Ascorbic acid attenuates activation and cytokine production in sepsis-like monocytes

Tobias Schmidt1,2, Robin Kahn, M.D., Ph.D.1,2, Fredrik Kahn, M.D., Ph.D.3*

Author affiliations

1Department of Clinical Sciences Lund, division of Pediatrics, Lund University, Lund, Sweden

2 Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden

3Department of Clinical Sciences Lund, division of Infection Medicine, Lund University, Lund, Sweden

Address for reprints

Fredrik Kahn, BMC, B14, Division of Infection Medicine, Lund University, 221 84 Lund, Sweden

Corresponding author

*Fredrik Kahn, fredrik.kahn@med.lu.se, BMC, B14 Division of Infection Medicine, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden

Conflicts of Interest and Source Funding

The authors have no conflicts of interest to declare. Robin Kahn is currently receiving grants from the Swedish Rheumatism Association, Greta and Johan Kock’s Foundation, the Anna-Greta Crafoord Foundation, the Crafoord Foundation, the Swedish Medical Society, Alfred Österlunds Foundation, The Knut and Alice Wallenberg foundation, the Medical Faculty at Lund University and Region Skåne. Fredrik Kahn is currently receiving grants from the Crafoord Foundation, Alfred Österlunds Foundation, the Swedish Research council, the Medical Faculty at Lund University and Region Skåne.

Key words

Monocytes, Sepsis, Inflammation, Ascorbic Acid, Cytokines, Surface Markers

Word count: 1493
Objective

To investigate the effects of high dose ascorbic acid (AA) on monocyte polarization and cytokine production *in vitro*

Design

Experimental *in vitro* study of cells from healthy subjects and patients with sepsis

Setting

University research laboratory and academic hospital

Subjects

Six healthy controls and three patients with sepsis

Interventions

Monocytes were isolated from whole blood of healthy donors (n=6) and polarized *in vitro* for 48hrs using LPS or LTA. Polarization was confirmed by surface marker expression using flow cytometry. As a comparison, monocytes were also isolated from septic patients (n=3) and analyzed for polarization markers. The effect of AA on monocyte polarization was evaluated. As a functional assay, AA-treated monocytes were analyzed for cytokine production of TNF and IL-8 by intracellular staining and flow cytometry following activation with LPS or LTA.

Measurements and Main Results

Both LPS and LTA induced polarization in healthy monocytes *in vitro*, with increased expression of both pro- (CD40 and PDL1, p<0.05) and anti-inflammatory (CD16 and CD163, p<0.05) polarization markers, with non-significant effects on CD86 and CD206. This pattern resembled, at least partly, that of monocytes from septic patients. Treatment with AA
significantly inhibited the upregulation of surface expression of CD16 and CD163 (p<0.05) in a dose dependent manner, but not CD40 or PDL-1. Finally, AA attenuated LPS or LTA-induced cytokine production of IL-8 and TNF in a dose-dependent manner (both p<0.05).

Conclusions

AA inhibits upregulation of anti-, but not pro-inflammatory related markers in LPS or LTA polarized monocytes. Additionally, AA attenuates cytokine production from *in vitro* polarized monocytes, displaying functional involvement. This study provides important insight into the immunological effects of high dose AA on monocytes, and potential implications in sepsis.
INTRODUCTION

Sepsis occurs due to a dysregulated immune response to infection. Current treatments include anti-infective therapy and supportive care, but no treatment targeting the dysregulated immune system is in clinical use. High dose ascorbic acid (AA)/vitamin C has emerged as a potential treatment and has showed early promising results(1, 2). However, recent randomized controlled studies have failed to demonstrate a general benefit of AA treatment(3). Nonetheless, sepsis patients have low levels of AA and AA treatment is speculated to benefit multiple systems, e.g. the circulatory system(1).

Yet, few studies have addressed the effects of AA on the immune response in sepsis. Monocytes are immune cells with important roles, such as cytokine production, antigen presentation and phagocytosis. In sepsis, monocytes are highly activated, or polarized, expressing markers related to scavenging (CD163), phagocytosis (CD16) and antigen presentation (CD40, PDL-1)(4-6). Yet, it is important to note that conflicting data exists regarding surface markers in sepsis, likely reflect timing and subgroups of sepsis. Functionally, septic monocytes display a state of exhaustion with immunosuppressive features, increased ROS generation and intact or increased phagocytosis(7).

To the best of our knowledge, there has been no studies investigating the effects of AA on monocyte polarization. Here, we aimed to investigate the effects of high dose AA on monocyte polarization and function on in vitro polarized monocytes within the setting of sepsis.
MATERIALS AND METHODS

Patients

Healthy controls (n=6) as well as patients with blood-culture confirmed sepsis (n=3) were included in this study. Ethical approval was obtained from the Swedish Ethical Review Authority (2019-05146). The clinical characteristics of the septic patients have previously been described in Kahn et al, where they served as controls(8). Materials and methods are described in Supplemental Digital Content 1.

RESULTS

Polarization of monocytes with LPS or LTA induced expression of several surface markers observed in sepsis patients

First, we sought to explore the influence of two bacterial components, lipopolysaccharide (LPS) and lipoteichoic acid (LTA), on monocyte polarization. Stimulation of healthy monocytes (n=6) resulted in significant upregulation of CD16, CD163, CD40 and PDL1 (p<0.05) upon 48hrs of LPS stimulation (Figure 1A). Histograms of a representative sample can be found in Supplemental Digital Content 2B. CD16, CD163 and PDL1 were upregulated following polarization with LTA (p<0.05) (Figure 1B). Expression of CD86 and CD206 was not significantly altered by LPS or LTA stimulation. However, there was a trend for elevated CD206 expression in LPS polarized monocytes. Thus, polarization could be induced by LPS or LTA.
Next, we sought to confirm previously described changes in monocyte surface marker expression. Monocytes from whole blood of septic patients (n=3) tended to have increased expression of both traditional anti- and pro-inflammatory markers such as CD16, CD163, CD40 and PDL1, and lower expression of CD86 and CD206 compared to healthy controls (n=3) (Figure 1C). Hence, the expression pattern of the monocytes from the septic patients is comparable, at least partly, to LPS or LTA polarized monocytes in figure 1A.

Ascorbic acid inhibits upregulation of CD16 and CD163 in LPS or LTA polarized monocytes in vitro

To investigate if ascorbic acid (AA) could modulate monocyte polarization, monocytes were stimulated with LPS or LTA, with and without supplemented AA. AA at 125µg/ml attenuated the expression of CD16 and CD163 in LPS or LTA polarized monocytes to that of the controls (Figure 1A-B) and this inhibition was dose dependent (Supplemental Digital Content 4A-B). In LPS polarized monocytes, AA slightly reduced the expression of PDL-1, but not CD40 (Figure 1A). Changes in the expression of PDL-1 and CD40 in LTA polarized monocytes were minor (Figure 1B). AA did not have a significant effect on the markers in unstimulated monocytes (Supplemental Digital Content 5). Thus, AA attenuates the expression of CD16 and CD163, but not CD40 and PDL-1, in LPS and LTA polarized monocytes.

Next, we investigated if the effects of AA are due to a downregulatory or inhibitory mechanism. Addition of AA to monocytes 24hrs after LPS or LTA stimulation, instead of at the start of culture, did not result in altered expression of CD16 and CD163 compared to monocytes not receiving AA (Supplemental Digital Content 6A-B). Thus, AA inhibits upregulation-, rather than downregulates, the observed surface markers.
Ascorbic acid attenuates LPS or LTA induced cytokine production in healthy monocytes in a dose dependent manner

To investigate whether AA affected monocyte function, we assessed cytokine production of IL-8 and TNF in healthy monocytes (n=6). Both LPS and LTA induced production of IL-8 and TNF (Figure 2A-B) which was attenuated by AA (p<0.05) (Figure 2B-C). This effect was also dose dependent (Figure 2D). Thus, AA affects monocytes on the functional level and inhibits production of IL-8 and TNF.

DISCUSSION

In this study, we show that ascorbic acid (AA) attenuates lipopolysaccharide (LPS) and lipoteichoic acid (LTA) induced expression of CD16 and CD163, but not of CD40 and PDL-1, in monocytes from healthy controls. Furthermore, we show that AA influences monocyte function by inhibiting LPS and LTA induced production of IL-8 and TNF. Thus, monocytes polarized by bacterial components are functionally affected by AA, which provide important insight into the mechanisms of AA as a treatment in sepsis.

AA has been suggested as treatment for multiple diseases, ranging from cancer to sepsis. Patients with sepsis display low levels of AA(1). Given the role of AA in the immune system, the evidence of ROS dysfunction in sepsis and a retrospective before-after study showing a major reduction in mortality within septic patients treated with high dose AA, a massive interest was sparked to use AA as a treatment for sepsis(2). However, recently, several randomized control trials failed to demonstrate a general beneficial effect of AA in sepsis(3). Although, these studies did not thoroughly distinguish among different types of sepsis, pathogens or immunological states. Hence, AA might have potential in specific windows-of-
time or in certain subgroups. It could be speculated that patients suffering from a more severe immune dysregulation could represent a group for AA treatment. Our observation that AA inhibits upregulation-, rather than downregulates the observed polarization markers is important in the aspect of future study designs. This data highlights the role of timing of AA treatment, and could be a potential factor contributing to the lack of benefit in the conducted studies.

Septic monocytes have been shown to be activated as evidenced by increased expression of polarization markers such as CD16, CD163, PDL-1 and CD40, amongst others(4-6). However, results on expression of polarization markers are conflicting, likely reflecting timing and different phenotypes amongst patients. In this study, LPS or LTA polarized monocytes treated with AA displayed reduced expression of CD16 and CD163 in a dose dependent manner, but not of CD40 and PDL-1. Traditionally, CD16 and CD163 are markers of anti-inflammation, or M2, polarization and are upregulated by various stimulus in vitro, such as IL-10. These monocytes, or macrophages, have traditionally been termed suppressive. However, it is important to note the complexity of polarization. CD163⁺ monocytes produce more pro-inflammatory cytokines than CD163⁻ monocytes in sepsis(7). In addition, monocytes display a suppressive and exhausted phenotype and when exposed to LPS they respond poorly with production of pro-inflammatory cytokines, as opposed to monocytes from patients with hyperinflammatory COVID-19(8). Thus, these data suggest that AA might not target only the pro-inflammatory aspect (inflammatory cytokine production) but also the immunosuppressive phenotype (CD16 and CD163) of monocytes in sepsis.
Evidence exists for the potential role of AA in the immune system during sepsis. High dose AA has been shown to inhibit neutrophil NETosis, and mice lacking AA synthesis produced more NETs than control mice in a sepsis model(9). Thus, we sought to determine whether AA affects other immune cells, i.e. monocytes. At the functional level, we found that both LPS and LTA induced IL-8 and TNF production, which was attenuated by AA in a dose dependent manner. Using a similar method, a previous study found that AA attenuates LPS induced production of IL-6 and TNF, but not IL-8 in monocytes in whole blood(10). The use of whole blood, rather than purified monocytes, could be a major contribute to the discrepancy between our results. Nevertheless, we further confirm that AA influences monocytes function by inhibiting pro-inflammatory cytokine production.

The use of LPS and LTA polarized monocytes as opposed to monocytes from patients with sepsis constitutes a limitation in this study. Even though LPS and LTA polarized monocytes display similarities with septic monocytes, the use of these cells would be important to explore in future studies. Furthermore, we could demonstrate that AA attenuates cytokine production, but to fully characterize the effects of AA on monocyte function more experiments must be made, studying other aspects of monocyte function, such as phagocytosis and ROS production.

CONCLUSIONS

In conclusion, we show that high concentrations of AA attenuate LPS or LTA induced surface expression of CD16 and CD163, but not CD40 and PDL-1. Furthermore, AA inhibits LPS or LTA induced cytokine production of TNF and IL-8. These data provide an important insight into the effect of AA on monocytes in relation to sepsis.
ACKNOWLEDGMENTS

Dr. Anki Mossberg and Dr. Birgitta Gullstrand are humbly acknowledged for their aid in handling of patient samples. We thank Sabine Arve-Butler, Olivia Aherne, Anki Mossberg and Louise Thelaus for their critical input on the manuscript.

REFERENCES

FIGURE LEGENDS

Figure 1 Ascorbic acid inhibits upregulation of CD16 and CD163 in LPS or LTA polarized monocytes in vitro (A-B) Monocytes were isolated from healthy controls (n=6) and polarized for 48hrs with (A) LPS or (B) LTA or cultured in medium alone (ctrl) before analysis of surface markers by flow cytometry. In addition, polarized monocytes were treated or not with 125µg/ml of AA. (C) Monocytes in whole blood were analyzed for expression of six surface markers in n=3 septic patients and n=3 controls. Line at median. Data is presented as median fluorescence intensity (MFI). Statistics were performed using the Wilcoxon matched-pair signed rank test. *p<0.05.

*LPS – Lipopolysaccharide, LTA – lipoteichoic acid, AA – Ascorbic acid

Figure 2 Ascorbic acid attenuated LPS or LTA induced cytokine production Monocytes were isolated from healthy controls (n=6) and treated with brefeldin A followed by LPS or LTA, with or without AA treatment. The cells were cultured for 5hrs and analyzed for intracellular accumulation of TNF or IL-8. Both (A) LPS and (B) LTA significantly induced production of TNF and IL-8 in monocytes, which was attenuated by treatment with AA. (C) Shows representative histograms of one subject from B. (D) The effect of AA showed a dose dependent pattern on TNF and IL-8 production, tested in n=3 healthy controls using LPS.
Statistics were performed using the Wilcoxon matched-pair signed rank test. *p<0.05.

LPS – Lipopolysaccharide, LTA – lipoteichoic acid, AA – Ascorbic acid

Supplemental Digital Content 1 Materials And Methods Provides the performed methods and measurements of this study.

Supplemental Digital Content 2 Gating strategy and representative histograms (A) shows the gating strategy of a septic patient applied to analyze the expression of surface markers in monocytes in whole blood. **(B)** Shows representative histograms of the six analyzed surface markers in unstained -, control- and LPS stimulated monocytes following 48hrs of culture.

Supplemental Digital Content 3 The effect of Ascorbic acid on cell viability and pH (A)
Monocytes were isolated from healthy controls (n=3) and polarized with LPS and treated with AA at different concentrations for 48hrs. The control well received no AA treatment. Viability of monocytes was assessed in a dose dependent manner and analyzed using annexin V and propidium iodine (n=3) **(B)** AA at 125µg/ml slightly reduced the pH from 7.6 to 7.2 in medium. Restoration of pH was performed using NaHCO₃ as a buffer. In parallel, HCl was used to lower to pH of medium to 7.2 to mimic the effect of AA on pH. Monocytes were cultured for 48hrs and analyzed for expression of six activation markers by flow cytometry. Line at median. *LPS – Lipopolysaccharide, AA – Ascorbic acid*

Supplemental Digital Content 4 The effects of AA are dose dependent
Monocytes were isolated from healthy controls (n=3) and polarized with **(A)** LPS or **(B)** LTA and treated with AA at different concentrations for 48hrs. The control well received no AA treatment.
Expression of CD16 and CD163 following treatment with AA and LPS in n=3 healthy controls or (B) LTA. Data is presented as median fluorescence intensity (MFI).

LPS – Lipopolysaccharide, LTA – lipoteichoic acid, AA – Ascorbic acid

Sup Supplemental Digital Content 5 The effect of AA on healthy unpolarized monocytes
(A) Monocytes were isolated from healthy controls (n=6) and treated with AA or not for 48hrs before analysis by flow cytometry for expression of six activation markers. Statistics were performed using the Wilcoxon matched-pair signed rank test.

Supplemental Digital Content 6 AA inhibits upregulation, rather than downregulates, the surface markers induced by LPS or LTA Monocytes were isolated from healthy controls (n=3) and polarized for a total of 48hrs with (A) LPS or (B) LTA. At the time of polarization (t0) or after 24hrs of culture (t24) AA was added at 125µg/ml. Data is presented as median fluorescence intensity (MFI). LPS – Lipopolysaccharide, LTA – lipoteichoic acid, AA – Ascorbic acid