rESWT & Injection for myofascial pain measured with Elastic index

Original Research

Effects of Radial Extracorporeal Shockwave Therapy Versus 1% Lidocaine Injection for Myofascial Trigger Points Measured with Elastic Index

Areerat SUPUTTITADA¹*, Carl PC CHEN², Narin NGAMRUNGSIRI¹, Christoph SCHMITZ³

¹Department of Rehabilitation Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Bangkok, Thailand

²Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou and College of Medicine, Taoyuan, Taiwan

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
rESWT & Injection for myofascial pain measured with Elastic index

Chang Gung University, Guishan District, Taoyuan City, Taiwan

3 Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, Germany

* Correspondence: Professor Areerat Suputtitada, MD.

Department of Rehabilitation Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Rama 4 Road, Patumwan, Bangkok 10330, Thailand.

Tel: +66814888549

E-mail: prof.areerat@gmail.com, areerat.su@chula.ac.th

This study received a grant from Ratchadapiseksomphot Endowment Fund, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
rESWT & Injection for myofascial pain measured with Elastic index

The preliminary data was presented at the 9th International Society of Rehabilitation Medicine Congress in 2015 and published as the abstract in Annals of Physical medicine and Rehabilitation 61 e2 20.

The authors declare no conflicts of interest in this work.

ABSTRACT

Purpose: To compare the efficacy of radial extracorporeal shockwave therapy (rESWT) versus injection of 1% lidocaine for active myofascial trigger points (MTPs) at upper trapezius muscle (UTM) objectively with elastic index analysis.

Patients and methods: A prospective, randomised, single-blinded clinical trial was done. 60 patients with active MTPs of UTM were randomised to receive either rESWT (n = 30); three rESWT sessions; one session per week; 2000 rESWT impulses per session; positive energy flux density = 0.10 mJ/mm²) or 1% lidocaine (4 ml) injection (n = 30) (three injections; one injection per week). The outcome measure was
rESWT & Injection for myofascial pain measured with Elastic index

the elastic index of MTPs, visual analogue score (VAS score) of pain, and pressure pain threshold (PPT)
three weeks after baseline.

Results: Both rESWT and injection of 1% lidocaine resulted in statistically significant ($P < 0.05$) reduced elastic index and VAS of pain of UTM and PPT significantly ($P < 0.05$) at three weeks after baseline. The mean differences between rESWT and injection of 1% lidocaine showed no statistically significance.

Conclusion: Both rESWT and 1% lidocaine injection had efficacy for active MTPs of UTM measured with elastic index, VAS of pain and PPT.

Keywords: myofascial trigger points (MTPs), radial extracorporeal shock wave therapy (rESWT), 1% lidocaine injection, elastic index, visual analogue score (VAS score) of pain, pressure pain threshold (PPT).

List of abbreviations

• MTP, myofascial trigger point;
• MPS, myofascial pain syndrome;
• rESWT, radial shock wave therapy;
• UTM, upper trapezius muscles
• EI, elastic index;
• VAS, visual analog scale;
rESWT & Injection for myofascial pain measured with Elastic index

PPT, pressure pain threshold;

NDI, neck disability index

Highlights

- Extracorporeal shockwave therapy (ESWT) is an alternative to 1% lidocaine injection for myofascial trigger points (MTPs).

- Elastic index provides evidence for the quantitative assessment of MTPs.
rESWT & Injection for myofascial pain measured with Elastic index

11. Introduction

Myofascial pain syndrome (MPS) characterized by local and referred pain and/or autonomic phenomena due to the myofascial trigger points (MTrPs). Several hypotheses explain the pathophysiology of MTrPs, with the most accepted hypothesis being integrated trigger point hypothesis\(^1\,^8\), believing that MTrP is the result of sarcomere sustained contraction caused by acetylcholine over release at the neuromuscular junction from overuse or muscle injury. Strong muscle contraction is a process by pressing the blood vessels from the constricted muscle. Leading to local ischemia, which stimulates secretion of vasoneuroactive, there is a lot of pain, especially in the MTrP site. This neurologic inflammatory effect coincides with tissue swelling, resulting in an increase in energy crises that impede calcium ingestion to the sarcoplasmic reticulum, thus stopping the sarcomere shrinkage. A new cycle exists if there is a stimulating factor. There are currently several studies explaining the biologic properties of MTrP by microanalytic intramuscular biochemical analysis. Many altered biochemical properties were found in MTrP, including those in active muscle regions. There was an acidic pH in MTrP more than in normal muscle region. Similar to inflammatory markers, bradykinin, substance P, tumor necrosis factor, interleukin (IL) -1, IL-6, IL-8, CGRP, serotonin, and norepinephrine Higher concentrations were found in Active MTrP than in latent MTrP or in normal muscle.\(^1\,^8\) Active MTPs are characterized by eliciting spontaneous pain and, when palpated, causing pain, referred pain, and motor or autonomic symptoms, including limited range of motion, muscle weakness, and loss of coordination.\(^1\,^8\) In contrast, latent MTPs may display all the symptoms of active MTPs to a lesser degree, but only upon palpation and/or compression.\(^7\,^6\) Recently, it was argued that the diagnosis of MTPs
rESWT & Injection for myofascial pain measured with Elastic index

is more complicated. 1-3, 6,7 There are well-constructed reviews published on the agreement of the inter- and intra-rater reliability in the manual palpation of MTPs. 8,9 Recently, a systematic review and meta-analysis found small sample sizes of the studies and disagreed in the reliability.10 There are more objective diagnoses and monitoring the treatment success of MTPs MTPs. Elastic index appears promising in this regard.11-14 MTrPs at the superficial muscles as upper trapezius muscle can be visualized using ultrasound imaging.

Several therapies have been proposed for MTPs, including trigger point injection with anesthetics, corticosteroids or botulinum toxin, dry needling, massage, stretching, electrical stimulation, laser therapy, and ultrasound therapy. The common goal of these therapies is to reduce muscle stiffness and pain, and improve metabolism in the hypercontracted MTP region.1-5

Recently, extracorporeal shock wave therapy (ESWT) has become an alternative in the treatment of MTPs.15-25 From a recent systematic review and meta-analysis26, ESWT appears to be correlated with greater pain relief compared with sham ESWT or ultrasound in patients with MPS of the trapezius. However, the number of included trials was still small, and the studies were heterogeneous. Additional high-quality clinical trials with large sample sizes, and importantly, objective measurement is needed to analyze the effect of ESWT.

The aim of the present study was to test the hypothesis that rESWT, as performed in the present study, is as effective and safe as 1%lidocaine injection in the management of MTPs of UTM, and elastic index is a useful quantitative and objective measurement for monitoring treatment success in restoration of normal muscle laxity. For a better understanding of the mechanisms of both RSWT and MTrP injection towards
rESWT & Injection for myofascial pain measured with Elastic index

22. Materials and Methods

Study design

This research was a randomized, single-blinded, parallel group trial from January 2016 through June 2019. The study conformed to the principles of the Declaration of Helsinki. The study was approved by the Institutional Review Board of the Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand (Protocol No.: 222/57; date of approval by the ethics committee: September 17, 2015) before starting the study, and was carried out in accordance with the World Medical Association (WMA) Declaration of Helsinki. It has been registered with the Thai Clinical Trials Registry (www.clinicaltrials.in.th; Identifier TCTR20160330003). All patients were allowed to withdraw informed consent to participate in the present study at any time. There was no commercial sponsorship in this study.

Participants

The patients with MPS, diagnosis was based on Simon’s criteria for eligibility to be enrolled in the present study. The inclusion criteria were as follows: 1) age between 20 and 25 years; 2) diagnosis of only one active upper trapezius myofascial trigger point on either the left or right side; 3) mild to moderate pain intensity at baseline (pain on the Visual Analog Scale between 3 and 6); 4) availability to attend the hospital during the treatment and follow-up assessments; and 5) willingness to sign the informed consent form. The exclusion criteria were as follows: 1) fixed contractures or deformities of the shoulder and neck; 2) diseases of bones and joints; 3) clinical signs of myopathy and neuropathy; 4) treatment of upper trapezius myofascial
rESWT & Injection for myofascial pain measured with Elastic index

trigger points with extracorporeal shock waves, dry needling, injection of Botulinum neurotoxin, local anesthesia, drugs, or any other treatment during a period of three months before inclusion in the present study; 5) previous surgery of the shoulder and neck; 6) epilepsy; 7) intellectual disability; 8) intellectual disability; 9) infection, tumor, ulcer, or skin diseases at the site of therapy application; 10) serious blood dyscrasia; 11) blood-clotting disorders; 12) treatment with oral anticoagulants.

Randomization and blinding

The Consolidated Standards of Reporting Trials (CONSORT) flow chart is shown in figure 1. Depending on a computer-generated random numbers list, eligible participants were randomly separated into the rESWT group or the lidocaine injection group. The outcome assessor in sonoelastrography was blinded to group division and did not take part in implementing interventions. The statistician was unaware of the group assignment as well.

Interventions

All rESWTs were given by a single, experienced physiatrist. rESWT was conducted using the Swiss DolorClast (Electro Medical Systems, Nyon, Switzerland) and the EvoBlue handpiece with a 15-mm applicator. Each patient received one rESWT session per week for three weeks, with 2000 rESWT waves per session with the air pressure of the device was set at 2.5 bar, a frequency of 12 Hz, resulting in a positive energy flux density (EFD) of 0.10 mJ/mm². Participants assigned to the lidocaine injection group were injected by the same experienced physiatrist with 2 ml of 1% lidocaine at the trigger point confirmed by a local twitch response.
As part of the treatment program, all participants, regardless of the group, were educated on a simple home exercise program for the first visit. The program comprised a single UTM stretching exercise. The patients received the video file of the UTM stretching exercise procedure displayed on their mobile phones. The patients were asked to perform 10 sessions twice a day.

Assessment

Outcome measures included muscle elasticity, pain with the Visual Analog Scale (VAS) and pressure pain threshold (PPT), and neck disability index (NDI). Evaluation was performed at baseline (T1), immediately after the first session (T2), before the second session (i.e., one week after baseline; T3), and one week after the third session (i.e., four weeks after baseline; T4). To evaluate the immediate effects, the patients were assessed immediately 15-30 min after the first treatment. The examiners were blinded to the group allocation.

The muscle elasticity

It was assessed by elastic index using a LOGIQ S7 Expert ultrasound scanner (GE Healthcare, Little Chalfont, UK), ML6-15 high-frequency linear ultrasound transducer (GE Healthcare), and dedicated quantitative software (Elasto-Q). To this end, the head of the patient was placed in a neutral position and the upper trapezius muscle was identified using two-dimensional (2D) ultrasound mode. The examiner then performed elastic index of UTM strictly following the equipment guidelines for standardization of the technique by rhythmic tissue compression and decompression11-14, with the accuracy of this maneuver automatically checked by the LOGIQ S7 Expert ultrasound scanner. Finally, elastograms were generated.
rESWT & Injection for myofascial pain measured with Elastic index

using Elasto-Q software that simultaneously recorded and visualized 2D ultrasound and elastogram images of the same region of interest (ROI). After setting the UTM layer as the ROI and localization of the best sinusoidal compression, three ROIs on MTrPs in the upper trapezius muscle were selected for calculating the mean elasticity index as figure 2 and figure 3. All the sonoelastrography data were analyzed by a blinded researcher who was an expert ultrasonographer.

Visual Analog Scale (VAS)

Pain intensity was assessed using the VAS. The VAS is 10 cm long, anchored with the words "no pain" and "worst pain imaginable" at the opposite ends.\(^{15}\) The mean reduction in VAS of 2.0 cm represents a clinically significant difference in pain severity that corresponds to effective treatments.\(^{16}\) Participants were requested to mark a point along the scale that best represented the level of pain experienced.

Pressure Pain Threshold (PPT)

The pressure pain threshold was measured by a digital pressure algometer for the least amount of pressure needed to provoke pain.\(^{17}\) The procedure was performed with an algometer (Model PTH AF2; Pain Diagnostics and Thermography, Great Neck, NY), by placing the rubber tip area perpendicular to the MTrPs at a pressing rate of 1 kg/s.\(^{18}\) The compression stopped immediately when the patients began to feel pain.

Three repetitive measurements at intervals of 30 s were performed at the same point, and then the average value was calculated.

The Neck Disability Index (NDI)
rESWT & Injection for myofascial pain measured with Elastic index

The Neck Disability Index (NDI) is a widely used self-rating scale to evaluate the impact of pain on daily activities. It included 10 parts: pain intensity, personal care, lifting objects, reading, headache, concentration, work, driving, sleeping, and entertainment. The minimum detectable change is 5.0 points, and the minimum clinically important difference is in the range of 3.5-5.0. points.

Side effects

Adverse reactions defined as any unexpected events that occurred during the trial were noted and recorded.

Statistical analysis

All data were statistically analyzed using the Statistical Program for Social Sciences (SPSS) version 17 (SPSS Inc., Chicago), and P values of <.05 were considered statistically significant. Baseline characteristics between groups were compared using independent t-tests or Mann-Whitney U tests for continuous variables (depending on normality) and chi-square tests for categorical variables. The outcome measures were submitted to a 2x3 repeated measures analysis of variance with time (baseline, T1, T2, T3, and T4) as the within-subject factor and group (ESWT or 1% lidocaine) as the between-subject factor. The Greenhouse-Geisser correction was used when the sphericity assumption was violated. Bonferroni correction was applied to adjust the significance levels. Unless otherwise stated, all values are reported as mean ±SD.

The VAS score was chosen as the primary outcome measure. The study was powered to detect 2-cm differences in a 10-cm VAS between the ESWT and 1% lidocaine injection groups with an SD of 2 cm, which was adjusted based on the results of a previous publication. In consideration of a type I error rate of 5%, a power of 80%, and at least 10% losses to follow-up, 25 patients were required per group at baseline.
rESWT & Injection for myofascial pain measured with Elastic index

improve the reliability of our study, we increased the sample size to 30 patients per group.

Results

Characteristics of the patients

Patients were considered for participation in the present study according to the inclusion and exclusion criteria. The flow of patients is shown in Figure 1. After the diagnosis was confirmed, five out of the 65 patients assessed for eligibility were excluded. For the remaining 60 patients, a thorough explanation of radial extracorporeal shock wave therapy (rESWT) and 1% lidocaine for MTPs as well as the potential risks, benefits, and outcomes, took place. After making an informed decision, the patients were enrolled in the present study (n = 60), allocated to ESWT group 30 patients and 1%lidocaine group 30 patients. None of the patients were lost to follow-up before the second session (i.e., one week after baseline) and one week after the third session (i.e., three weeks after baseline), resulting in full analysis of all patients at all follow-up examinations.

Outcomes

There was a statistically significant improvement in the mean elastic index of UTM, VAS of pain, PPT at UTM, and NDI in the 1%xylocain group compared to those in the rESWT group at T2 and T3 at p<0.05, as displayed in Table 2 and compared to baseline in both groups at p<0.001, as displayed in Table 3. All outcome measurements were very similar in the 1%lidocaine and rESWT groups both before (T1) and no statistically significant difference at one week after the third session (T4) at P<0.05.

Adverse effects
Pain and reddening of the skin were reported in a few cases, but did not lead to dropping out of the patients. No persistent adverse effects were observed.

34. **Discussion**

The rESWT for MTPs of UTM as performed in the present study (three rESWT sessions, one session per week, 2000 rESWs per session with EFD. of 0.10 mJ/mm²) was the least session, similar to some previous studies.²²,²⁸,²⁹,³⁰ resulted in a statistically significant improvement in (i) mean elastic index of UTM, (ii) mean VAS score, (iii) mean pressure pain threshold (PPT), and (iv) mean neck disability index (NDI) at one week and 4 weeks to baseline in the ESWT group, which is in line with previous studies.²²,²⁸,²⁹,³⁰ The intergroup comparison with the 1%lidocaine group revealed statistically significantly better results than the rESWT group at T2 and T3, which was not in line but not statistically significant at T4 at p<0.05, which is in line with a previous study that compared with the dry needle.³⁰ The pathophysiologic mechanisms underlying MTrPs development were still not clear. The current data proved that ESWT was at least as effective as 1%lidocaine in pain relieving and function restoration for MPS patients after the completion of the therapy 3 sessions, once per week for 3 weeks.

ESWT has become one of the evidence based modalities for MPS in recent years.²¹-³² Twenty-two types of extracorporeal shock waves (ESWs) are used in medical therapy, namely focused extracorporeal shock waves (fESWs) and rESWs.³²-³⁶ The positive pressure amplitude is followed by a low tensile amplitude of a few microseconds, which can generate cavitation.³³-³⁷ They are further characterized by a short life cycle of
RESWT & Injection for myofascial pain measured with Elastic index

approximately 10-20 µs and a broad frequency spectrum. Focused ESWs differ from rESWs in the penetration depth into the tissue, some physical characteristics, and the technique for generating them. The reduction in the mean VAS score after rESWT found in the present study is in line with the results of earlier studies on ESWT for MTPs. The outcome measures in this study are in line with other studies in PPT and NDI. There are only one of these studies that elastic index was applied to monitor treatment success of ESWT for MTPs.

Elastic index as performed in the present study showed almost identical mean elastic indexes of UTM (difference smaller than 10%) between the rESWT and sham rESWT groups at baseline. The elastic indexes of UTM of all patients in the rESWT group decreased as a result of rESWT, whereas elastic indexes of UTM in all patients in the Sham rESWT group showed only very limited changes between baseline and three weeks after baseline. Accordingly, sono elastography as performed in the present study was useful for monitoring treatment success of rESWT for MTPs of UTM, which was in line with the previous study. Various hypotheses about the etiology and pathophysiology of MTPs were proposed. However, so far it has not been possible to formulate an integrated concept answering the questions what initiates the formation of MTPs, sustains MTPs, causes MTPs to be painful, and will make MTPs disappear. The difficulties are further exacerbated by the lack of an animal model for myofascial pain that could be used to test mechanistic hypotheses. Unfortunately, the results of the present study do not help to improve this situation. This is due to the fact that the changed elasticity of UTM after rESWT can only be one of several mechanisms mediating the positive effects of rESWT on MTPs, and may in complex combination with the
rESWT & Injection for myofascial pain measured with Elastic index

following mechanisms leading to reduction of pain: (i) rESWT was shown to improve the neck range of motion in a previous study and neck disability index (NDI) in this study and in line with previous studies. The underlying mechanisms are unknown and may involve mechanical separation of actin and myosin filaments. However, rESWT did not change the mean elastic index of UTM immediately after treatment in the present study. (ii) Exposure of muscles to rESWs may induce a transient dysfunction of nerve conduction at neuromuscular junctions, as was observed in the gastrocnemius muscles of rats for six weeks after exposure. (iii) Active MTPs may contain high amounts of substance P, one of the body's neurotransmitters for pain and heat. Exposure of tissue to ESWs can reduce substance P. (iv) One cannot rule out that according to the gate control theory of pain, the mechanical impact of rESWs on large-diameter afferent fibers modulates the spinal dorsal horn transmission of nerve impulses from small-diameter afferent fibers to spinal cord transmission cells. (v) Lubricin, a mucinous glycoprotein, facilitates the movement of tendon gliding against the surrounding tissues, and is also found on fasciae. Flexor tendons from canine forepaws that had been suspended without weight-bearing for 21 days showed a 40% reduction of lubricin expression compared to contralateral forepaws that had been allowed free motion. Reduced lubricin expression also plays a role in the pathophysiology of MTPs, ESWT may exert its positive effect by its known stimulating effect on lubricin expression in septa. (vi) Improved muscular microcirculation after repetitive ESWT may be another mechanism that may result in pain relief after ESWT for MTPs of UTM. Taken together, identification of the exact molecular and cellular mechanisms of action of rESWT on MTPs will require muscle biopsies and/or microdialysis in future studies on humans.
rESWT & Injection for myofascial pain measured with Elastic index

A systematic review in 201248, including five RCTs comparing dry needling versus 1\% lidocaine injection concluded that although no significant difference was observed between the two methods, there were interesting patterns favoring 1\% lidocaine injection immediately after injection and dry needling at 3–6 months after treatment. However, another meta-analysis in 201349 revealed slightly different results: 1\% lidocaine injection was more effective than dry needling on pain improvement immediately and at 4 weeks follow-up.

The MPS is currently considered a complicated neuromuscular disorder involving both peripheral and central mechanisms. When MTrPs were left untreated or inadequately treated, the continuous pain induced by hyperirritable spots would send persistent impulses via afferent nerves to the spinal cord, which further developed into the spinal segmental sensitization.1-8 Thus, desensitization of MTrPs should be the goal of developing a durable and effective treatment. A 1\% lidocaine injection is the gold standard to confirm typical localized twitching response and referred pain when needles were applied, which ESWT might be helpful for the clinical diagnosis of MTrPs. To date, there is still no standard guideline defining the optimal parameters of EFD or treatment course for ESWT. In this study, the ESWT revealed a delay effect of the elastic index, VAS, PPT, and NDI when compared with 1\% lidocaine injection at T2 and T3.

The rESWT has the following advantages over 1\% lidocaine injection. First, the rESWT is noninvasive, free from skin infection, and is simple to operate in an outpatient environment. However, 1\% lidocaine injection carries potential risks of significant adverse events, such as penetrating the lungs and blood vessel injuries, which choose ultrasound guidance for prevention of these serious adverse effects. Second, the rESWT could
rESWT & Injection for myofascial pain measured with Elastic index

be applied to a relatively larger surface of interest (including the taut band and surrounding tissue) by adjusting the probe location. ESWT usually induces microscopic changes within cells via mechanotransduction effects and promotes the conversion of mechanical pressure into molecular signals. Moreover, the regenerative effect of rESWT can enhance muscle properties. Third, 1% lidocaine injection carries mild side effects such as bleeding per skin from the needle, dizziness, or allergy from a 1% lidocaine effect. Although it might require a higher cost than 1% lidocaine injection, the ESWT could be an alternative option for MTrPs treatment considering patient compliance.

Study limitation

Some limitations of this study should be acknowledged. First, the subjective bias since the patients were not blinded to the treatments. Second, no subgroups with different intensities, intervals, and frequencies of rESWT because the dose-dependent manner of total energy might influence the therapeutic effects and cost-effectiveness. The identification of optimal regimens and cost-effective analysis should be an important topic in the future. Third, the current results should be interpreted based on noninferior trial design, and the false-negative possibility (discriminating capacity 80%) should be considered. Fourth, the target population was patients aged 20-25 years, which excluded MPS associated with degenerative joint disorders commonly found in aging. The applications and success of rESWT will be limited to young patients with the inclusion and exclusion criteria.

Conclusion

rESWT, as applied in the present study, is also efficient as the gold standard for 1% lidocaine injection for
rESWT & Injection for myofascial pain measured with Elastic index

treating patients suffering from MTPs of UTM after 3 sessions. Ultrasound elastography, as applied in the present study, appears useful for objectively monitoring treatment success in 1% lidocaine injection and rESWT for MTPs of UTM.

Acknowledgments

This study was supported by a grant from Ratchadapiseksomphot Endowment Fund, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.

The preliminary data was presented at the 9th International Society of Rehabilitation Medicine Congress in 2015 and published as the abstract in Annals of Physical Medicine and Rehabilitation 61 e2 20.

Disclosure

The authors report no conflicts of interest in this work.

References

rESWT & Injection for myofascial pain measured with Elastic index

rESWT & Injection for myofascial pain measured with Elastic index

rESWT & Injection for myofascial pain measured with Elastic index

rESWT & Injection for myofascial pain measured with Elastic index

rESWT & Injection for myofascial pain measured with Elastic index

rESWT & Injection for myofascial pain measured with Elastic index
Figure 1 Consolidated Standards of Reporting Trials flow chart.
<table>
<thead>
<tr>
<th>Time (s)</th>
<th>Trace 1:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01631</td>
<td>1.27157e+000</td>
</tr>
<tr>
<td>0.06477</td>
<td>1.28725e+000</td>
</tr>
<tr>
<td>0.11323</td>
<td>1.30000e+000</td>
</tr>
<tr>
<td>0.16168</td>
<td>1.32255e+000</td>
</tr>
<tr>
<td>0.21014</td>
<td>1.32451e+000</td>
</tr>
<tr>
<td>0.25859</td>
<td>1.31471e+000</td>
</tr>
<tr>
<td>0.30705</td>
<td>1.28039e+000</td>
</tr>
<tr>
<td>0.35550</td>
<td>1.29510e+000</td>
</tr>
<tr>
<td>0.40396</td>
<td>1.29118e+000</td>
</tr>
<tr>
<td>0.45242</td>
<td>1.28824e+000</td>
</tr>
<tr>
<td>0.50087</td>
<td>1.32647e+000</td>
</tr>
<tr>
<td>0.54933</td>
<td>1.32549e+000</td>
</tr>
<tr>
<td>0.59778</td>
<td>1.37157e+000</td>
</tr>
<tr>
<td>0.64624</td>
<td>1.35686e+000</td>
</tr>
<tr>
<td>0.69470</td>
<td>1.37255e+000</td>
</tr>
<tr>
<td>0.74315</td>
<td>1.37549e+000</td>
</tr>
<tr>
<td>0.79161</td>
<td>1.37451e+000</td>
</tr>
<tr>
<td>0.84007</td>
<td>1.37353e+000</td>
</tr>
<tr>
<td>0.93698</td>
<td>1.30392e+000</td>
</tr>
<tr>
<td>1.03389</td>
<td>1.31471e+000</td>
</tr>
<tr>
<td>1.13080</td>
<td>1.36373e+000</td>
</tr>
<tr>
<td>1.17925</td>
<td>1.26078e+000</td>
</tr>
<tr>
<td>1.22771</td>
<td>1.25588e+000</td>
</tr>
<tr>
<td>1.27617</td>
<td>1.28235e+000</td>
</tr>
<tr>
<td>1.32462</td>
<td>1.28431e+000</td>
</tr>
<tr>
<td>1.37309</td>
<td>1.31863e+000</td>
</tr>
<tr>
<td>1.42154</td>
<td>1.28529e+000</td>
</tr>
<tr>
<td>1.46999</td>
<td>1.26961e+000</td>
</tr>
<tr>
<td>1.51845</td>
<td>1.30686e+000</td>
</tr>
<tr>
<td>1.56691</td>
<td>1.32059e+000</td>
</tr>
<tr>
<td>1.61536</td>
<td>1.31569e+000</td>
</tr>
<tr>
<td>1.66382</td>
<td>1.31961e+000</td>
</tr>
<tr>
<td>1.71227</td>
<td>1.31471e+000</td>
</tr>
</tbody>
</table>

Mean

Elasticity Index (EI)
Table 1 Baseline characteristics of the patients

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>1% xylocaine (n=30)</th>
<th>rESWT (n=30)</th>
<th>Total (n=60)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Y)</td>
<td>22.93 ± 1.03</td>
<td>23.05 ± 1.02</td>
<td>22.99 ± 1.00</td>
</tr>
<tr>
<td>Gender: Male: Female</td>
<td>12:18</td>
<td>13:17</td>
<td>25:35</td>
</tr>
<tr>
<td>BMI (kg/m^2)</td>
<td>23.36 ± 1.82</td>
<td>23.69 ± 1.37</td>
<td>23.58 ± 1.69</td>
</tr>
<tr>
<td>Elastic index</td>
<td>2.14 ± 0.23</td>
<td>2.19 ± 0.21</td>
<td>2.12 ± 0.23</td>
</tr>
<tr>
<td>VAS (cm)</td>
<td>5.45 ± 0.34</td>
<td>5.49 ± 0.39</td>
<td>5.47 ± 0.36</td>
</tr>
<tr>
<td>PPT (N/cm^2)</td>
<td>2.88 ± 0.20</td>
<td>2.82 ± 0.23</td>
<td>2.85 ± 0.22</td>
</tr>
<tr>
<td>NDI</td>
<td>33.34 ± 2.93</td>
<td>34.21 ± 3.69</td>
<td>34.03 ± 3.26</td>
</tr>
</tbody>
</table>
Table 2 Outcome measures at T1, T2, T3 and T4 (post hoc analysis)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>1% xylocaine</th>
<th>rESWT</th>
<th>1%xylocaine VS rESWT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Time)</td>
<td>Mean ± SD</td>
<td>95% CI</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>EI (T1)</td>
<td>2.14 ± 0.23</td>
<td>1.84-2.21</td>
<td>2.19 ± 0.21</td>
</tr>
<tr>
<td>EI (T2)</td>
<td>1.35 ± 0.24</td>
<td>1.67-1.99</td>
<td>2.04 ± 0.23</td>
</tr>
<tr>
<td>EI (T3)</td>
<td>1.18 ± 0.20</td>
<td>0.74-1.34</td>
<td>1.41 ± 0.26</td>
</tr>
<tr>
<td>EI (T4)</td>
<td>0.93 ± 0.15</td>
<td>0.78-1.21</td>
<td>1.01 ± 0.13</td>
</tr>
<tr>
<td>VAS (T1)</td>
<td>5.51 ± 0.49</td>
<td>4.82-6.12</td>
<td>5.49 ± 0.39</td>
</tr>
<tr>
<td>VAS (T2)</td>
<td>4.11 ± 0.24</td>
<td>3.78-4.36</td>
<td>5.19 ± 0.21</td>
</tr>
<tr>
<td>VAS (T3)</td>
<td>2.42 ± 0.41</td>
<td>2.02-2.84</td>
<td>3.68 ± 0.20</td>
</tr>
<tr>
<td>VAS (T4)</td>
<td>0.97 ± 0.23</td>
<td>0.76-1.11</td>
<td>1.01 ± 0.13</td>
</tr>
<tr>
<td></td>
<td>PPT (T1)</td>
<td>PPT (T2)</td>
<td>PPT (T3)</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>2.95 ± 0.21</td>
<td>3.37 ± 0.16</td>
<td>3.74 ± 0.13</td>
</tr>
<tr>
<td></td>
<td>2.70-3.23</td>
<td>3.11-3.64</td>
<td>3.52-3.93</td>
</tr>
<tr>
<td></td>
<td>2.82 ± 0.23</td>
<td>2.99 ± 0.24</td>
<td>3.58 ± 0.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.57-3.24</td>
<td>3.44-3.71</td>
</tr>
<tr>
<td></td>
<td>0.113</td>
<td>0.203</td>
<td>0.293</td>
</tr>
<tr>
<td></td>
<td>0.728</td>
<td>0.047*</td>
<td>0.041*</td>
</tr>
<tr>
<td></td>
<td>0.092 - 0.155</td>
<td>0.189 - 0.228</td>
<td>0.215 -- 0.304</td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; T1, baseline; T2, immediately after the first rESWT session; T3, before the second rESWT session or one week after baseline; T4, one week after the third rESWT session or four weeks after baseline; EI, elastic index; VAS, visual analog scale; PPT, pressure pain threshold; NDI, neck disability index.
Table 3 Within-subjects analysis of outcome measures (post hoc analysis)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Group</th>
<th>T1 and T3</th>
<th>T1 and T4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Diff of Mean</td>
<td>P</td>
</tr>
</tbody>
</table>
| EI | 1%
xylocaine | 0.97±0.18 | <0.001 | 0.67-1.21 | 1.17±0.12 | <0.001 | 1.01-1.35 |
| rESWT | | 0.64±0.15 | <0.001 | 0.59-0.84 | 1.13±0.41 | <0.001 | 0.98-1.52 |
| VAS | 1%
xylocaine | 2.21±0.24 | <0.001 | 2.01-2.45 | 3.91±0.35 | <0.001 | 3.54-4.31 |
| rESWT | | 1.78±0.23 | <0.001 | 1.85-2.32 | 4.01±0.23 | <0.001 | 3.87-4.27 |
| PPT | 1%
xylocaine | 0.84±0.13 | <0.001 | 0.63-1.24 | 1.02±0.13 | <0.001 | 0.84-1.17 |
| rESWT | | 0.69±0.25 | <0.001 | 0.42-0.92 | 1.19±0.22 | <0.001 | 0.97-1.41 |
| NDI | 1%
xylocaine | 22.23±2.47 | <0.001 | 19.52-25.69 | 5.56±0.94 | <0.001 | 4.62-6.11 |
| rESWT | | 28.35±3.12 | <0.001 | 25.13-31.68 | 28.89±3.18 | <0.001 | 24.41-32.15 |

Abbreviations: CI, confidence interval; T1, baseline; T2, immediately after the first rESWT session; T3, before the second rESWT session or one week after baseline; T4, one week after the third rESWT session or four weeks after baseline; EI, elastic index; VAS, visual analog scale; PPT, pressure pain threshold; NDI, neck disability index.