Mental health in the UK Biobank: a roadmap to self-report measures and neuroimaging correlates

Rosie Dutt*1, Kayla Hannon*1, Ty Easley1, Joseph Griffis1, Wei Zhang1, Janine Bijsterbosch1

*Joint first authors

1. Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.

Corresponding author: Janine Bijsterbosch, janine.bijsterbosch@wustl.edu

Keywords: Depression; Mental Health; Brain Correlates; Test-Retest; Replication; UK Biobank
Abstract

The UK Biobank (UKB) is a highly promising dataset for brain biomarker research into population mental health due to its unprecedented sample size and extensive phenotypic, imaging, and biological measurements. In this study, we aimed to provide a shared foundation for UKB neuroimaging research into mental health with a focus on anxiety and depression. We compared UKB self-report measures and revealed important timing effects between scan acquisition and separate online acquisition of some mental health measures. To overcome these timing effects, we introduced and validated the Recent Depressive Symptoms (RDS) score which we recommend for state-dependent and longitudinal research in the UKB. We furthermore tested univariate and multivariate associations between brain imaging derived phenotypes (IDPs) and mental health. Our results showed a significant multivariate relationship between IDPs and mental health, which was highly replicable. Conversely, effect sizes for individual IDPs were very small and contributions of individual IDPs to the multivariate result did not replicate. Test-retest reliability of IDPs was stronger for measures of brain structure than for measures of brain function. Taken together, these results provide benchmarks and guidelines for future UKB research into brain biomarkers of mental health.
1. Introduction

Over the years there have been a multitude of neuroimaging studies that aim to investigate alterations in the brain in relation to affect-based mental health (e.g., anxiety and depression). The Major Depressive Disorder (MDD) literature reports structural changes in the cortico-limbic network [Klauser et al., 2015], insula and hippocampus [Stratmann et al., 2014], as well as functional changes in the Default Mode Network (DMN) [Tozzi et al., 2021; Yu et al., 2019], medial temporal gyrus, and caudate [Ma et al., 2012]. In Generalized Anxiety Disorder (GAD), similar functional changes are seen in the DMN [Andreescu et al., 2011] and ventromedial prefrontal cortex [Cha et al., 2014], as well as structural changes in the DMN [Wolf et al., 2016] and amygdala [He et al., 2016]. One limitation of these studies is their small sample sizes, which has likely contributed to inconsistent and sometimes contradictory findings across different studies. For example, some studies report greater functional connectivity in the DMN [Greicius et al., 2007; Sheline et al., 2010] while others report lesser functional connectivity in the network [Bluhm et al., 2009; Tozzi et al., 2021; Yan et al., 2019]. Importantly, studies with low statistical power may not reflect true effects and may result in inflated brain-behavior correlations [Button et al., 2013; Marek et al., 2020]. Furthermore, sampling variability is higher with a low number of subjects and this can threaten replicability [Dinga et al., 2019; Poldrack et al., 2017]. Larger sample sizes are therefore needed to obtain reliable insights into the neural correlates of mental health.

One option to achieve larger sample sizes is to conduct meta-analyses. Meta-analyses use results from prior studies as their input and employ quantitative methods to pool data across studies and test for consensus [Müller et al., 2018]. A meta-analysis on resting-state functional connectivity in MDD showed hypo-connectivity in fronto-parietal and salience networks and hyper-connectivity in the DMN [Kaiser et al., 2015]. Another meta-analysis showed that there are common grey-matter volume changes in MDD which are also seen in bipolar disorder [Wise et al., 2017b]. In GAD, meta-analyses have also been able to confirm consistent dysregulation of affective control related to numerous networks, which provides support for an integrated model of brain network changes [Xu et al., 2019]. Whilst these meta-analyses aid to establish consensus on brain correlates of mental health [Wager et al., 2007], they can be limited in their scope. This is because the input studies surveyed in meta analyses often adopt narrow inclusion and exclusion criteria for the patient sample, which limits cross-diagnostic mental health research. Additionally, due to the lack of availability of whole brain statistical result images from prior studies, coordinate-based meta-analyses are often undertaken which are limited in their spatial precision [Müller et al., 2018]. These inherent limitations of meta-analyses may explain why disagreement persists within even meta-analytical work, with a recent study showing hyp- (rather than hyper-) connectivity in the core DMN in patients with depression [Tozzi et al., 2021].

Consequently, in recent years there has been a move to accrue larger neuroimaging datasets such as the Young Adult and Lifespan Human Connectome Projects (HCP) [Harms et al., 2018; Van Essen et al., 2013], Connectomes Related to Human Disease studies (CRHD) [Tozzi et al., 2020], UK Biobank (UKB) [Miller et al., 2016; Sudlow et al., 2015], Enhancing Neuro Imaging
Genetics through Meta-Analysis ENIGMA) [Schmaal et al., 2017], and Adolescent Brain Cognitive Development study (ABCD) [Casey et al., 2018]. The increased statistical power afforded by these datasets enables studies to approximate the true effect [Marek et al., 2020]. Currently, the UKB is the largest neuroimaging dataset, encompassing data from extensive questionnaires, physical and cognitive measures, and biological samples (including genotyping) in addition to multimodal neuroimaging scans [Sudlow et al., 2015]. In this prospective epidemiological study, a cohort of 500,000 participants were recruited, of which 100,000 subjects will take part in one round of imaging, and 10,000 of those subjects will undergo a further second round of scanning [Sudlow et al., 2015]. Health outcomes for all participants will be tracked over future years until participants’ decease, including full primary health and hospital records. Therefore, the UKB offers a valuable resource to study mental health and other disorders. The goal of our study is to establish a foundation for future mental health biomarker research in the UKB.

The UK Biobank includes multiple rich self-report measures of mental health. However, the organization and abundance of this information can make it somewhat challenging for researchers to navigate. For data pertaining to mental health, there are three sources within the UK Biobank. The first are assessment center questions (https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100060) which participants complete via a touch screen on the day they were scanned. The second is a separately administered online mental health questionnaire (https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=136), which is completed by a subset of UKB participants at a time independent from the scanning date (mean absolute number of days between scan 1 and online questionnaire completion: 359, range: -639 to +964 days). The third are the health records available in the UKB which encompass the date of the first experience of specific ICD-10 diagnoses obtained from primary care (https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=3000) and hospital inpatient data (https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=2000). In this study, we tabulate and compare different mental health measures available in the UKB, with a focus on self-reported symptom scores from the assessment center information and online questionnaire. We test their relationship with brain measures, thereby providing a benchmark for using UKB mental health variables in future research.

In this paper we conduct a multi-modal population assessment of the brain correlates of mental health using the UKB imaging data intended to inform future biomarker research. Specifically, this study aims to achieve four key goals. Firstly, we aim to clearly tabulate the different self-report measures of mental health available in the UKB and discern the relationships between summary scores to enable future studies to make an informed decision on which measure is most appropriate to use. Secondly, we introduce a novel measure of Recent Depressive Symptoms (RDS) to enable longitudinal research into changes in depressive symptoms over time. Thirdly, we aim to establish realistic and robust univariate and multivariate effect sizes of commonly reported brain correlates of mental health based on population data. Lastly, we aim to determine the test-retest reliability of imaging variables alongside their effect size as both reliability and sensitivity are critical requirements for biomarker research. Large-scale imaging datasets such as the UKB play a critical role in the long-term goal of finding
brain biomarkers of mental health, and our hope is to provide a foundation that future studies can build on.

2. Methods

Dataset

Imaging data from 14,615 UKB participants were available at the time the study was performed. From this we selected multiple independent test cohorts (Fig. 1; Table 1). Subjects with a mean head motion greater than 0.2mm were removed resulting in the exclusion of 2,325 subjects. Subjects with any missing online questionnaire or scan 1 assessment center mental health data were also removed, resulting in the exclusion of additional 3,519 subjects (largely because the online questionnaire was only performed in a subset of UKB participants). From the remaining 8,771 subjects, we selected individuals who had undergone brain scans at two timepoints. These subjects make up the test-retest sample.

<table>
<thead>
<tr>
<th>Sample</th>
<th>N</th>
<th>Sex (n male)</th>
<th>Age (mean±SD)</th>
<th>Time between scans (mean absolute days±SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploratory</td>
<td>2426</td>
<td>814</td>
<td>60.72±7.22</td>
<td>N.A.</td>
</tr>
<tr>
<td>Confirmatory</td>
<td>2426</td>
<td>796</td>
<td>60.64±7.11</td>
<td>N.A.</td>
</tr>
<tr>
<td>Test-Retest</td>
<td>624</td>
<td>300</td>
<td>61.72±7.04</td>
<td>823.67±44.77</td>
</tr>
</tbody>
</table>

Table 1. Demographics for samples. SD = Standard Deviation.

Late onset depression (first episode at age 60+) is associated with different brain correlates (e.g., white matter hyperintensities) and different risk factors (e.g., vascular risk) compared with recurrent early onset depression (age of first episode before 60) [Salo et al., 2019]. Therefore, we assessed subjects for probable late-onset depression based on self-reported age at the first episode of depression (Data-field: 20433). Subjects who reported their first episode at 60 or older (N=226) were excluded.

The majority of individuals within the UKB cohort are expected to have no mental health conditions because it is a population sample. To ensure sufficient power to identify neural correlates of mental health, we wanted to reduce the expected over-representation of healthy individuals and ensure that our samples richly capture mental health variability. This was achieved by including equal numbers of participants with and without a history of mental health. From the UKB showcase we used: Seen doctor (GP) for nerves, anxiety, tension or depression (Data-field: 2090) to ensure our samples included an equal number of subjects who experienced mental health issues on at least one occasion, and those who have not. This data-field was chosen because it was not used in the calculation of summary measures. For each subject who had seen a GP (N=2,426) we paired a matched subject from those who had
never seen a GP (i.e., subject pairs were identically matched for sex and age, and minimal difference in head motion). Subsequently, half of the never seen GP subjects together with half of the seen GP subjects was randomly assigned to the exploratory sample, and the remaining halves were assigned to the confirmatory set to preserve the matched characteristics within each resulting sample. Hence, no subjects overlapped between the resulting exploratory sample.

Figure 1: UK Biobank subject inclusion chart.

Mental health measures

The set of self-report questions related to mental health included in the UKB were informed by standardized measures, but did not simply cover a list of previously validated scales. Table 2 summarizes different mental health measures available in the UKB. The questions included in the online questionnaire enable calculation of the Generalized Anxiety Disorder score (GAD-7) and Patient Health Questionnaire (PHQ-9) score [Davis et al., 2020]. Using the Assessment center information, the Eysenck Neuroticism score (N-12) can be calculated. Smith and colleagues used questions from the Assessment information to develop a binary measure of depression [Smith et al., 2013]. For the purposes of our study we adopted similar definitions to obtain a binary assignment of probable depression status, but we did not differentiate between single and recurrent episodes of depression. Depression status was set to 1 if subjects responded yes to variable IDs 4598 or 4631 (ever depressed | ever
unenthusiastic/disinterested), and reported a duration of at least 1 week to variable IDs 4609 or 5375 (depression | unenthusiasm/disinterest), and had seen either a GP or psychiatrist for nerves, anxiety, tension, depression (i.e., responded yes to variable IDs 2090 or 2100).

For our study, we developed a new measure of depression derived from the Assessment center information: Recent Depressive Symptoms (RDS-4), which aims to measure state-level depression on the day of scanning. Based on four self-report questions of depressive symptoms that measure depressed mood, disinterest, restlessness, and tiredness, the RDS-4 covers four different depression domains that are also considered in other measures such as the Hamilton and Montgomery–Asberg scales. The four questions ask about recent experiences of symptoms (past 2 weeks). The response options for the four questions are: not at all (1), several days (2), more than half the days (3), and nearly every day (4). The summed score across these four variables therefore has a range of 4-16. As questions were asked the day of the imaging scan, the RDS-4 provides a timely assessment of a subject's mental state, compared to the PHQ-9 which was undertaken at a different time point from the imaging scan. Moreover, the variables chosen for the RDS-4 correspond with the DSM-V diagnostic criteria for mental health, with the inclusion of the corresponding time window of a 2-week period.

<table>
<thead>
<tr>
<th>Scan day</th>
<th>Online</th>
<th>Range</th>
<th>Questions</th>
<th>Variable IDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHQ-9</td>
<td>✔</td>
<td>0-27</td>
<td>Little interest or pleasure in doing things</td>
<td>20514</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Feeling down, depressed, or hopeless</td>
<td>20510</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trouble sleeping</td>
<td>20517</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Feeling tired</td>
<td>20519</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Poor appetite or overeating</td>
<td>20511</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Feeling bad about yourself</td>
<td>20507</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trouble concentrating</td>
<td>20508</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Moving or speaking slowly or fidgety or restless</td>
<td>20518</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Thoughts that you would be better off dead</td>
<td>20513</td>
</tr>
<tr>
<td>RDS-4</td>
<td>✔</td>
<td>4-16</td>
<td>Frequency of depressed mood in last 2 weeks</td>
<td>2050</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Frequency of unenthusiasm / disinterest in last 2 weeks</td>
<td>2060</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Frequency of tenseness / restlessness in last 2 weeks</td>
<td>2070</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Frequency of tiredness / lethargy in last 2 weeks</td>
<td>2080</td>
</tr>
<tr>
<td>GAD-7</td>
<td>✔</td>
<td>0-21</td>
<td>Feeling nervous, anxious or on edge</td>
<td>20506</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Not being able to stop or control worrying</td>
<td>20509</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Worrying too much about different things</td>
<td>20520</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trouble relaxing</td>
<td>20515</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Being so restless that it is hard to sit still</td>
<td>20516</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Becoming easily annoyed or irritable</td>
<td>20505</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Feeling afraid as if something awful might happen</td>
<td>20512</td>
</tr>
<tr>
<td>N-12</td>
<td>✔</td>
<td>0-12</td>
<td>Mood swings</td>
<td>1920</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Miserableness</td>
<td>1930</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Irritability</td>
<td>1940</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sensitivity / hurt feelings</td>
<td>1950</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fed-up feelings</td>
<td>1960</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nervous feelings</td>
<td>1970</td>
</tr>
<tr>
<td>Probable depression status</td>
<td>0/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ever depressed</td>
<td>4598</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ever unenthusiastic/disinterested</td>
<td>4631</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration of longest period of depression</td>
<td>4609</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration of longest period of unenthusiastic/disinterest</td>
<td>5375</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seen Doctor (GP) for nerves, anxiety, tension, depression</td>
<td>2090</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seen psychiatrist for nerves, anxiety, tension, depression</td>
<td>2100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Measures of affect-based mental health available in the UK Biobank. PHQ-9 = Patient Health Questionnaire-9, RDS = Recent Depressive Symptoms, GAD-7 = General Anxiety Disorder-7, N-12 = Neuroticism-12.

Imaging acquisition

UKB structural modalities include: T1-weighted (T1), T2-weighted (T2), susceptibility-weighted MRI (swMRT); diffusion MRI (dMRT); and functional modalities: task-based fMRI (tfMRI) and resting-state fMRI (rsfMRT). MRI data were obtained using a Siemens Magnetom Skyra 3T scanner. For T1 structural scans, 3D MPRAGE acquisition was used to acquire 1mm isotropic resolution. For T2 scans fluid-attenuated inversion recovery (FLAIR) contrast was used with the 3D SPACE optimized readout providing a strong contrast for white matter hyperintensities. For swMRT, a 3D gradient echo acquisition was used (resolution: 0.8x0.8x3mm), obtaining two echo times (TE=9.4 and TE=20 ms). Diffusion data was acquired with b-values of 1000 and 2000 s/mm², at 2mm spatial resolution, with a factor 3 multiband acceleration and 50 distinct diffusion-encoding directions. Both tfMRI and rs-fMRI used identical acquisition parameters (spatial resolution= 2.4mm, TR= 0.735s, factor = 8 multiband accelerator). Task fMRI used Hariri faces/shapes “emotion” task as employed in the HCP [Barch et al., 2013; Hariri et al., 2002], with a shorter total length and reduced repeats of the total stimulus block. For further information on UKB imaging, please refer to [Miller et al., 2016].

Imaging derived phenotypes

In addition to raw and processed imaging data, Image Derived Phenotypes (IDPs) are available for download. IDPs are derived from calculations that combine many images and/or voxels to produce a scalar quantity from the processed imaging data [Miller et al., 2016]. Examples of IDPs include regional volumes from structural MRI and ‘edges’ from resting state functional MRI (i.e., connectivity between a pair of networks).

The IDPs included in this paper are summarized in Table 3, and further information can be found in [Miller et al., 2016] as well as the UKB showcase brain imaging documentation resource (https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/brain_mri.pdf). Briefly,
Resting state IDPs were obtained using Independent Components Analysis performed at two different dimensionalities (25 and 100), which resulted in 21 and 55 signal networks, respectively. Subject-specific BOLD time series for each network were calculated using dual regression [Nickerson et al., 2017], and the amplitude for each network (temporal standard deviation) and functional connectivity between pairs of networks (full or partial correlation coefficients) were calculated. From T1-weighted images, volumetric gray matter volumes were obtained with FSL FIRST and FAST, and cortical area and thickness were calculated with FreeSurfer. Total volume of white matter hyperintensities was estimated based on T1-weighted and T2-flair images using FSL’s BIANCA algorithm [Griffanti et al., 2016]. From the diffusion data, weighted mean fractional anisotropy (FA) and mean diffusivity (MD) were obtained using FSL's DTIFIT tool. Task fMRI IDPs reflect summary measures of activation (the median and 90th percentile for both the percent signal change and the z-statistic) in regions selected from the group-level activation map. Susceptibility weighted IDPs were generated from the signal decay times predicted from the magnitude images at the two TEs such that the IDPs equate to the median signal decay times.

<table>
<thead>
<tr>
<th></th>
<th># IDPs</th>
<th>UKB ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resting state</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3,466</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>25754</td>
<td></td>
<td>fMRI network amplitudes from 21 signal components</td>
</tr>
<tr>
<td>55</td>
<td>25755</td>
<td></td>
<td>fMRI network amplitudes from 55 signal components</td>
</tr>
<tr>
<td>210</td>
<td>25750</td>
<td></td>
<td>Pairwise full correlation edges between 21 components</td>
</tr>
<tr>
<td>210</td>
<td>25752</td>
<td></td>
<td>Pairwise partial correlation edges between 21 components</td>
</tr>
<tr>
<td>1,485</td>
<td>25751</td>
<td></td>
<td>Pairwise full correlation edges between 55 components</td>
</tr>
<tr>
<td>1,485</td>
<td>25753</td>
<td></td>
<td>Pairwise partial correlation edges between 55 components</td>
</tr>
<tr>
<td>Non-rest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>363</td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>1101</td>
<td></td>
<td>FAST gray matter volumes</td>
</tr>
<tr>
<td>14</td>
<td>1102</td>
<td></td>
<td>FIRST gray matter volumes</td>
</tr>
<tr>
<td>62</td>
<td>196</td>
<td></td>
<td>Cortical surface area from FreeSurfer DKT atlas</td>
</tr>
<tr>
<td>62</td>
<td>196</td>
<td></td>
<td>Cortical thickness from FreeSurfer DKT atlas</td>
</tr>
<tr>
<td>1</td>
<td>25781</td>
<td></td>
<td>Total volume of white matter hyperintensity</td>
</tr>
<tr>
<td>48</td>
<td>107</td>
<td></td>
<td>Weighted-mean FA</td>
</tr>
<tr>
<td>48</td>
<td>107</td>
<td></td>
<td>Weighted-mean MD</td>
</tr>
<tr>
<td>16</td>
<td>106</td>
<td></td>
<td>Task fMRI median + 90th percentile of BOLD effect and z</td>
</tr>
<tr>
<td>14</td>
<td>109</td>
<td></td>
<td>Median T2-star from susceptibility weighted imaging</td>
</tr>
</tbody>
</table>

Table 3: Full set of IDPs considered for canonical correlation analysis. IDP = Imaging Derived Phenotype, UKB = UK Biobank.

Confound variables

All analyses were corrected for the ‘simple’ set of confounds described in [Alfaro-Almagro et al., 2021], namely: scanning site, age, age squared, sex, age * sex, head size, head motion in resting fMRI and in task fMRI scans, date, and date squared. Our sample included data from two scanning sites, resulting in a total set of 19 confound regressors (1 regressor for scanning site and 2 sets of regressors to separately model the other confound types per scanning site). This confound set was previously shown to explain 4.4% of variance in UKB imaging variables on average, and captured the most important sources of confound variation [Alfaro-Almagro et al., 2021].
Correlations amongst mental health variables

To characterize the degree of overlapping information between mental health measures, Spearman rank correlations were computed between all measures of mental health using data from the exploratory sample (N=2,426).

Data used to compute RDS-4 and N-12 were collected at the scan date (assessment center information), whereas GAD-7 and PHQ-9 were computed from data obtained from the online questionnaire. The absolute number of days elapsed between the two data collections ranged from 0 to 964 days. To investigate the effects of measurement latency on mental health measure correlation, Spearman rank correlations between the RDS-4 and PHQ-9 (both measures of depression) were computed as a function of elapsed time between measurement. Specifically, subjects were binned into subsets based on the time elapsed between the completion of assessment center information and online questionnaires. Short- and long-term cutoffs were chosen to bin survey data into three time-frames. Since the questions measure experiences in the last two weeks, subjects who completed the RDS-4 and PHQ-9 within 14 days of one another constituted the “short” time-frame. Conversely, subjects who completed the measures more than 93 days (3 months) apart constituted the “long” time-frame. The 3-month cut-off was determined based on the median duration of a depressive episode [Spijker et al., 2002]. Hence, the short-term time-frame includes subjects whose surveys were completed between 0 and 14 days apart; the medium-term time-frame includes surveys between 15 and 92 days apart; and the long-term time-frame is composed of subjects whose surveys were taken 93 or more days apart. The significance of difference between pairs of correlations from different time-frames was computed using the Fisher transformation:

\[
p = \frac{1}{2} \left[1 + \text{erf}(z) \right]
\]

\[
z = \frac{\tanh^{-1}(\rho_1) - \tanh^{-1}(\rho_2)}{\sqrt{\frac{2}{n_1-3} + \frac{2}{n_2-3}}},
\]

Where \(\text{erf}(z)\) is the standard error function.

To test whether self-report measures differed significantly based on probable depression status, a two-sample Kolmogorov-Smirnov test was performed to ascertain whether subjects with a positive depression status had different distributions of depression scores than subjects with no depression status.
Mapping between mental health variables

To gain insights into how the different measures of mental health included in the UKB relate to each other, we used equipercentile linking in the exploratory sample. Here, the stepwise percentiles for each measure were calculated, and for each score in one measure the equivalent percentile rank in a different measure was mapped [Kolen and Brennan, 2014].

We further calculated the Cronbach alpha for the newly proposed RDS-4 score to measure internal consistency in the exploratory sample. Lastly, we estimated test-retest reliability of RDS-4 based on the between-subject score correlation between scan 1 and scan 2 (available in N=555 subjects from the test-retest sample).

Exploratory brain-mental health analysis

We used Canonical Correlation Analysis (CCA) as a data-driven approach to identify joint multivariate relationships between mental health measures and brain imaging variables [Hotelling, 1936]. Following nuisance regression to remove variance explained by nuisance regressors, dimensionality reduction was performed separately for resting state and non-rest IDPs (Table 3) using eigen-decomposition of the subject-by-subject covariance matrix, and the top eigenvectors explaining at least 50% of variance were retained. The non-rest IDP matrix included a small number of missing values, which were excluded for the nuisance regression and generation of the covariance matrix. The combined set of eigenvectors were entered into the CCA against 5 mental health input variables corresponding to summary scores from GAD-7, N-12, PHQ-9, RDS-4 and probable depression status (residuals after regressing out confound variables). CCA was performed on N=2,426 subjects in the exploratory sample. Permutation testing with 2000 permutations was used to obtain p-values for the resulting canonical correlations. This is especially important for CCA because the canonical correlation is explicitly maximized and therefore it is important to compare the canonical correlation to the empirical null distribution obtained with permutation testing (which does not center around zero but shows relatively high null correlations) [Smith et al., 2015].

The U and V canonical subject scores from the strongest CCA result were averaged within each subject to obtain an unbiased CCA summary subject score (UV). Next, post-hoc correlations between UV and all input variables were performed to investigate how much variance the CCA result explained in each univariate input variable. IDPs that survive Bonferroni correction for multiple comparisons (i.e., p-value below 0.05/(3,466+363)=1.3*10^{-5}, where 3,466 is the number of resting state IDPs and 363 is the number of non-rest IDPs; Table 3) were selected for subsequent tests of effect size and test-retest reliability in the confirmatory sample.

The multivariate CCA results were also replicated in the independent confirmatory sample by projecting the resting state and non-rest IDPs onto the same eigenvector subspace (i.e., not repeating the eigen decomposition, but using the weights from the exploratory sample), multiplying brain eigenvectors as well as mental health scores by their respective canonical coefficients (estimated from the exploratory sample), and calculating the correlation between the resulting U and V as well as performing post-hoc correlations as described above.
Confirmatory analysis of effect size

The independent confirmatory sample (N=2,426) was used to test univariate effect sizes of selected brain variables from CCA analysis (i.e., significant IDPs after Bonferroni correction). Specifically, we performed a Cohen’s d test based on probable depression status, and calculated the variance explained (R-squared) from the correlations between the selected brain variables and each of the four mental health variables (i.e., RDS-4, PHQ-9, N-12 and GAD-7), respectively. These analyses were repeated for each imaging modality including surface area, gray matter volume, cortical thickness, fractional anisotropy, mean diffusivity, task activity, resting-state network amplitude and their edge connectivity. We de-confounded both the brain variables and the mental health variables before running the aforementioned analyses. The only exception from de-confounding is the binary grouping based on probable depression status, as deconfounding would result in subject-specific values that are non-categorical, which is unsuitable for the Cohen’s d test.

Test-retest reliability of imaging measures

To assess the stability of IDPs across time, we performed test-retest reliability analyses using data from N=624 subjects that were scanned twice at separate time-points, with an inter-scan interval of approximately 2 years (Table 1). Data were de-confounded for this sample using the same approach employed for the exploratory CCA analysis. After data were de-confounded, linear correlations were computed between the IDPs collected at each scan time-point. Hence, test-retest reliability for each IDP was defined as the strength of the linear relationship between the 624-element vector of measurements for that IDP (i.e., 1 per subject) collected at the first scan time-point and the 624-element vector of measurements collected at the second scan time-point. Test-retest reliability measures were grouped according to IDP measurement modality (e.g., cortical area, cortical volume, etc.) to allow for assessment of the test-retest correlation distributions for different modalities.

We also assessed the effect of inter-scan interval length on the test-retest correlation strengths by computing partial test-retest correlations for each IDP after including inter-scan interval (in days) as a covariate, thus removing any additional variance attributable to inter-subject differences in inter-scan interval lengths. Finally, we assessed whether test-retest correlations were affected by mental health changes as indicated by the difference in the RDS-4 scores between time-points. Of the N=624 subjects included in the test-retest analyses, n=336 exhibited no change in RDS-4 scores between time-points, while n=288 exhibited changes in RDS-4 scores between time-points. For these analyses, we separately computed test-retest correlations for each mental health sub-group and then plotted the test-retest correlation distributions for each modality between the sub-groups.
3. Results

Correlations amongst mental health variables

Mental health measures showed moderate correlations with one another, indicating a significant degree of redundancy between these metrics (Figure 2A). RDS-4 and N-12, which are both measured from questions administered on the scan date, have a Spearman rank correlation coefficient (SRCC) of $\rho = 0.56$ ($p \approx 10^{-199}$); PHQ-9 and GAD-7, which were both taken from the online questionnaire, have SRCC $\rho = 0.63$ ($p \approx 10^{-267}$).

![Spearman rank correlation coefficients between each pair of mental health measures. Variables measured on the same date are labeled the same color (green = assessment center day-of-scan information; blue = online questionnaire). B) Correlation between RDS and PHQ mental health variables as a function of elapsed time between measures. Correlations are binned into "short" (≤ 14 days), "medium", and "long" (≥ 3 months) periods of elapsed time between surveys. For visualization purposes we computed the correlation between RDS-4 and PHQ-9 stepwise within each time-frame starting at the shortest cutoff (i.e., 0 days for the short-term time-frame, 15 days for the medium-term time-frame, and 93 days for the long-term time-frame), and incrementally relaxing the cutoff to eventually include all scores from all subjects who were measured within that time-frame. Error bars reflect the Spearman Correlation standard error at each point given the number of subjects included in the correlation. C) Pairwise distributions of scores based on probable depression status.](image)

Both the RDS-4 and N-12 measures were collected at each scan time, which allows for an assessment of test-retest reliability on a sample of N=555 subjects from the test-retest sample (69 subjects were removed from the full N=624 test-retest sample due to missing mental health assessment center information on scan 2). Within this subgroup, the subjects’ RDS-4 measures showed a test-retest Spearman rank correlation coefficient of $\rho = 0.57$ between initial and follow-up scans, and N-12 showed a test-retest correlation of $\rho = 0.85$. It should be noted that...
This reflects test-retest between scan timepoints between 761 and 980 days apart. Therefore, a given metric's 2-year test-retest reliability correlation (i.e., self-correlation over a long time period) effectively establishes an approximate upper bound on any correlation value between it and other metrics.

We further calculated the Spearman rank correlation between the RDS-4 measure (taken at scan 1) and the PHQ-9 measure (taken from the online questionnaire) as a function of the time elapsed between the two collections. The elapsed time differed widely across subjects, ranging from same-day assessment to a maximum of 964 days. Figure 2B shows a substantial decrease in RDS-PHQ correlation as the temporal gap between the acquisition dates widens. Correlations among subjects with a "short-term" gap (two weeks or less) were significantly higher correlations ($p = 0.022$) than subjects with "long-term" gaps (3 months to 3 years). The RDS-PHQ correlation in the medium-term gap subjects (two weeks to 3 months) showed trend-level differences from the short-term ($p = 0.11$) and long-term ($p = 0.067$) time-frames, although neither of these effects reached significance.

We performed a two-sided, two-sample Kolmogorov-Smirnov test on RDS-4, PHQ-9, N-12, and GAD-7 scores over subjects with and without probable depression status. Subjects with probable depression scored significantly higher than subjects with no probably depression status on all measures (KS-statistic $\chi \geq 0.19$, $p \leq 10^{-18}$; Fig. 2C).

Mapping between mental health variables

Given that this is a largely healthy sample, as expected, the distributions for PHQ-9, RDS-4, and GAD-7 all reveal a large number of participants with scores on the lower end of the mental health measure, with a sharp decline seen in the number of participants scoring on the upper end of the mental health measures (Fig. 3A-D). Notably, the distribution of N-12 is relatively less skewed than PHQ-9, RDS-4, and GAD-7.

Equipercentile linkage was used to map between different measures of mental health. The results show a stable and approximately linear mapping between RDS-4 and PHQ-9 (Fig. 3E). Additionally, our results show stable mapping between RDS-4 and N-12 (Fig. 3F), and between N-12 and GAD-7 (Fig. 3G). These results are in line with the literature showing that the personality trait of neuroticism is closely associated with mental health [Lahey, 2009].

We performed additional tests to validate RDS-4, which we propose as a novel UKB measure of state depression at the time of scanning. Two standard methods of assessing its reliability are test-retest reliability and Cronbach’s internal consistency alpha. While test-retest reliability is typically assessed by a follow-up 2 weeks after the original test, the UKB does not have such close follow-up. Participants took the RDS-4 at each assessment center visit, and the average time between scan 1 and scan 2 visits was approximately 2 years. Considering the RDS-4 asks questions about recent depression (“in the last 2 weeks…”), the RDS-4 is especially affected by the extended gap between test and retest. Therefore, this measure is expected to have a lower test-retest reliability than other measures. As mentioned above, the Spearman rank test-retest correlation for RDS-4 is 0.57, which is lower compared to N-12 (0.85). This was expected as
Neuroticism is a trait personality measure that is assumed to be relatively stable over time, whereas the RDS-4 is a state-dependent measure of current depressive symptoms.

The internal consistency of the RDS-4 should not be affected by this time delay. The Cronbach alpha for RDS-4 is 0.803, which indicates a moderate to strong internal reliability. This is similar to PHQ-9 (Cronbach alpha = 0.878). Overall, the RDS-4 is the most appropriate measure for recent state depression at the time of scanning available in the UKB.

Figure 3. A-D are the distributions of scores for participant responses to each questionnaire. E-G depict the equipercentile linkages of the scores for each questionnaire, mapping the equivalence of a score from one questionnaire to the score of the other questionnaire.
Exploratory brain-mental health analysis

Prior to performing the CCA, the data reduction of resting state IDPs resulted in 92 eigenvectors which explained 50% of variance. The data reduction of the non-rest IDPs resulted in 29 eigenvectors which explained 50% of variance. Therefore, the total number of brain variables input into the CCA was 121 and this was tested against the 5 mental health variables. The CCA resulted in one significant canonical covariate ($R_{UV} = 0.267$, $p = 0.004$), which was related broadly to all measures of mental health (Fig. 4B). The multivariate canonical correlation was highly replicable in the independent confirmatory sample ($R_{UV(confirmatory)} = 0.266$) and the post-hoc correlations with mental health variables also replicated well (Fig. 4B).

In terms of post-hoc correlations with IDPs, 220 resting state IDPs and 42 non-rest IDPs were significantly correlated with the canonical covariate (UV) after Bonferroni correction for multiple comparisons. The post-hoc CCA results confirm many regions previously highlighted in the literature such as prefrontal and orbitofrontal cortices. These IDPs were tested in the confirmatory sample for post-hoc CCA correlations with UV. Replication of the post-hoc CCA correlations in the confirmatory sample did not show strong replication (Fig. 4A and supplementary Fig. 1).

IDPs that contributed significantly to the CCA were also tested for univariate direct correlations with individual mental health variables in the independent confirmatory sample (see next section for univariate results). For these follow-up univariate tests, we furthermore supplement the target IDPs with a literature-curated list (supplementary table 1) that partly overlaps with the data-driven IDP identification.
Figure 4. Canonical correlation results. A: post-hoc correlations for non-resting IDP, showing only significant IDPs after Bonferroni correction. A similar figure for the resting state IDPs is included in the supplementary material (Fig. S1). B (insert): post-hoc CCA relations for mental health show that the first canonical covariate is broadly linked to affect-based mental health.

Confirmatory analysis of effect size

Our findings showed that univariate effect sizes of the relationship between IDPs and mental health determined in our robust population sample were very low. Overall, effect size of the differences in the brain variables (i.e., IDPs), indicated by Cohens’ d, based on probable depression status was larger than the R-square values from correlations between IDPs and continuous mental health measures (Fig. 5). On average, task activity, as well as amplitude of the resting-state nodes appeared to have the higher modality-mean effect sizes. At the level of individual IDPs, T1 structural measures such as cortical thickness and volume size emerged as the best “predictors” to explain data variance in all outcome measures. Specifically, the volume of either left or right superior temporal gyrus showed relatively high correlations with all mental health measures (i.e., GAD-7, PHQ-9, RSD-4 and N-12), suggesting that the structure of this brain region might be a potential marker for symptom dimensions across these disorders.
Figure 5. Effect sizes are shown for the grouped brain variables of structural (Area, Volume, Cortical Thickness, Fractional Anisotropy and Mean Diffusivity) and functional (Task Activity, AMPplitude, Full NETwork connectivity matrix and Partial NETwork connectivity matrix) modalities. Blue boxes indicate the middle 50% of the data (i.e., the range between the first and third quartile) and small black squares and red lines inside each box represent the mean and median values, respectively. Outliers for each grouped brain IDP are shown as red crosses, which are above the 1.5 times of inter-quartile range (IQR), indicated by dashed gray lines. Solid vertical line inside each box indicates the standard error of the mean. For detailed assessments of effect sizes in specific IDPs see supplementary figures 2-6.

Test-retest reliability of imaging measures

We next assessed the stability of IDPs over time in 624 subjects who had data from two separate scan sessions conducted approximately 2-2.5 years apart. Figure 6A shows the distribution of inter-scan intervals for all 624 subjects. To assess test-retest reliability, the scan 1 measurements for each IDP (N=624) were correlated with the corresponding scan 2 measurements for the same IDP (N=624). Then, the test-retest correlations were assigned to one of the nine categories based on the measurement modality of the corresponding IDPs: brain surface area (8 measures), brain volume (41 measures), cortical thickness (CT - 18 measures), fractional anisotropy (FA - 8 measures), mean diffusivity (MD - 5 measures), task activation (TA - 2 measures), resting-state time-series amplitudes (AMP - 8 measures), full correlation-based resting-state networks (FNT - 160 measures), and partial correlation-based resting-state networks (PNT - 52 measures).
Figure 6B depicts the distributions of full test-retest correlations for each IDP measurement modality obtained using the confound-regressed data from both scan time-points, along with those obtained after additionally partiallizing out the effects of inter-scan interval length (i.e. days between scans). Notably, test-retest correlations were nearly identical ($r=0.99$) for both the full correlation and the partial correlation (corrected for inter-scan interval) analyses. In general, IDPs corresponding to measures of brain structure had higher test-retest correlations than IDPs corresponding to measures of brain function. The highest test-retest correlations were observed for IDPs corresponding to brain volume measures and the lowest test-retest correlations were observed for IDPs corresponding to task measures. This pattern of results is not particularly surprising since macro-scale structural properties like regional volume are expected to be relatively stable over time, especially when considering relative between-subject correlations. Macro-scale functional properties like task activation magnitudes or network connectivity patterns exhibit higher variability over time due to influences of factors such as the level of task engagement (during task), cognitive state (during rest), and physiological state (e.g. hungry vs. sated, sleepy vs. alert), and therefore is expected to have somewhat reduced test-retest stability.

Next, we assessed test-retest correlations in sub-groups of patients that did ($n=288$) vs. did not ($n=336$) exhibit changes in mental health between time-points as determined by the difference between RDS-4 measures obtained at each time point (Fig. 6C). The patterns observed in both groups were highly similar to each other ($r=0.97$; Fig. 6D) and to those observed in the full sample ($r_{nochange}=0.99$, $r_{change}=0.99$). Overall, these results suggest that the test-retest reliability of the IDPs is largely independent of mental health change as indicated by the RDS-4.
Figure 6. Test-retest analyses. A. The histogram shows the inter-scan interval distribution for the 624 subjects included in these analyses. The x-axis shows days between scans, and the y-axis shows the number of subjects. B. The boxplots show the test-retest full correlations obtained using brain IDPs after standard confound regression (blue) vs. test-retest partial correlations obtained using brain IDPs after standard confound regression plus partialling out effects of inter-scan interval length (orange). IDP measurement modality categories are organized along the x-axis, and the y-axis shows correlation strengths. C. Sub-groups of patients with no change in RDS-4 scores between timepoints (No Change) and patients with some change in RDS-4 scores between timepoints (Change) were identified (x-axis). The y-axis shows the number of subjects in each sub-group. D. Boxplots show test-retest correlations as in (B), but box colors correspond to test-retest correlation distributions obtained from separate analyses of the No Change (blue) and Change (orange) sub-groups.

4. Discussion

In the present study we aimed to tabulate mental health questionnaires available in the UK Biobank and investigate their neural correlates. We summarize five different UKB measures of mental health: PHQ-9, GAD-7, RDS-4, N-12, and probable depression status. Our results show
that all measures were moderately correlated with one another (Fig. 2). CCA analyses to identify multivariate associations between these mental health measures and IDPs indicated one significant CCA mode of covariation which linked brain IDPs to mental health scores (Fig. 4A). The multivariate CCA analysis indicated a significant correlation between mental health and imaging that was strongly reproducible. However, the contributions of individual IDPs to the CCA result were relatively weak and did not replicate (Fig. 4B). In a separate test of univariate effect sizes, modalities with the strongest modality-mean effect sizes include task activity and amplitude of resting-state networks, but univariate effect sizes were generally very low (Fig. 5). All IDPs showed moderate to high test-retest reliability, with IDPs of brain structure showing higher reliability than IDPs of brain function (Fig. 6). Together, these findings provide the foundation for future biomarkers research into mental health using the UK Biobank.

Our findings reveal that the difference in acquisition timing of mental health questionnaires in the UKB study is important, especially in relation to neuroimaging data acquisition. Two well-validated measures of mental health (GAD-7 and PHQ-9) are obtained as part of the online questionnaire, which is acquired independently of scan days such that they are on average obtained 359 days apart from scan 1 (range -639 to +964 days). Because of this time discrepancy (which is highly inconsistent across subjects), the PHQ-9 (which tests recent depressive symptoms over a 2-week period) is not well-suited for UKB neuroimaging research into depression despite its validity for lifetime depression [Cannon et al., 2007], and its sensitivity to depression in older populations [Levis et al., 2019]. Therefore, we introduce the RDS-4 (obtained on each day of scanning) as a new UKB measure of depression that is more appropriate for UKB neuroimaging research. As expected, our findings show that the correlation between PHQ-9 and RDS-4 is high when obtained concurrently and drops off over time (Fig. 2B). Furthermore, RDS-4 has high internal consistency and its scores map closely onto established measures of depression (Fig. 3) - further confirming its validity. The RDS-4 questions cover four different depression domains (mood, disinterest, restlessness and tiredness) that are also considered in other measures such as the Hamilton and Montgomery–Åsberg scales [Hamilton, 1967; Montgomery and Asberg, 1979]. Hence, by asking questions in different domains the RDS-4 inventory is likely to reflect overall depression severity relatively well, despite the comparatively small number of items. The Neuroticism-12 index – also obtained on each day of scanning - is a personality trait [Eysenck and Eysenck, 1975] that is strongly related to an increased risk in depression [Hirschfeld et al., 1983; Shaw and Hare, 1969]. N-12 items assess generic traits as opposed to recently experienced clinical symptoms (RDS-4 and PHQ-9). Our results confirm that N-12 is more stable over time compared with RDS-4 and PHQ-9 as assessed by the 2-year test-retest reliability. We therefore suggest that N-12 can be used as a measure of trait dependent research into susceptibility to depression in UKB neuroimaging research.

In terms of neuroimaging correlates of mental health, our findings show that multivariate associations explain more variance in mental health effects and are more reproducible than univariate associations, which is supported by previous work [Marek et al., 2020]. It should be noted that our estimated effect sizes are derived from a large sample (N>2000) and are therefore expected to capture true effect sizes that are uninfluenced by sampling variability.
The observed increase in explained variance when using multivariate methods is consistent with the proposal of complex macroscopic patterns of psychopathology in mental health patients [Williams, 2016; Wise et al., 2017a]. Future biomarker research will therefore need to focus on multivariate techniques such as canonical correlation analysis, connectome fingerprinting [Finch et al., 2015], topological network properties [Zhu et al., 2017], or machine learning [Dinga et al., 2018]. One reason why multivariate methods may have higher effect sizes than univariate methods could be due to the relatively low signal-to-noise ratio of individual univariate IDPs and the effective averaging that occurs in multivariate combinations of IDPs, which reduces noise. For example, previous work showed substantial increases in heritability when combining connectivity IDPs with independent component analysis compared with univariate IDPs [Elliott et al., 2018]. This noise-averaging effect may explain why the CCA was highly replicable, despite low replicability of post-hoc correlations with individual IDPs (Fig. 4B). Given the low SNR of individual IDPs and the risk of overfitting in multivariate methods, robust cross-validation [Poldrack et al., 2020] and independent replication of findings (in a split-half group and/or in a fully independently acquired dataset) are essential requirements for future biomarker research [Dinga et al., 2019; Dinga et al., 2020].

A second potential reason for limited effect sizes (even with the use of multivariate methods like CCA) is between-subject heterogeneity. A first potential type of heterogeneity is diversity in symptoms, such that two patients with depression may present with largely non-overlapping symptom profiles [Drysdale et al., 2017; Feczko et al., 2019; Feczko and Fair, 2020; Kaczkurkin et al., 2020]. A second potential type of heterogeneity is diversity in psychophysiological disease mechanisms. Here, it is possible that the same symptom may be caused by a number of different patterns of brain changes [Feczko and Fair, 2020], which we refer to as ‘many-to-one mechanistic mapping’. Notably, both types of heterogeneity are potentially more prominent in large-scale population studies such as the UK Biobank compared with smaller studies. This is because studies with smaller samples often implement stricter exclusion criteria in relation to comorbidities and medication to control for known sources of heterogeneity. Reducing the exclusion criteria in the UKB is likely advantageous for mental health research because the UKB and other large-scale studies provide a more accurate representation of ‘real-life’ mental health as it occurs across the population. This makes the findings more likely to be generalizable. However, gaining a better understanding of both symptom heterogeneity and many-to-one mechanistic mapping is critically important for effective clinical translation of mental health biomarkers. Computational methods are available to account for heterogeneity, such as subtyping analyses to reveal any distinct sub-groups [Drysdale et al., 2017; Kaczkurkin et al., 2020] and normative modelling analysis to compare each individual against the normative range [Marquand et al., 2016]. These models of heterogeneity benefit from the large sample size available in the UK Biobank which enables stringent cross-validation.

In summary, this paper provides a guide for future neuroimaging biomarker research into affect-based mental health, in the UK Biobank. We recommend using RDS-4 for state research into depression and N-12 for trait research into depression. Our results regarding the brain correlates of mental health show low effect sizes of individual IDPs, but higher effect-sizes and replicability of multivariate associations and relatively high test-retest reliability. Therefore, we
recommend the use of approaches that capture multivariate patterns and parse patient heterogeneity in combination with stringent out-of-sample replication to avoid overfitting.

6. Code availability

All analysis code for this article is available at: https://github.com/PersonomicsLab/MH_in_UKB.

7. Acknowledgements

We are grateful to UK Biobank and the UK Biobank participants for making the resource data possible, and to the data processing team at Oxford University for producing the shared processed data. This research was performed under UK Biobank application number 47267. This research was supported by start-up funding provided by the Mallinckrodt Institute of Radiology at Washington University in St. Louis.

8. References

http://dx.doi.org/10.1038/nn.4125.

Cross-Measure Correlations

<table>
<thead>
<tr>
<th></th>
<th>RDS-4</th>
<th>PHQ-9</th>
<th>N-12</th>
<th>GAD-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDS-4</td>
<td>1</td>
<td>0.58</td>
<td>0.56</td>
<td>0.48</td>
</tr>
<tr>
<td>PHQ-9</td>
<td>0.58</td>
<td>1</td>
<td>0.48</td>
<td>0.63</td>
</tr>
<tr>
<td>N-12</td>
<td>0.56</td>
<td>0.48</td>
<td>1</td>
<td>0.53</td>
</tr>
<tr>
<td>GAD-7</td>
<td>0.48</td>
<td>0.63</td>
<td>0.53</td>
<td>1</td>
</tr>
</tbody>
</table>

Depression Score Distributions vs. Probable MDD

![Chart showing depression score distributions for RDS, PHQ, N, and GAD over days elapsed (log10 N)](chart)

Correlation over Disjoint Times:

RDS vs. PHQ

![Graph showing correlation over disjoint times for RDS vs. PHQ](graph)
Mental Health Questionnaire Comparison

A. Patient Health Questionnaire (PHQ)

B. Recent Depression Score (RDS)

C. Neuroticism (N)

D. Generalized Anxiety Disorder (GAD)

E. PHQ vs RDS (Percentiles)

F. GAD vs N (Percentiles)

G. N vs RDS (Percentiles)
A. Inter-scan Interval Distribution

B. Test-retest Correlations for Brain IDPs

C. Mental Health Change Groups

D. Test-retest Correlations for Brain IDPs