at determining safety (May 5 to July 4, 2020), followed by a phase 3 aimed at evaluating the effect -or lack thereof- of pyridostigmine in patients with severe COVID-19 (July 5, 2020, to January 30, 2021).

Participants in both phases were included in the analyses of outcomes.

Study population

Adult (\geq 18-year-old) hospitalized patients with confirmed SARS-CoV-2 infection based on a positive RT-PCR test for SARS-CoV-2 RNA in a respiratory specimen (nasopharyngeal or nasal swab), an imaging study compatible with pneumonia, and at least one risk factor for requiring IMV or dying (Figure 1). The full list of inclusion, exclusion and elimination criteria has been published17. Participants were randomized in a 1:1 ratio, with a parallel assignment and block-randomization approach using a publicly available online resource (www.randomizer.org).
We collected demographic information from participants at baseline, including age, sex, and comorbidities (including diabetes mellitus, hypertension, obesity, cardiovascular disease, lung disease, or other chronic medical conditions). Participants already discharged from the hospital by day 28, including those who were transferred to another facility, were contacted by telephone to assess their vital and functional status.

This bicentric study was carried out at Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, and Instituto Nacional de Cardiología Ignacio Chávez, two COVID-19-designated Hospitals in Mexico City, Mexico.

Study design and sample-size calculation

The trial was planned and approved in March 2020; funding was obtained in April 2020, shortly after the first case of COVID-19 was diagnosed in Mexico. At that time, we relied on limited information about clinical outcomes in these patients. Thus, we calculated a sample size of 436 participants considering an event rate of 25% in the control group, considering a 10% absolute reduction (40% relative reduction) in the primary outcome as clinically significant, and 80% power to detect a difference in the primary outcome using a two-sided significance level of $\alpha=0.05^{17}$. However, the sample size would be adjusted according to interim analyses. The first participant was recruited on May 5th, 2020. The DSMB performed an interim analysis after the first 44 participants (22 per group, 10% of the calculated sample) to evaluate safety on July 4th, 2020; a second interim analysis was conducted on December 7th, 2020 including 28-day outcomes on 100 participants (50 per group). Due to an observed difference in the primary outcome between groups (still blinded to investigators, but unblinded to the DSMB), as well as difficulty recruiting new participants due to a reduction in eligible patients and a swell in competing studies, we decided to stop the trial after 188 participants had been recruited (94 in each group). Considering the same $\alpha=0.05$, we recalculated the statistical power of the obtained sample with the observed difference between groups (an absolute reduction of 11.7% and relative reduction of 50%), which resulted in ~85%.
Statistical analyses

We conducted an intention-to-treat analysis for the primary outcome that included all the patients who underwent randomization. As unplanned secondary outcomes, we assessed between-group differences of mechanical ventilation and death with or without IMV. Patients that had not developed an outcome by day 28 were censored at day 29. The magnitude of the effect of pyridostigmine on the primary outcome was estimated with a hazard ratio (HR) and its 95% confidence interval (CI) calculated with Cox proportional hazard model, as were IMV, and death with or without IMV, and discharge home although these secondary outcomes were not pre-specified in the study protocol. We built Kaplan Meier survival curves to plot the cumulative incidence of the primary outcome up to day 28. Statistical analysis was conducted with Prism GraphPad software, version 9.1.0 (GraphPad Software, San Diego, CA), and R version 4.0.0.

RESULTS

Patients

We assessed for eligibility 334 patients, of whom 201 accepted to participate; of those, thirteen patients were excluded for the following reasons: five withdrew consent after signing but before randomization; four were transferred to a different facility before randomization; three required IMV before randomization, and one was diagnosed with lung cancer (one of our exclusion criteria) during the initial assessment, therefore withdrawn from the study before randomization. In total, 188 participants underwent randomization, 94 in each group, all of whom received at least one dose of the assigned intervention. Enrollment and randomization are shown in Fig. 1. Baseline demographic and clinical characteristics were balanced between groups (Table 1).

The median age of the patients was 52 years (interquartile range [IQR], 44 to 64 years), and 59.6 % were male. The most common preexisting conditions at enrollment were diabetes and hypertension (Table 1). The imbalance of obesity proportion between groups appeared clinically relevant (53.2% vs.
33%), so we performed a X^2 test which also showed a statistically significant difference ($p=0.005$).

There were no relevant differences in the rest of the baseline characteristics between groups, including the number of patients who received dexamethasone or tocilizumab as part of in-hospital medical management (Table 1). All participants were hypoxemic and received supplementary oxygen as part of in-patient management. The median interval from symptom onset to randomization was 10 days (IQR, 9 to 12 days). The median interval from hospital admission to randomization was 2 days (IQR, 1 to 3 days). Dexamethasone was administered to 140 participants (69 on the pyridostigmine group and 71 on the placebo group). Tocilizumab was administered to 10 participants (5 on the pyridostigmine group, and 5 on the placebo group). None of the participants received remdesivir.

Primary outcome

Thirty-three participants met the primary outcome by day 28; 11 (11.7%) in the pyridostigmine group and 22 (23.4%) in the control group (HR 0.47, 95% CI 0.23-0.95, $p=0.03$) (Fig. 2). As obesity status differed between study groups, we performed an unplanned sensitivity analysis with a Cox proportional hazards model adjusted for obesity status. We excluded 10 patients (four from the pyridostigmine group and six from the control group) that had no information on obesity status (of which only one had a primary outcome) for this sensitivity analysis, obtaining an adjusted HR of 0.42 (95% CI 0.19-0.91) for the primary outcome, 0.78 (95%CI 0.24-2.54) for IMV, and 0.32 (95%CI 0.13-0.77) for death.

Secondary outcomes

IMV was initiated in 6 (6.4%) patients in the pyridostigmine group and 7 (7.5%) in the placebo group (HR 0.81, 95%CI 0.27-2.42). The median duration of IMV was 15 days (IQR, 10 to 23) in the pyridostigmine group and 17 days (IQR, 7 to 39) in the placebo group. The survival rate after IMV was 66.7% (four patients) in the pyridostigmine group and 42.9% (three patients) in the placebo group.

A total of 26 patients died by day 28, 7 in the pyridostigmine group and 19 in the placebo group (HR 0.33, 95%CI 0.14-0.81). All of the deaths in the pyridostigmine group occurred in the study center.
while three in the placebo group happened after the patient was transferred to another center. The median duration of in-hospital stay after randomization (censored at day 29) was 5 days (IQR, 3 to 10 days) in the pyridostigmine group and 5 days (IQR, 3 to 8 days) in the placebo group. The twenty-eight-day hospital discharge rate was 90.4% (85 patients) in the pyridostigmine group and 75.5% (71 patients) in the control group (Table 2 and Fig. 3). The use of dexamethasone was well balanced between groups (69 in the pyridostigmine group and 71 in the placebo group). A higher proportion of outcomes occurred among patients in the placebo group that did not use dexamethasone (35% of them had an outcome vs 20% of those who did use dexamethasone). The numbers in the pyridostigmine group were 8% and 13% (did not use and did use, respectively).

We collected and analyzed 83 AEs throughout the study. Overall, 45 (47.9%) patients of the pyridostigmine group and 38 (40.4%) of the placebo group had at least one adverse drug reaction. The rate and severity of AEs were similar between both groups (Supplemental Tables 1-3).

Of the 188 participants, 166 (88.3%) received experimental treatment as assigned during their in-hospital stay; 22 (11.7%) discontinued treatment early, nine (9.5%) in the pyridostigmine group, and 13 (13.8%) in the placebo group. Two participants in each group discontinued trial medication due to an adverse event other than the principal outcome: one patient presented nausea and one mild abdominal pain in the pyridostigmine group (known adverse effects of pyridostigmine), and in the placebo group one patient had pyrosis and one presented diarrhea. The remaining patients discontinued trial medication after being transferred to another facility (Fig. 1)

DISCUSSION

Here, we show that added to standard care, pyridostigmine is associated with decreased IMV and mortality in patients hospitalized for severe COVID-19. This was driven by a decrease in all-cause mortality in the pyridostigmine group compared to that of the placebo group (by 12.7 percentage points). IMV was an infrequent outcome, which explains the lack of difference when analyzing this outcome by itself. Also, the adjunct use of pyridostigmine increased the probability of being discharged from the hospital alive within 28 days.
Early reports estimated mortality rates as high as 49% for hospitalized patients with severe COVID-19. Although the in-hospital mortality rate has been declining throughout the pandemic, recent studies still show rates ranging from 20 to over 40%. The risk of death still exceeded 20% in the dexamethasone and tocilizumab arms of the RECOVERY trial, being the only two treatments so far that have shown a decrease in mortality.

The severity and mortality of COVID-19 are mediated by the development of a pathologically intense inflammatory response to infection since elevated levels of proinflammatory cytokines and other immune mediators have been associated with multiorgan failure due to endothelial damage and tissue injury. Hence, finding novel immunomodulatory strategies represents a promising strategy to reduce the severity and mortality of COVID-19. This, along with the repurposing of drugs with well-characterized safety profiles and readily available production lines, might lead to faster development of anti-COVID-19 therapies if proven efficacious in well-designed, randomized clinical trials.

In mammals, the central nervous system has mechanisms to control the inflammatory response. During inflammatory states, the vagus nerve can inhibit the synthesis and release of inflammatory cytokines, thereby reducing both local damage and mortality secondary to severe systemic inflammation in murine models as diverse as sepsis, ischemia, and reperfusion damage, or obesity. The vagus nerve can be stimulated electrically and chemically. Chemical stimulation using cholinergic agonists has shown promising effects in murine and cellular models of inflammation.

Acetylcholine esterase inhibitors (i-ACh-e) are a family of drugs used regularly by millions of patients, including older adults with Alzheimer’s disease and other dementias, as well as patients with myasthenia gravis and dysautonomia. These drugs inhibit the enzymatic degradation of endogenous ACh, resulting in greater bioavailability and, therefore, increasing the possibility of binding to both nicotinic and muscarinic receptors. In addition to the approved uses of i-ACh-e in human pathology, there is evidence in various murine models of their efficacy in experimental sepsis and severe inflammatory response, suggesting that i-ACh-e drugs may exert a potential immunomodulatory effect in patients with severe systemic inflammatory response syndrome.
Pyridostigmine, an acetylcholinesterase inhibitor, has been previously shown to decrease inflammation in people living with human immunodeficiency virus (HIV) infection\(^{14-16}\). Regarding safety concerns, at the used dose of pyridostigmine, the rate of adverse events we observed was 47.9%, none of them severe and it was no different from the observed in the placebo group (40.4%). The reduction in mortality in patients with severe COVID-19 who received pyridostigmine may be due to an immunomodulatory effect, however, its precise biological effect in this novel disease remains to be studied. Different immunomodulatory strategies have been tested that have sought to selectively inhibit the biological activity of certain pro-inflammatory cytokines, such as IL-6\(^{31}\); however, the global inhibition of several of them by pharmacologically stimulating the inflammatory reflex could be more effective, which is the effect sought with the administration of pyridostigmine.

Our study has important limitations. The originally planned sample size could not be achieved. Still, a significant difference was observed because of a greater than expected effect. Also, it is possible that some patients requiring IMV could not receive it because of either, a pre-existing living will; last-minute patient (or proxy) refusal of intubation; or, intermittently throughout the study period, hospital saturation of critical-care beds\(^{19,20}\). Our outcome included starting, but not necessarily the requirement of, IMV. This is reflected in the fact that the bulk of the primary outcome was due to deaths without receiving IMV, most likely due to lack of critical care space. Thus, our results may not be generalizable to places that do not have this problem. Importantly, we do not have a disease severity measure at randomization, so groups could be imbalanced in this sense. Nonetheless, both groups should be equally affected by this limitation. As a proof-of-concept, this study needs to be replicated or refuted in independent clinical trials. Also, at this point, our results cannot be extrapolated to patients with less severe disease, or those already receiving IMV, without prior verification in clinical trials. Finally, medium-term outcomes (90 days) will be reported at a later time point.

The strengths of the study include that it is a double-blinded placebo-controlled multicentric randomized clinical trial that evaluated an inexpensive treatment, has a positive pharmacological profile, is safe, and is widely available in a generic presentation. The demographics of our study...
population, including age and comorbid conditions, are representative of a large group of the
underserved population worldwide (particularly across the Americas), a population in urgent need of
safe, effective, life-saving, and affordable treatments for severe COVID-19.

In conclusion, we present compelling evidence to support the use of pyridostigmine as an add-on
treatment to standard medical care in patients hospitalized for severe COVID-19. Our data indicate
that this inexpensive drug may significantly reduce mortality without imposing relevant adverse effects.

Acknowledgments: This study was funded by Consejo Nacional de Ciencia y Tecnología, Mexico (COVID-19 Fund [F0005-2020-01]; grant 311790), to SIV-F. The authors are grateful to Claudia Quiñones, B.Ch. and, Elia Criollo-Mora, B.Ch. for preparing, packing, masking, and labeling active and placebo pills, as well as overseeing drug dispensing. The authors are grateful to Dr. Virginia Pascual-Ramos for providing ethical and statistical recommendations throughout the study.
Table 1. Clinical and demographical characteristics of patients at baseline.

<table>
<thead>
<tr>
<th>Variables</th>
<th>All (N=188)</th>
<th>Pyridostigmine (N=94)</th>
<th>Placebo (N=94)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex - no. (%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Male</td>
<td>112 (59.6)</td>
<td>56 (59.6)</td>
<td>56 (59.6)</td>
</tr>
<tr>
<td>Female</td>
<td>76 (40.4)</td>
<td>38 (40.4)</td>
<td>38 (40.4)</td>
</tr>
<tr>
<td>Age</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Median (IQR) - yr</td>
<td>52 (44-64)</td>
<td>51 (43-63)</td>
<td>54 (46-66)</td>
</tr>
<tr>
<td>Previous coexisting disease - no. (%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Diabetes</td>
<td>68 (36.2)</td>
<td>33 (35.1)</td>
<td>35 (37.2)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>66 (35.1)</td>
<td>33 (35.1)</td>
<td>33 (35.1)</td>
</tr>
<tr>
<td>Heart disease</td>
<td>4 (2.1)</td>
<td>2 (2.1)</td>
<td>2 (2.1)</td>
</tr>
<tr>
<td>Chronic lung disease</td>
<td>8 (4.3)</td>
<td>6 (6.4)</td>
<td>2 (2.1)</td>
</tr>
<tr>
<td>Obesity**</td>
<td>81 (43.1)</td>
<td>50 (53.2)</td>
<td>31 (33)</td>
</tr>
<tr>
<td>Median BMI (IQR) - kg/m²</td>
<td>29 (26.5-33)</td>
<td>30.25 (26.5-33.4)</td>
<td>28.1 (26.5-31.45)</td>
</tr>
<tr>
<td>Median time (IQR) from symptom onset to randomization - days</td>
<td>10 (9-12)</td>
<td>10 (8-11)</td>
<td>10 (9-13)</td>
</tr>
<tr>
<td>Median time (IQR) from admission to randomization – days</td>
<td>2 (1-3)</td>
<td>2 (1-2)</td>
<td>2 (1-3)</td>
</tr>
<tr>
<td>Other immunomodulators used by medical team – no. (%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>140 (74.5)</td>
<td>69 (73.4)</td>
<td>71 (75.5)</td>
</tr>
<tr>
<td>Tocilizumab</td>
<td>10 (5.3)</td>
<td>5 (5.3)</td>
<td>5 (5.3)</td>
</tr>
</tbody>
</table>

**BMI information is not available for 10 patients, four in the pyridostigmine group and six in the placebo group.
Table 2. Primary and secondary outcomes by day 28.

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>All (N=188)</th>
<th>Pyridostigmine (N=94)</th>
<th>Placebo (N=94)</th>
<th>HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary outcome</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invasive mechanical ventilation or death – no. (%)</td>
<td>33 (17.5%)</td>
<td>11 (11.7%)</td>
<td>22 (23.4%)</td>
<td>0.47 (0.23-0.95)</td>
</tr>
<tr>
<td>Secondary outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invasive mechanical ventilation – no. (%)</td>
<td>13 (6.9%)</td>
<td>6 (6.3%)</td>
<td>7 (7.4%)</td>
<td>0.81 (0.27-2.42)</td>
</tr>
<tr>
<td>Median time (IQR) in ICU with invasive mechanical ventilation - days</td>
<td>17 (11-23)</td>
<td>15 (15-21)</td>
<td>17 (12-30)</td>
<td>-</td>
</tr>
<tr>
<td>Survival after IMV – no. (%)</td>
<td>7 (53.8)</td>
<td>4 (66%)</td>
<td>3 (42.9)</td>
<td>-</td>
</tr>
<tr>
<td>Death - no. (%)</td>
<td>26 (13.8%)</td>
<td>7 (7.4%)</td>
<td>19 (20.2%)</td>
<td>0.33 (0.14-0.81)</td>
</tr>
<tr>
<td>*Median time (IQR) from randomization to discharge home – days</td>
<td>5 (3-9)</td>
<td>5 (3-10)</td>
<td>5 (3-8)</td>
<td>-</td>
</tr>
<tr>
<td>Discharge home by day 28 – no. (%)</td>
<td>156 (82.9)</td>
<td>85 (90.4)</td>
<td>71 (75.5)</td>
<td>1.13 (0.82-1.55)</td>
</tr>
<tr>
<td>Adverse events - no. (%)</td>
<td>83 (44.1)</td>
<td>45 (47.9)</td>
<td>38 (40.4)</td>
<td>-</td>
</tr>
<tr>
<td>Failure to complete treatment due to adverse effects – no. (%)</td>
<td>4 (2)</td>
<td>2 (2)</td>
<td>2 (2)</td>
<td>-</td>
</tr>
</tbody>
</table>

*For time to discharge home in patients that were transferred, the time from randomization until discharge home from the hospital that they were transferred to was used. Two patients did not have this information available but were discharged home alive. For them, the date of transfer was used.

Patients that were still in the hospital on day 28 were censored on day 29.
FIGURE LEGENDS

Figure 1. Enrollment and randomization.

Figure 2. Time to Mechanical Ventilation or Death by Day 28.

Figure 3. Time to Mechanical Ventilation, Death or Discharge Home by Day 28 as Separate Outcomes. A) IMV as the primary outcome; B) death as the primary outcome; and, C) Discharge home as the primary outcome. Hazard ratios were calculated with Cox proportional hazards models. In the case of IMV as the primary outcome, deaths without IMV were censored. In the case of death as the primary outcome, IMV was not taken into account. In the case of discharge home as the primary outcome, IMV, deaths, and hospital transfers were censored.
References

11. Cox MA, Duncan GS, Lin GHY, et al. Choline acetyltransferase–expressing T cells are required...
to control chronic viral infection. Science (80-) 2019; 363: 639–44.

Figure 1. Enrollment and randomization

334 patients were assessed for eligibility

98 were excluded:
- 95 ineligible due to inclusion or exclusion criteria
- 3 eligible, but did not accept to participate
- 3 not capable of giving consent

201 signed informed consent

13 were eliminated before randomization
- 5 withdrew consent
- 4 transferred to another facility before randomization
- 3 received invasive mechanical ventilation before randomization
- 1 diagnosed with lung cancer during initial assessment

94 received pyridostigmine
- 7 died before day 28
- 7 discontinued trial because of transfer to another facility before day 14
- 2 discontinued owing to adverse event

94 were included in the 28-day intention-to-treat analysis

94 received placebo
- 19 died before day 28
- 11 discontinued trial because of transfer to another facility before day 14
- 2 discontinued owing to adverse event

94 were included in the 28-day intention-to-treat analysis
No. at risk

<table>
<thead>
<tr>
<th></th>
<th>94</th>
<th>80</th>
<th>75</th>
<th>72</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyridostigmine</td>
<td>94</td>
<td>88</td>
<td>85</td>
<td>84</td>
<td>83</td>
</tr>
</tbody>
</table>
Hazard ratio, 0.81 (95% CI, 0.27 – 2.42)

No. at risk

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>80</th>
<th>75</th>
<th>72</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyridostigmine</td>
<td>94</td>
<td>88</td>
<td>85</td>
<td>84</td>
<td>83</td>
</tr>
</tbody>
</table>
Hazard ratio, 0.33 (95% CI, 0.14 – 0.81)

No. at risk

<table>
<thead>
<tr>
<th></th>
<th>94</th>
<th>84</th>
<th>81</th>
<th>77</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyridostigmine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cumulative incidence

Days from randomization

Hazard ratio, 1.13 (95% CI, 0.82 – 1.55)

No. at risk

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>94</th>
<th>31</th>
<th>13</th>
<th>6</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pyridostigmine</td>
<td>94</td>
<td>36</td>
<td>13</td>
<td>9</td>
<td>2</td>
</tr>
</tbody>
</table>