Abstract
Face mask usage is one of the most effective ways to limit SARS-CoV-2 transmission, but a mask is only useful if user compliance is high. Through anonymous surveys, we show that mask discomfort is the primary source of noncompliance in mask wearing. Further, through these surveys, we identify three critical parameters that dictate mask comfort: air resistance, water vapor permeability, and face temperature change. To validate these parameters in a physiological context, we performed experiments to measure the respiratory rate and change in face temperature while wearing different types of commonly used masks. Finally, using values of these parameters from experiments and the literature, and surveys asking users to rate the comfort of various masks, three machine learning algorithms were trained and tested to generate overall comfort scores for those masks. Although all three models tested performed with an accuracy of approximately 70%, the multiple linear regression model also provides a simple analytical expression to predict the comfort scores for any face mask provided the input parameters. As face mask usage is crucial during the COVID-19 pandemic, the ability of this quantitative framework to predict mask comfort is likely to improve user experience and prevent discomfort-induced noncompliance.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
No funding to report.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Harvard University-Area Committee on the Use of Human Subjects
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.