Thromboembolism risk is higher among patients with diabetes and COVID-19 and is associated to poor clinical outcome.

Stefania L Calvisi1§; Giuseppe A Ramirez2,3§; Marina Scavini4; Valentina Da Prat1; Giuseppe Di Luccia; Andrea Laurenzi1,5; Gabriele Gallina1,3; Ludovica Cavallo1,3; Giorgia Borio1,3; Federica Farolfi1,3; Maria Pascali1,3; Jacopo Castellani1,3; Vito Lampasona4; Armando D’Angelo3,6; Giovanni Landoni3,7; Fabio Ciceri3,7; Patrizia Rovere Querini3,5; Moreno Tresoldi1*; Lorenzo Piemonti3,4*.

1 Unit of General Medicine and Advanced Care, IRCCS Ospedale San Raffaele, Milan, Italy
2 Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
3 Università Vita-Salute San Raffaele, Milan, Italy
4 Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy.
5 Unit of Internal Medicine and Endocrinology, IRCCS Ospedale San Raffaele, Milan, Italy
6 Coagulation service and Thrombosis Research Unit, IRCCS Ospedale San Raffaele, Milan, Italy
7 Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
8 Hematology and Bone Marrow Transplantation Unit, IRCCS Ospedale San Raffaele, Milan, Italy.

§ SLC and GAR equally contributed to this work; * MT and LP equally contributed to this work

ORCID
0000-0002-9685-4582: SL Calvisi; 0000-0002-2889-366X: GA Ramirez; 0000-0002-7983-6905: M Scavini; 0000-0001-8783-1904: V Da Prat; 0000-0001-5162-8445: V Lampasona; 0000-0002-9857-4509: A D’Angelo; 0000-0002-8594-5980: G Landoni; 0000-0003-2615-3649: P Rovere-Querini; 0000-0003-0873-0123: F Ciceri; 0000-0003-1541-6650: M Tresoldi

Short title: Thromboembolism, diabetes and COVID-19 pneumonia

Keywords: COVID-19, diabetes, clinical outcome, humoral response, SARS-CoV-2, Thromboembolism.

Correspondence to: Lorenzo Piemonti, Diabetes Research Institute, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy. Tel: 39 02 26432706, Fax: 39 02 26432871, Email: piemonti.lorenzo@hsr.it

Word count: abstract: 249; text: 3,944;

Table: 2
Figure: 2

Declaration of interests. The authors have no conflict of interest to disclose in relation to the topic of this manuscript. This work was funded by Program Project COVID-19 OSR-UniSR and Ministero della Salute (COVID-2020-12371617).
ABSTRACT

Purpose. Individuals with diabetes carry an increased risk for adverse clinical outcome in case of SARS-CoV-2 infection. The purpose of this study was to evaluate whether this risk is, at least in part, modulated by an increase of thromboembolic complications.

Methods. We prospectively followed 169 hospitalized patients with confirmed COVID-19 pneumonia admitted to the Internal Medicine Units of San Raffaele Hospital. We analysed inflammation and tissue damage biomarkers, hemostatic parameters, thrombotic events and clinical outcome according to the presence of hyperglycaemia or diagnosed diabetes.

Results. Among 169 patients, 51 (30.2%) had diabetes. Diabetes and hyperglycemia were associated with increased inflammation and tissue damage circulating markers, higher D-dimer levels, increased prothrombin time and lower antithrombin III activity. Forty-eight venous and 10 arterial thrombotic events were identified in 49 (29%) patients. Diabetes (HR 2.71, p=0.001), fasting blood glucose (HR 4.32, p<0.001), glucose variability (HR 1.6, p < 0.009), presence of antiphospholipid antibodies (HR 4.18, p=0.033) and the positivity for virus spike protein antibodies (RBD IgG, HR 3.93, p=0.006; S1/S2 IgG, HR 3.36, p=0.027 and RBD IgA, HR 4.98, p=0.001) were all associated with an increased risk of thromboembolic complication. Thromboembolic complications significantly increased the risk for an adverse clinical outcome only in the presence of diabetes (HR 3.05, p=0.01) or hyperglycaemia (HR 3.07, p=0.015).

Conclusions. Thromboembolism risk is higher among patients with diabetes and COVID-19 pneumonia and is associated to poor clinical outcome. In case of SARS-Cov-2 infection patients with diabetes could be considered for a more intensive prophylactic anticoagulation regimen.
INTRODUCTION

Diabetes has been confirmed as one of the most consistent risk factors for severe disease in case of SARS-CoV-2 infection (1,2). In fact, the risk of admission to an Intensive Care Unit (ICU) and of in-hospital mortality are increased two to three fold by the presence of diabetes in patients with COVID 19 pneumonia (3). Different pathophysiological mechanisms were suggested to explain the worse clinical outcome, including hyperglycemia, older age and the presence of comorbidities (i.e., hypertension, obesity, and cardiovascular disease) (4). However, because of the syndromic nature of diabetes, additional potential causative factors should be considered, such as the increased susceptibility to hyperinflammation (5), the diminished immunological function (6) and the prothrombotic state (7) associated with hyperglycemia. We recently investigated whether diabetes or hyperglycemia are linked to a defect in the humoral immune response against SARS-CoV-2 (8,9). Our data showed that the antibody response against multiple SARS-CoV-2 antigens in patients with diabetes is superimposable in terms of timing, persistence, classes, titers, and neutralizing activity to that of non-diabetic patients (9,10). However, in our cohort of patients with SARS-CoV-2 pneumonia, we also observed a significant correlation between serum D-dimer levels and diabetes/glycemia, a finding confirmed also by others (11-13). Elevated D-dimer levels are a direct consequence of increased fibrin formation and lysis and thus an indicator of increased thrombotic activity, such as disseminated intravascular coagulation (DIC) and thromboembolism (14). COVID-19 is associated with an increased risk of arterial and venous thrombosis (15-17) because of a multitude of factors, including systemic inflammation, endothelial dysfunction, platelet activation, immobilization, mechanical ventilation and the use of central venous catheters (18-20). Since diabetes is associated with a pro-thrombotic status (7) and elevated D-dimer levels (12), we hypothesized that diabetes is associated with an increased risk of thrombotic events in patients with COVID-19 pneumonia. To prove this hypothesis we designed a prospective observational study in a cohort of 169 consecutively
hospitalized patients with COVID-19 pneumonia, focusing on thrombotic events which occurred during hospitalization and risk factors associated with these events.

MATERIAL AND METHODS

Study population and data sources. The study population consisted of 180 adult patients (≥18 years) with confirmed COVID-19 pneumonia admitted to the Internal Medicine Units of San Raffaele Hospital, Milan, Italy from March 2\(^{nd}\) to May 7\(^{th}\) 2020. This series of patients is part of the COVID-19 institutional clinical–biological cohort, assessing patients with COVID-19 at our institution, a 1,350 bed tertiary care hospital in Milan, Italy (COVID-BioB; ClinicalTrials.gov Identifier: NCT04318366). A confirmed infection case was defined as a SARS-CoV-2-positive RT-PCR test from a nasal/throat swab, and/or signs, symptoms and radiological findings suggestive of COVID-19 pneumonia. There were no exclusion criteria. Within 48 hours from admission, we recorded demographic information, clinical features and laboratory exams on the day of admission on a dedicated data collection form. Data were recorded until hospital discharge or death, whichever occurred first. Data were cross-checked in blind and verified by data managers and clinicians for accuracy. We also recorded mortality beyond hospital discharge clinic: for patients non attending our dedicated outpatient follow-up clinic, we checked patient’s vital status with either family members or family physician. The study was approved by the local Institutional Review Board (protocol n 34/int/2020; NCT04318366). Patients signed a written informed consent granting permission to access their sensitive data for the purposes of this study.

Thrombotic complications. The occurrence of any thrombotic complication (TC) throughout the hospitalization was the primary outcome of the study. Thrombotic complications included deep vein thrombosis (DVT), pulmonary embolism (PE), and lower and upper limb ischemia, catheter-related thrombosis with deep vein involvement, mesenteric ischemia, stroke and myocardial infarction. A standard protocol to assess patients for thrombotic complications
was implemented based on the position paper from the Italian Society on Thrombosis and Haemostasis (SISET) (21) and to the interim guidance to recognition and management of coagulopathy in COVID-19 from the International Society on Thrombosis and Hemostasis (ISTH) (22). A close control of hemostasis parameters and clinical signs and symptoms was methodically pursued. Additional investigations, including CT scan and/or ultrasound, were performed on the basis of clinical suspicion of thromboembolic events: (i) elevated D-dimer levels and/or (ii) presence of respiratory failure and/or (iii) presence of symptoms suggestive of thrombotic events. All patients received thromboprophylaxis with enoxaparin 4,000 IU/day [adjusted to 6,000 IU/day or 3,000 IU/day in overweight (>100 kg) or underweight (<50kg) subjects, respectively] or, alternatively, with mechanical compression of the lower limbs in case of anticoagulant contraindications (active bleeding and platelet count less than 25 × 10^9/l). If chronic oral anticoagulant therapy with direct oral anticoagulants (DOACs) or warfarin/acenocoumarol (OAT) was prescribed prior to admission, it was changed to LMWH anticoagulant treatment. Thromboprophylaxis was administered on admission and during the entire duration of the hospital stay. Anti-Xa measurement was used to monitor anticoagulant treatment. There were no cases of heparin-induced thrombocytopenia. No major haemorrhagic event occurred in patients with thromboprophylaxis. The Padua Prediction Score and the IMPROVE Bleeding Risk Assessment Score were used at hospital admission for stratification of the venous thromboembolism and bleeding risks, respectively. A Padua score ≥ 4 identified patients at high risk for venous thromboembolism, an IMPROVE Bleeding Risk Assessment Score ≥ 7 identified patients at increased risk of bleeding. Overt DIC was defined when the ISTH diagnostic score was ≥ 5 (23).

Definition of diabetes. Study participants were defined as having diabetes if they had a documented diagnosis before the hospital admission for COVID-19 pneumonia [Comorbid diabetes: fasting plasma glucose (FPG) ≥7.0 mmol/l or HbA1c ≥ 6.5% (48 mmol/mol), or prescription for diabetes medications] or if patients without a previous diagnosis of diabetes
had a mean FPG ≥7.0 mmol/l. during the hospitalization for COVID-19 pneumonia (newly
diagnosed diabetes). We computed mean FPG and glucose variability (standard deviation)
from all fasting laboratory glucose values measured during hospitalisation.

Laboratory variables Routine blood tests encompassed serum biochemistry [including renal
and liver function, lactate dehydrogenase (LDH) and electrolytes], complete blood count with
differential, markers of myocardial damage [troponin T and pro-brain natriuretic peptide
(proBNP)], and inflammation markers [C-reactive protein (CRP), ferritin, erythrocyte
sedimentation rate (ESR), interleukin-6 (IL-6)]. Specific antibodies to different SARS-CoV-2
antigens were tested in a subset of patients by a luciferase immunoprecipitation system (LIPS)
assay, as previously described (11). An extended coagulation profile assessment was
performed including D-dimer, PT, PTT, fibrinogen, antithrombin activity, vWF,
homocysteine, protein C and S. D-dimer levels were measured through a STA-R® automatic
coaulation analyser. Age-specific high D-dimer (aD-dimer) was defined as D-dimer levels
above 0.5 µg/dl for patients with less than 50 years of age and above their age divided by 100
in patients older than 50 years (24). Antiphospholipid antibodies including IgG and IgM
anticardiolipin (aCL), antiβ2-glycoprotein (aB2GPI) and anti-phosphatidylerine/prothrombin
(aPSPT) antibodies were measured by using a Bioflash® automated chemiluminescent
analyser. Cut-off levels for aCL and aB2GPI was set to 20U/ml and to 30U/ml for aPSPT,
according to the manufacturer’s instructions. Lupus anticoagulant (LA) was assessed via a
sensitive aPTT reagent (PTT-LA, Stago), mixing studies, and phospholipid addition to
platelet-free plasma in a kaolin clotting time system (OPTION2).

Statistical analysis. Continuous variables were presented as median with inter-quartile range
(IQR) in parenthesis. Categorical variables were reported as frequency or percent. Continuous
variables were compared using the Wilcoxon rank sum or Kruskal-Wallis test. Categorical
variables were compared using the Chi-square or Fischer’s exact test, as appropriate.
Imputation for missing data was not performed. Associations between baseline variables and
diabetes was assessed by logistic regression. The effect estimates were reported as Odd Ratios (ORs). Survival was estimated according to Kaplan–Meier. The time-to-event was calculated from the date of symptom onset to the date of the event, or of last follow-up visit, whichever occurred first. We calculated univariate and multivariate Cox proportional hazards models to study the association between patient characteristics with time to thrombotic complication or time to adverse outcome (as defined by composite endpoint of transfer to ICU or death, whichever occurred first). In Cox proportional hazards models, the onset of a thrombotic complication was considered a time-varying covariate. The effect estimates were reported as Hazard Ratios (HRs) with the corresponding 95% CI, estimated according to the Wald approximation. Multivariate analyses were performed including variables significant at the level of <0.1 in the univariate analysis. Two-tailed P values are reported, with P value <0.05 indicating statistical significance. All confidence intervals are two-sided and not adjusted for multiple testing. Statistical analyses were performed with the SPSS 24 (SPSS Inc./IBM) and the R software version 3.4.0 (R Core Team 2020).

RESULTS

Study participants. A total of 180 consecutive patients with confirmed COVID-19 were prospectively enrolled. Data from 11 out of 180 (6.11%) patients were considered incomplete and excluded from the analysis. Among the 169 cases included in our study [median hospital stay 17 (8-31) days], 61 patients (36.1%) were treated with non-invasive ventilation and 23 (13.6%) accessed an ICU over the hospitalization period. As of January 25, 2021 the median follow-up time after symptoms onset was 222 (95% CI: 211-232) days. Thirty five patients died during follow-up (20.7%). Fifty patients (29.6%) had an adverse in-hospital outcome, according to the composite endpoint of transfer to ICU or death, whichever occurred first.

Baseline characteristics of study population. The characteristics of study participants, according to diabetes status or glucose levels, are reported in Supplementary Table 1 and
Table 2 (25). Comorbid diabetes and newly diagnosed diabetes accounted for 11.2% (n=19) and 18.9% (n=32) of the patients, respectively. Higher BMI [OR 1.112 (95% IC 1.03-1.2); p=0.007], older age [OR 1.029 x year (95% IC 1.01-1.05); p=0.013], and hypertension [OR 4.036 (1.04-3.98); p=0.037] were all associated with diabetes. As for diabetes treatment, 3.9% of subject with diabetes were being treated with lifestyle modifications, 11.8% with insulin, 39.2% with non-insulin oral or injectable anti-diabetes medications, 7.8% with insulin and oral diabetes medications, while patients with newly diagnosed diabetes (37.3%) were untreated. The median time from symptoms onset to hospital admission was 7 (1-12.5) and 5 (1-8) days for patients without and with diabetes, respectively (p=0.33). On admission, 18.3% (n=31) of the patients were taking ACE-inhibitors (25.5% vs 15.3%, p=0.132 diabetes vs no diabetes), 14.2% (n=24) chronic antiplatelet therapy (21.6% vs 11%, p=0.092 diabetes vs no diabetes) and 18.3% (n=31) anticoagulant treatments (23.5% vs 16.1%, p=0.28 diabetes vs no diabetes).

Hospital admission. On admission signs of respiratory insufficiency were evident in most patients [PaO2/FiO2 ratio 280 (200-368)] and a PaO2/FiO2 ratio <200 was present in 20% and 29.4% of patients with or without diabetes, respectively (p=0.31). Diabetes was associated with worse kidney function [serum creatinine: 96.4 (65.4-152) vs 82.2 (65.4-106) μmol/L, p=0.039; urea nitrogen 18.6 (10.5-33.8) vs 11.9 (8.66-19.6) mmol/L, p=0.004], increased inflammation [CRP 87.5 (35.7-184) vs 53.5 (17.9-112) mg/L; p= 0.009]] and tissue damage markers [LDH 6.65 (4.33–8.8) vs 5.04 (3.82–8.8) μkat/L, p=0.006; AST 0.82 (0.64–1.35) vs 0.6 (0.43–0.91) μkat/L, p=0.006; ALT 0.73 (0.45–0.97) vs 0.57 (0.33–0.83) μkat/L, p=0.077; pro-BNP 738 (193-2238) vs 193 (59-910) ng/L, p= 0.011; troponin T 19.5 (11.4-61.55) vs 12.7 (6-42.6) μg/L, p= 0.078]. The same changes were associated with progressively higher blood glucose levels [Supplementary Table 2 (25)]. Data regarding the IgG, IgM and IgA responses to the SARS-CoV-2 spike protein (RBD or S1+S2) and IgG to
NP (Table 1) were available for a subgroup of patients, as they were part of a previous cohort evaluated for the humoral response in the presence of diabetes (12). Marginal differences between patients with and without diabetes were evident, with the exception for a trend of higher prevalence of IgA RBD positive subjects (68% vs 42.9%, p=0.057). Over the hospitalization period antibiotic (80.4% vs 61.9%, p=0.02) and oxygen (84.3% vs 61%, p=0.004) treatments were more frequently used in patients with diabetes while antiviral, immunomodulatory and biologic therapies were equally prescribed.

Hemostatic parameters. Upon admission patients with diabetes exhibited significantly higher D-dimer levels [11.8 (5.5-12.4) vs 4.2 (2.3-9.3) µg/ml, p<0.001] and increased prothrombin time (PT-INR 1.16 (1.02-1.25 vs 1.04 (0.98-1.15), p=0.001) compared with patients without diabetes (Table 1). Concordantly, the percentage of subject with elevated age-specific D-dimer was significantly higher in the presence of diabetes (76.5% vs 56.8%, p=0.016). Partial thromboplastin time, platelet count and fibrinogen were not affected by diabetes. Advanced markers of thrombophilia were available for a subgroup of patients (Table 1). Exploratory analysis did not show significant changes in coagulation factors levels or activity in subjects with diabetes, except for a lower antithrombin III activity [91% (80-120) vs 100% (92-106)]. Antiphospholipid antibody (either positive LA and/or aCL, aB2GPI, aPSPT IgG or IgM antibodies) were above the reference range in 8 out of 20 (40%) and 15 out of 45 (33.3%) patients with and without diabetes, respectively (p=0.78). Generally, subjects positive for antiphospholipid antibody had lower antibody levels. The presence of diabetes did not significantly increase the proportion of patients who at baseline had a higher risk for venous thromboembolism based on the Padua score (Padua score ≥ 4: 43.1% vs 31.4%, p=0.16), even if a marginal, although significant, difference in the Padua score was evident [3 (3-5) vs 3 (1-5), p=0.006)] (Table 1). Similarly, the proportion of patients at high baseline bleeding risk based on the IMPROVE score was not affected by the presence of diabetes (IMPROVE≥ 7: 9.8% vs 5.9%; p= 0.35), even if a marginal, although significant,
difference in the IMPROVE score was evident [2.2 (1.2-4.1) vs 1.6 (0.97-2.9), p=0.024)]

(Table 1).

Thromboembolic complications. Forty eight venous and 10 arterial thrombotic events were identified in 49 (29%) patients (Table 2). The median time from the onset of symptoms of COVID-19 pneumonia to the thrombotic event was 17 (10-24) days. Patients with diabetes developed more frequently a thromboembolic complication (47.1% vs 21.2%, p=0.001) than patients without diabetes. Comorbid diabetes and newly diagnosed diabetes were both associated with a higher prevalence of thromboembolic complication (52% vs 42.1% respectively, p=0.77). Concordantly, the higher prevalence of thromboembolic complication was associated with higher blood glucose levels during the hospitalization (Table 1).

Regarding the thrombosis site, venous events (in particular deep vein thrombosis) contributed more significantly than arterial ones in determining the higher prevalence of thromboembolic complications in patients with diabetes compared to those without diabetes. In patients with and without diabetes, 3 and 1 (5.9% vs 0.8%, p=0.083) events were classified as overt DIC (≥5 points, according to the ISTH diagnostic criteria), respectively. The results of a Cox regression analysis for thromboembolic complications is presented in Fig. 1. The Cox regression analysis adjusted for age and sex indicates that diabetes (HR 2.71, CI 1.53-4.8; p=0.001), fasting plasma glucose [FPG mean (log1p) HR 4.32, CI 1.86-10, p=0.001] and glucose variability [FPG standard deviation (log1p) HR 1.6, CI 1.13-2.28, p=0.009] were associated with a higher risk of thromboembolic complications. Differences in smoke habit, BMI, other comorbidities and preadmission antiplatelet or steroid were all statistically not significant. A trend towards a protective effect of preadmission anticoagulant therapy was evident (HR 0.45, CI 0.18-1.08; p=0.075). In a multivariate model, diabetes and preadmission anticoagulant therapy confirmed their association with the thromboembolic complication.

Within the subgroup of patients for which data were available, positivity for antiphospholipid antibodies (HR 4.18, CI 1.12-15.6, p=0.033) was associated with a higher risk of
thromboembolic complication. Unexpectedly, some humoral responses to the SARS-CoV-2 spike protein (RBD or S1+S2), but not to nucleoprotein (NP), were also associated with a higher risk of thromboembolic complication: RBD IgG (HR 3.93, CI 1.48-10.4; p=0.006), S1/S2 IgG (HR 3.36, CI 1.15-9.8; p=0.027) and RBD IgA (HR 4.98, CI 1.8-13.4; p=0.001). The thrombosis-free survival curves according to the antibody positivity are reported in Figure 1. Antibodies variables were not tested in a multivariate model since the availability of antibody in only a fraction of patients would have led to an overfitting of the model.

Thromboembolic complications and adverse clinical outcome in patients with and without diabetes. To assess whether the presence of thromboembolic complications had an impact on patient outcome according to diabetes or glucose levels, we conducted a Kaplan-Meier estimator log-rank test and a Cox proportional hazards model for adverse clinical outcome (as defined by composite endpoint of transfer to ICU or death, whichever occurred first) (Figure 2). The Cox regression analysis adjusted for age and sex indicated that diabetes (HR 2.99, CI 1.7-5.03; p<0.001), fasting plasma glucose [FPG mean (log1p) HR 9.6, CI 4.59-20; p<0.001] and glucose variability [FPG standard deviation (log1p) HR 2.02, CI 1.43-2.9; p<0.001] were strongly associated with a higher risk of adverse clinical outcome (see also Supplementary Table 2)(25). Thromboembolic complications were not associated with an adverse clinical outcome in the absence of diabetes (HR 0.29, CI 0.04-2.16; p=0.225) or in the presence of FBG <7 mmol/l (HR 0.54, CI 0.07-4.35; p=0.56), while they significantly increased the risk in the presence of diabetes (HR 3.05, CI 1.31-7.09; p=0.01) or FBG ≥ 7 mmol/l (HR 3.07, CI 1.24-7.6; p=0.015).

DISCUSSION

There are few reports on the relationship between hyperglycemia and the rate of thromboembolic complications in COVID-19 pneumonia and it is still unknown whether thrombosis affects the prognosis of patients with COVID-19 pneumonia in the presence of
diabetes. Under the hypothesis of a relevant role for diabetes, we designed a prospective observational study focusing on thrombotic events occurring during hospitalization and risk factors associated with thromboembolic complications in patients with COVID-19 pneumonia. Our study generated several interesting findings in those patients. First, diabetes, hyperglycemia and glycemic variability were strong risk factors for the development of thromboembolic complications. Second, the rate of venous thrombosis events (in particular deep vein thrombosis) was the most affected by the presence of diabetes or hyperglycemia. Third, thromboembolic complications had an adverse impact on clinical outcome exclusively in the presence of diabetes or hyperglycaemia. While reasonable, these results could not have been taken for granted (26). Thromboembolic events have a higher incidence among patients with COVID-19 (27-29) and diabetes is per se characterized by a pro-thrombotic status (7). We and others have previously reported an increase of D-dimer in patients with diabetes and COVID-19 pneumonia compared to those without diabetes (11-13). However the clinical implications in term of thromboembolic risk of those findings were yet unclear. Moreover, data on the correlation of thromboembolic complications with clinical outcome were limited and contradictory, with some studies finding a higher risk of adverse outcome associated with thromboembolic events in hospitalized patients with COVID-19 (30), while others did not find any association (31). The pathophysiological mechanisms related to the increased risk of thrombotic complications in patients with COVID-19 pneumonia and diabetes are still incompletely understood. In our study, diabetes was associated with both inflammation and coagulopathy (elevated C reactive protein and D-dimer levels, mild prolongation of the prothrombin time and decreased antithrombin III), suggesting that an hyperglycaemia-related amplification of the pathobiological mechanisms of immunothrombosis (32) could be responsible of the increased thrombotic risk. The reduced activity of antithrombin III is of particular interest in this context (33). In fact, antithrombin III is a powerful natural anticoagulant which is regulated by inflammation (34). Therefore, it can be speculated that
hyperinflammation might have been triggering a decrease in antithrombin III levels and its physiological anticoagulant activity. Furthermore, since the clinical anticoagulant efficacy of heparin requires interaction with antithrombin III, an impaired levels/activity of antithrombin III may be associated with “heparin resistance” (34). In agreement with this hypothesis, an association between antithrombin III levels and mortality in patients with COVID-19 pneumonia has already been reported (35).

In addition to diabetes and hyperglycemia, our data show an association between thromboembolic complications and the presence of antiphospholipid antibodies in patients with COVID-19 pneumonia. This association has been previously reported in case reports, case series, cohort studies, and cross-sectional studies, although with contradictory results (36). Unfortunately, our data are insufficient to provide new insights. In fact, antiphospholipid antibody measurements were available only for a subgroup of patients and, therefore, it was impossible to include them in a multivariate model to test for their contribution to thromboembolic risk. Moreover, antiphospholipid antibody positivity was generally weak and obtained at just at single time point, with no subsequent confirmatory tests being available. Finally, it is known that an intermittent lupus anticoagulant increase is associated with inflammation and its assessment in this and other studies could be challenging in the presence of the widespread use of low molecular weight heparin in such patients. Since the presence of antiphospholipid antibodies is recognized as one of the most common causes of acquired thrombophilia, its role in inducing thrombotic vascular events after SARS-CoV-2 infection seems reasonable, definitively needs further studies (37). More intriguing, albeit within the limits of the availability of data only in a subgroup of patients, is the association between thromboembolic complications and the antibody response against the spike protein of SARS-CoV-2. The IgA response against the receptor binding domain, which tended to be more frequently associated with diabetes at admission, appeared to be the more strongly associated with the risk of thrombotic complications. This evidence has never been described before and
is open to different interpretations. One hypothesis is that both antibody response and thrombophilia are epiphenomena of the hyperinflammation associated with diabetes. In a larger cohort of subjects, we previously reported marginal differences in the humoral response against SARS-CoV-2 between patients with and without diabetes, including a higher quantitative response of anti-RBD antibodies at weeks 2 and 3 after the onset of symptoms of COVID-19 pneumonia (9). An early maturation of the antibody response might be favored by the state of hyperinflammation present in patients with diabetes, in whom other authors have described an increased percentage of proinflammatory memory B cells and a decreased percentage of the anti-inflammatory B cell subset (38). A second hypothesis is that virus specific antibodies may interfere with the interaction between spike protein and angiotensin-converting enzyme 2 (ACE-2), and this may result in a prothrombotic phenotype during COVID-19 pneumonia. ACE-2 is expressed on endothelial cells and both ACE-2 activation and down-regulation were associated with the increased thrombotic risk in COVID-19 pneumonia (39). Antibodies responses against the spike protein could unbalance the ACE-2 regulation during SARS-CoV-2 acute infection. Some reports showed an inverse correlations between spike protein antibody levels with disease severity (40), but whether this difference was related to an increased rate of thromboembolic complications was not reported. Further studies are warranted to understand whether in patients with diabetes an increased production of antibodies against SARS-CoV-2 is partly responsible for the prothrombotic phenotype in patients with diabetes, or if it is just the result of the severity of the disease.

Our study encompasses some limitations: first, our cohort was limited to hospitalized patients and results could be different in less severe COVID-19 disease. Second, the definition of newly diagnosed diabetes did not exclude stress-induced hyperglycemia and, as the study included mainly patients with the characteristics of type 2 diabetes, we cannot generalize our findings to other types of diabetes. Third, even if the overall venous and arterial thromboembolism rate was similar to that described until now in various studies (18), our
monocentric cohort was relatively small, and, therefore, a selection bias cannot be excluded. Fourth, we were unable to evaluate the specific role of some markers as predictors of thrombosis in multivariate models since a complete set of biochemical coagulation data was available only for a fraction of patients. Nevertheless our study generated additional valuable knowledge about the role of diabetes in predicting thrombotic events and in stratifying their prognostic significance. In conclusion, many evidences indicate that patients with diabetes, in case of COVID-19 pneumonia, carry a significant increased risk for adverse clinical outcome when compared with patients without diabetes. It is clear from our study that part of this risk is due to an increase in thromboembolic complications. These findings suggest that in case of SARS-Cov-2 pneumonia, patients with diabetes could be considered for a more intensive prophylactic anticoagulation regimen.
DATA AVAILABILITY. Some or all datasets generated during and/or analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request.

ACKNOWLEDGMENTS

This work was funded by Program Project COVID-19 OSR-UniSR and Ministero della Salute (COVID-2020-12371617).

Declaration of interests. The authors have no conflict of interest to disclose in relation to the topic of this manuscript. The authors declare that there are no relationships or activities that might bias, or be perceived to bias, their work.

Individual contributions LP, SLC and GAR contributed to the conception of the study, wrote the manuscript, researched data and contributed to the discussion. MSc and VL contributed to the acquisition and analysis of antibody data and revised the manuscript. VDP, GDL, AL, PRQ and FC recruited patients, contributed to the acquisition of samples, managed the biobanking activities and critically revised the manuscript. AD and GL contributed to the acquisition, analysis and interpretation of data and critically revised the manuscript. MT contributed to the design of the study and critically reviewed/edited the manuscript. LP is the guarantor of this work and, as such, had full access to all the data presented in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. The final manuscript has been read and approved by all named authors.
REFERENCES

FIGURE LEGEND

Figure 1. Thromboembolic complications in patients with COVID-19. The forest plots (panel a) show the Hazard Ratios (HR) for thrombosis for each factor tested. Upper panel: univariate Cox regression analysis adjusted for sex and age. Lower panel: multivariate Cox regression analysis adjusted for sex and age including variables significant at the level of <0.1 in the univariate analysis. Dots represent the HR, lines represent 95% confidence interval (CI), and solid dots indicate P < 0.05. (*) indicates that the analysis was performed in a subgroup of patients: antiphospholipid antibody, 75 out of 169 (44.4%); RBG (IgG, IgA, and IgM), 93 out of 169 (55%); S1+S2 (IgG, IgA, and IgM), 93 out of 169 (55%); NP (IgG), 93 out of 169 (55%). Kaplan-Meier thrombosis-free survival estimates for patients with COVID-19 pneumonia (panel b). Survival rate was estimated for the presence of diabetes or antibody positivity. The log-rank test was used to test differences in the estimated survival rate. Crosses indicate censored patients (censoring for death end of follow-up data).

Figure 2. Survival in the absence of adverse clinical outcome in patients with COVID-19 with or without thrombotic events, according to diabetes or hyperglycemia. Kaplan-Meier patient survival estimates for 169 patients with COVID-19 pneumonia (panel a). Survival rate in the absence of adverse clinical outcome (defined by composite endpoint of transfer to ICU or death, whichever occurred first) was estimated for the presence of any thrombotic event separately according to diabetes or fasting plasma glucose. The log-rank test was used to test differences in the estimated survival rate between groups. Crosses indicate censored patients (censoring for death or end of follow-up data). The forest plots (panel b) show the hazard ratios for survival in the absence of adverse clinical outcome according to presence/absence of diabetes, or to fasting plasma glucose level (FBG) categories. The presence of thrombotic complications was considered as a time-varying covariate in Cox proportional hazards models. The effect estimates were reported as Hazard Ratios (HRs) with...
the corresponding 95% CI, estimated according to the Wald approximation. Cox regression analysis was adjusted for sex and age. Dots represent the HR, lines represent 95% confidence interval (CI), and solid dots indicate $P < 0.05$.
<table>
<thead>
<tr>
<th>Characteristics</th>
<th>All</th>
<th>Diabetes</th>
<th>p</th>
<th>Median fasting glucose (mmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platelets (x10^9/L)</td>
<td>225 (153-307)</td>
<td>229 (157-379)</td>
<td>0.61</td>
<td>122 (146-324)</td>
</tr>
<tr>
<td>D-dimer (µg/ml)</td>
<td>5.9 (2.8-16.6)</td>
<td>6.0 (9.4-2.3)</td>
<td><0.01</td>
<td>4.6 (2.3-9.1)</td>
</tr>
<tr>
<td>Elevated d-dimer [N (%)]</td>
<td>106 (62.7)</td>
<td>51 (65.7)</td>
<td>0.016</td>
<td>31 (68.1)</td>
</tr>
<tr>
<td>PT-INR</td>
<td>1.06 (0.99-1.2)</td>
<td>1.04 (0.98-1.1)</td>
<td>0.001</td>
<td>1.00 (0.98-1.1)</td>
</tr>
<tr>
<td>PT-TT-R</td>
<td>0.99 (0.94-1.05)</td>
<td>1.08 (0.91-1.06)</td>
<td>0.52</td>
<td>1.01 (0.95-1.1)</td>
</tr>
<tr>
<td>Fibrinogen (g/L)</td>
<td>5.53 (4.16-6.39)</td>
<td>5.42 (4.16-6.19)</td>
<td>0.024</td>
<td>5.11 (3.89-5.85)</td>
</tr>
<tr>
<td>von Willebrand factor (%)</td>
<td>307 (190-379)</td>
<td>307 (191-376)</td>
<td>0.92</td>
<td>306 (191-376)</td>
</tr>
<tr>
<td>Protein C (%)</td>
<td>86 (72-106)</td>
<td>87 (76-104)</td>
<td>0.24</td>
<td>82 (76-104)</td>
</tr>
<tr>
<td>Protein S (%)</td>
<td>78 (60-90)</td>
<td>80 (60-90)</td>
<td>0.36</td>
<td>78 (60-90)</td>
</tr>
<tr>
<td>Antithrombin III (%)</td>
<td>98 (88-106)</td>
<td>100 (92-106)</td>
<td>0.041</td>
<td>100 (88.25-105)</td>
</tr>
<tr>
<td>Homocysteine (µmol/L)</td>
<td>14.8 (10.19.4)</td>
<td>14.4 (10.1-21.8)</td>
<td>0.17</td>
<td>14.3 (10.1-21.8)</td>
</tr>
<tr>
<td>IgG [β2-glycoprotein 1] [N (%)]</td>
<td>2 (3)</td>
<td>0 (0)</td>
<td>0.063</td>
<td>2 (13.3)</td>
</tr>
<tr>
<td>IgM [β2-glycoprotein 1] [N (%)]</td>
<td>1 (1.5)</td>
<td>0 (0)</td>
<td>0.27</td>
<td>1 (6.7)</td>
</tr>
<tr>
<td>IgG cardiolipin [N (%)]</td>
<td>5 (7.5)</td>
<td>3 (6)</td>
<td>0.59</td>
<td>2 (5.3)</td>
</tr>
<tr>
<td>IgM cardiolipin [N (%)]</td>
<td>4 (6.1)</td>
<td>1 (2.1)</td>
<td>0.059</td>
<td>1 (2.1)</td>
</tr>
<tr>
<td>IgG phosphatidylserine [N (%)]</td>
<td>8 (12.5)</td>
<td>5 (11.4)</td>
<td>0.7</td>
<td>3 (9.1)</td>
</tr>
<tr>
<td>IgM phosphatidylserine [N (%)]</td>
<td>15 (22.7)</td>
<td>9 (19.6)</td>
<td>0.36</td>
<td>7 (20)</td>
</tr>
<tr>
<td>Antiphospholipid antibody [N (%)]</td>
<td>23 (35.4%)</td>
<td>22 (33)</td>
<td>0.779</td>
<td>22 (32.4)</td>
</tr>
<tr>
<td>LA [N (%)]</td>
<td>7 (9.6)</td>
<td>4 (7.5)</td>
<td>0.38</td>
<td>4 (10.3)</td>
</tr>
<tr>
<td>Padau score</td>
<td>3 (2.5)</td>
<td>3 (1.5)</td>
<td>0.006</td>
<td>3 (1.5)</td>
</tr>
<tr>
<td>Padau score ≥ 4 [N (%)]</td>
<td>59 (34.9)</td>
<td>37 (21.6)</td>
<td>0.16</td>
<td>30 (33.3)</td>
</tr>
<tr>
<td>IMPROVE score</td>
<td>12 (7.1)</td>
<td>7 (5.9)</td>
<td>0.35</td>
<td>7 (7.8)</td>
</tr>
<tr>
<td>DIC by ISTH definitions [N (%)]</td>
<td>4 (2.4)</td>
<td>1 (0.8)</td>
<td>0.083</td>
<td>0 (0)</td>
</tr>
<tr>
<td>C reactive protein (mg/l)</td>
<td>57.5 (20.7-128.6)</td>
<td>53.5 (17.9-112)</td>
<td>0.009</td>
<td>53.5 (17.9-112)</td>
</tr>
<tr>
<td>ESR (mm/h)</td>
<td>57 (20.7-128.6)</td>
<td>53 (17.9-112)</td>
<td>0.009</td>
<td>53.5 (17.9-112)</td>
</tr>
<tr>
<td>Ferritin µg/L</td>
<td>903 (387-1514)</td>
<td>804 (331-1450)</td>
<td>0.17</td>
<td>700 (308-1155)</td>
</tr>
<tr>
<td>IL-6 (pg/ml)</td>
<td>43.3 (15.4-98.5)</td>
<td>43.7 (13.2-95.85)</td>
<td>0.26</td>
<td>39.2 (9.5-86)</td>
</tr>
<tr>
<td>IgG RBD [N (%)]</td>
<td>45 (51.1)</td>
<td>30 (47.6)</td>
<td>0.349</td>
<td>24 (50)</td>
</tr>
<tr>
<td>IgM RBD [N (%)]</td>
<td>46 (52.3)</td>
<td>33 (52.4)</td>
<td>0.99</td>
<td>24 (50)</td>
</tr>
<tr>
<td>IgA RBD [N (%)]</td>
<td>44 (50)</td>
<td>27 (42.9)</td>
<td>0.057</td>
<td>19 (39.6)</td>
</tr>
<tr>
<td>IgG S1/S2</td>
<td>53 (60.2)</td>
<td>36 (57.1)</td>
<td>0.470</td>
<td>28 (58.3)</td>
</tr>
<tr>
<td>IgM S1/S2</td>
<td>61 (69.3)</td>
<td>42 (66.7)</td>
<td>0.452</td>
<td>33 (68.8)</td>
</tr>
<tr>
<td>IgA S1/S2</td>
<td>66 (75)</td>
<td>45 (71.4)</td>
<td>0.208</td>
<td>31 (70.8)</td>
</tr>
<tr>
<td>IgG NP</td>
<td>58 (65.9)</td>
<td>42 (66.7)</td>
<td>0.080</td>
<td>31 (64.6)</td>
</tr>
</tbody>
</table>

DIC disseminated intravascular coagulation; ESR erythrocyte sedimentation rate; INR: international normalized ratio; ISTH: International Society of Thrombosis and Haemostasis; PT: prothrombin time; PTT: partial thromboplastin time.
Table 2: Thrombotic events

<table>
<thead>
<tr>
<th>N</th>
<th>All</th>
<th>No</th>
<th>Yes</th>
<th>p</th>
<th>Comorbid</th>
<th>New</th>
<th>p</th>
<th><5.6</th>
<th>5.6-6.9</th>
<th>≥ 7</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with at least one event [N (%)]</td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>118</td>
<td>51</td>
<td></td>
<td></td>
<td>32</td>
<td>19</td>
<td></td>
<td>90</td>
<td>37</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Median time from symptoms to thrombosis</td>
<td>17 (10-24)</td>
<td>11 (2-20)</td>
<td>18 (8-28)</td>
<td>0.11</td>
<td>21 (11-31)</td>
<td>11 (0-28)</td>
<td>0.44</td>
<td>13 (4-22)</td>
<td>6 (0-12)</td>
<td>18 (3-33)</td>
<td>0.19</td>
</tr>
<tr>
<td>Arterial events [N (%)]</td>
<td></td>
</tr>
<tr>
<td>- Myocardial infarction</td>
<td>3 (1.8)</td>
<td>1 (0.8)</td>
<td>2 (3.9)</td>
<td>0.22</td>
<td>2 (6.3)</td>
<td>0 (0)</td>
<td>0.52</td>
<td>0 (0)</td>
<td>2 (5.4)</td>
<td>1 (2.4)</td>
<td>0.10</td>
</tr>
<tr>
<td>- Stroke</td>
<td>1 (0.6)</td>
<td>0 (0)</td>
<td>1 (2)</td>
<td>0.30</td>
<td>1 (3.1)</td>
<td>0 (0)</td>
<td>0.99</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (2.4)</td>
<td>0.19</td>
</tr>
<tr>
<td>- Limb ischaemia</td>
<td>6 (3.6)</td>
<td>4 (3.4)</td>
<td>2 (3.9)</td>
<td>0.99</td>
<td>1 (3.1)</td>
<td>1 (5.3)</td>
<td>0.99</td>
<td>4 (4.4)</td>
<td>0 (0)</td>
<td>2 (4.8)</td>
<td>0.42</td>
</tr>
<tr>
<td>- Intestinal ischaemia</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>-</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>-</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>-</td>
</tr>
<tr>
<td>Total patients with arterial event</td>
<td>10 (5.9)</td>
<td>5 (4.2)</td>
<td>5 (9.8)</td>
<td>0.17</td>
<td>4 (12.5)</td>
<td>1 (5.3)</td>
<td>0.64</td>
<td>4 (4.4)</td>
<td>2 (5.4)</td>
<td>4 (9.5)</td>
<td>0.51</td>
</tr>
<tr>
<td>Venous events [N (%)]</td>
<td></td>
</tr>
<tr>
<td>- Isolated spontaneous DVT</td>
<td>17 (10.1)</td>
<td>6 (5.1)</td>
<td>11 (21.6)</td>
<td>0.004</td>
<td>8 (25)</td>
<td>3 (15.8)</td>
<td>0.50</td>
<td>6 (6.7)</td>
<td>3 (8.1)</td>
<td>8 (19)</td>
<td>0.08</td>
</tr>
<tr>
<td>- Isolated PVT</td>
<td>15 (8.9)</td>
<td>8 (6.8)</td>
<td>7 (13.7)</td>
<td>0.15</td>
<td>4 (12.5)</td>
<td>3 (15.8)</td>
<td>0.99</td>
<td>4 (4.4)</td>
<td>5 (13.5)</td>
<td>6 (14.3)</td>
<td>0.096</td>
</tr>
<tr>
<td>- DVT+ PVT</td>
<td>8 (4.7)</td>
<td>6 (5.1)</td>
<td>2 (3.9)</td>
<td>0.99</td>
<td>1 (3.1)</td>
<td>1 (5.3)</td>
<td>0.99</td>
<td>6 (6.7)</td>
<td>0 (0)</td>
<td>2 (4.8)</td>
<td>0.27</td>
</tr>
<tr>
<td>- Catheter-related DVT</td>
<td>8 (4.7)</td>
<td>3 (2.5)</td>
<td>5 (9.8)</td>
<td>0.055</td>
<td>4 (12.5)</td>
<td>1 (5.3)</td>
<td>0.64</td>
<td>4 (4.4)</td>
<td>1 (2.7)</td>
<td>3 (7.1)</td>
<td>0.64</td>
</tr>
<tr>
<td>Total patients with venous events</td>
<td>43 (25.4)</td>
<td>22 (18.6)</td>
<td>21 (48.8)</td>
<td>0.004</td>
<td>13 (40.6)</td>
<td>8 (42.1)</td>
<td>0.99</td>
<td>18 (20)</td>
<td>8 (21.6)</td>
<td>17 (40.5)</td>
<td>0.035</td>
</tr>
<tr>
<td>Arterial and venous events [N (%)]</td>
<td></td>
</tr>
<tr>
<td>- Myocardial infarction + DVT/PVT</td>
<td>1 (0.6)</td>
<td>0 (0)</td>
<td>1 (2)</td>
<td>0.3</td>
<td>1 (3.1)</td>
<td>0 (0)</td>
<td>0.99</td>
<td>0 (0)</td>
<td>1 (2.7)</td>
<td>0 (0)</td>
<td>0.17</td>
</tr>
<tr>
<td>- Stroke + DVT/PVT</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>-</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>-</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>-</td>
</tr>
<tr>
<td>- Limb ischaemia + DVT/PVT</td>
<td>3 (1.8)</td>
<td>2 (1.7)</td>
<td>1 (2)</td>
<td>0.99</td>
<td>0 (0)</td>
<td>1 (5.3)</td>
<td>0.37</td>
<td>2 (2.2)</td>
<td>0 (0)</td>
<td>1 (2.4)</td>
<td>0.65</td>
</tr>
<tr>
<td>Total patients with arterial and venous events</td>
<td>4 (2.4)</td>
<td>2 (1.7)</td>
<td>2 (3.9)</td>
<td>0.58</td>
<td>1 (3.1)</td>
<td>1 (5.3)</td>
<td>0.99</td>
<td>2 (2.2)</td>
<td>1 (2.7)</td>
<td>1 (2.4)</td>
<td>0.99</td>
</tr>
</tbody>
</table>

DVT: Deep vein thrombosis; PVT: Pulmonary vein thrombosis
Figure 2

A

Risk of adverse clinical outcome (ICU/death)

B

Overall and ICU free survival (%)