Short-term antibody response and tolerability of one dose of BNT162b2 vaccine in patients receiving hemodialysis

Authors:
Rémi Goupil, MD, MSc (1)
*Mehdi Benlarbi, BSc (cand) (2)
William Beaubien-Souligny, MD, MSc (2)
Annie-Claire Nadeau-Fredette, MD, MSc (3)
Chatterjee Debashree, PhD (2)
Guillaume Goyette, PhD (2)
Caroline Lamarche, MD, MSc (3)
Alexander Tom, BSc (4)
**Andrés Finzi, PhD (2, 5, 6)
Rita S. Suri, MD, MSc (2, 5, 7)
on behalf of the Réseau Rénal Québécois (Quebec Renal Network) COVID-19 Study Investigators

*co-first author
**co-senior author

Affiliations:
1. Hôpital du Sacré-Cœur de Montréal, Montréal, QC, Canada
2. Centre de Recherche du CHUM, Montréal, QC, Canada
3. Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
4. Research Institute of the McGill University Health Center, Montreal, QC, Canada
5. Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
6. Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
7. Department of Medicine, McGill University, Montreal, QC, Canada

Correspondence:
Rita S. Suri
Director, Division of Nephrology
Associate Professor of Medicine
McGill University
Room D05.7166, McGill University Health Centre
1001 Decarie Blvd, Montreal, QC H4A 3J1
T. 514-934-1934 x 35205
F. 514-938-7050
email: rita.suri@mcgill.ca

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background: Patients with end-stage kidney disease receiving in-center hemodialysis are at high risk of exposed to, and dying from, SARS-CoV-2. As impairments in both humoral and cellular immunity are common in this population, their response to vaccination against SARS-CoV-2 is uncertain.

Methods: We have followed in-center hemodialysis patients in the Réseau Rénal Québécois since March 2020 with serial PCRs for COVID-19 and clinical outcomes. Plasma samples were taken from 58 patients from one center before, and 4 weeks after, vaccination with one dose of the BNT162b2 mRNA vaccine. Anti-RBD (region binding domain of the SARS-CoV-2 Spike protein) IgG levels were measured using ELISA and compared to levels in 32 health care worker (HCW) controls, as well as levels in convalescent plasma taken from 12 hemodialysis patients 4-12 weeks after COVID-19 infection. Patients were stratified based on evidence of previous infection with COVID-19 (positive PCR or antiRBD detectable at baseline).

Results: Compared with health-care workers, hemodialysis patients without prior COVID-19 exhibited significantly lower anti-RBD IgG levels 4 weeks after vaccination (p=0.0007). Anti-RBD IgG was non-detectable in 1/16 (6%) of HCWs, and 25/46 (54%) of dialysis patients (p=0.0008). In dialysis patients previously infected with COVID-19, mean anti-RBD levels were significantly lower than their HCW controls (p=0.0031), but not significantly different than those in convalescent plasma of recently infected dialysis patients (p=NS). No patients reported any symptoms 7 days after vaccination on a standardized questionnaire.

Conclusion: The BNT162b2 vaccine was well-tolerated in hemodialysis patients, but failed to elicit a humoral immune response in >50% patients by 4 weeks. Whether these patients develop antibodies or T-cell responses after prolonged observation requires further study. Until then, we recommend that rigorous infection prevention and control measures in the dialysis unit and outside of it be continued to prevent SARS-CoV-2 infection in this susceptible population.
Introduction

Patients with end-stage kidney disease receiving hemodialysis are uniquely vulnerable during the COVID-19 pandemic. Self-isolation to avoid viral exposure is impossible, as most patients must leave their homes 3 times weekly to receive their life-saving treatments, often in shared spaces for prolonged periods. Once infected, risk of death is as high as 25%\(^1\). Some centers have thus prioritized hemodialysis patients for vaccination.

To facilitate wider vaccine distribution during current shortages\(^2\), some jurisdictions including Canada have opted to delay the recommended 3-week second dose of the BNT162b2 vaccine to 16 weeks\(^3\). Whether the reported clinical efficacy of >80% after a single dose\(^4\) holds true for dialysis patients is unknown, as they were not enrolled in this trial\(^4\), and many have impaired humoral and cellular immune responses\(^5\).

We sought to determine if short-term antibody response is comparable between dialysis patients and health-care workers (HCWs) vaccinated with a single dose of the BNT162b2 mRNA vaccine, and how this compares to dialysis patients naturally infected with SARS-CoV-2.

Methods

We obtained plasma samples before, and 3-4 weeks after single dose vaccination with BNT162b2, from 58 patients undergoing hemodialysis, and 32 HCWs, in Montreal, Canada. Convalescent plasma was obtained from 12 hemodialysis patients 4-12 weeks after PCR-confirmed SARS-CoV-2 infection. All 58 dialysis patients completed a symptoms questionnaire 7 days after vaccination. This study was approved by the local research ethics board and patients provided written informed consent.

IgG antibodies against the receptor binding domain (RBD) of SARS-CoV-2 Spike glycoprotein were assessed in plasma samples using an enzyme-linked immunosorbent assay (ELISA)\(^6,7\). Bovine serum albumin and CR3022 monoclonal antibody (mAb) against SARS-CoV-2 S glycoprotein were used as negative and positive controls, respectively. Anti-RBD IgG levels were reported as relative light units (RLU) normalized to CR3022 mAb. Seropositive threshold was established as mean RLU from COVID-19 negative plasma obtained from 10 volunteers pre-pandemic plus 3 standard deviations of this mean\(^6,7\). We have previously shown excellent reliability of this assay in detecting anti-RBD IgG levels in a cross-sectional cohort of infected individuals\(^5\).

Groups were stratified by past COVID-19 infection (positive PCR to SARS-CoV-2 or positive anti-RBD before vaccination), and mean RLUs compared using student’s t-test. Two-sided p-values of <0.01 were considered significant, adjusted for multiple comparisons.
Results

Dialysis patients were considerably older than HCWs, with more comorbidities (Table 1). No dialysis patient reported symptoms or adverse events within 7 days of vaccination.

Dialysis patients without prior COVID-19 exhibited significantly lower anti-RBD IgG levels 4 weeks after vaccination, compared to HCWs at 3 weeks (figure 1, panel A). Twenty-five of 46 (54%) dialysis patients had no detectable anti-RBD IgG, compared to 1/16 (6%) HCWs (p=0.0008). In those with detectable levels, mean RLU was still significantly lower in dialysis patients than in HCWs (14.7±11.1 vs. 44.8±31.8 RLU, p=0.0046).

Dialysis patients with remote COVID-19 infection developed anti-RBD IgG levels after vaccination that were significantly lower than those of HCW controls (Figure 1, panel B), but not significantly different than those in convalescent plasma of recently infected dialysis patients (Figure 1, panel C).

Discussion

In a randomized trial, the BNT162b2 vaccine was clinically >80% effective after 3 weeks\(^4\). While antibody levels that confer immunity are not known, our group has shown that all but one of our HCWs developed anti-RBD IgG within 3 weeks of a single dose of this vaccine, which correlated with F\(_c\) mediated effector functions and cellular responses, but not viral neutralization\(^6\). In contrast, COVID-19 naïve patients receiving hemodialysis showed lower anti-RBD IgG levels at 4 weeks, with >50% having no detectable levels. The mean antibody response was better after vaccination in dialysis patients previously infected with COVID-19, with anti-RBD IgG levels similar to those from convalescent plasma, although still blunted compared to controls.

We cannot rule out that vaccinated dialysis patients with undetectable anti-RBD IgG may have developed protective cellular immune responses, but in other studies, neutralization, F\(_c\) function, and SARS-CoV-2 specific T cell responses have only been observed in individuals who elicited RBD-specific antibodies\(^8,9\).

It is reassuring that the BNT162b2 vaccine was well-tolerated in dialysis patients, but its efficacy remains uncertain. Whether anti-RBD IgG increase to control levels and/or cellular immune responses develop after more prolonged observation require further study. In the meantime, continuation of rigorous infection prevention and control measures in the dialysis unit\(^10\) and outside of it is paramount to prevent SARS-CoV-2 infection and its adverse outcomes in this susceptible population.

Acknowledgements

This work is submitted by the authors on behalf of the COVID-19 Study Team of the Réseau Rénal Québécois. The authors thank the participants for donating their plasma samples. We are
grateful to our research coordinators, Ms. Norka Rios, Ms. Marie-Line Caron, and Ms. Guylaine Marcotte. We thank Dr. Nick Bertos and the Research Institute of the McGill University Health Center for sample processing and storage. This study was funded by the Canadian Institutes of Health Research (CIHR) Rapid Research COVID-19 funding opportunity. This work was also supported by le Ministère de l’Économie et de l’Innovation du Québec, Programme de soutien aux organismes de recherche et d’innovation to AF, by the Fondation du CHUM and by a CIHR Foundation Grant #352417 to AF. RS, RG, ACNF, and WBS are supported by the Fonds de Recherche du Québec – Santé (FRQS) Clinician-Researcher Awards. AF is the recipient of Canada Research Chair on Retroviral Entry no. RCHS0235950-232424.

Data and Materials

De-identified aggregate data is available upon request to the lead author, RS (rita.sur@mcgill.ca), provided the necessary institutional approvals are received. Further information on the assays used and requests for reagents should be directed to and will be fulfilled by AF (andres.finzi@umontreal.ca).

References

Table 1: Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>48 (10.1) [52, 21-59]</td>
<td>47 (12.8) [46, 23-65]</td>
<td>74.4 (12.4) [77, 41-92]</td>
<td>80.3 (9.7) [84, 56-90]</td>
<td>65.7 (16.3) [70.5, 35-88]</td>
</tr>
<tr>
<td>Female sex (N, %)</td>
<td>81 (52) 21 (46)</td>
<td>50 (7) 7 (58)</td>
<td>2 (4)</td>
<td>0 (17)</td>
<td>0 (17)</td>
</tr>
<tr>
<td>Long-term Care (N, %)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Immunosuppressive medications (N, %)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>5 (11)</td>
<td>1 (8)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Past Kidney Transplant (N, %)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Diabetes (N, %)</td>
<td>0 (0)</td>
<td>28 (61)</td>
<td>2 (4)</td>
<td>6 (50)</td>
<td>58 (61)</td>
</tr>
<tr>
<td>Days since COVID-19 infection</td>
<td>n/a</td>
<td>n/a</td>
<td>249 (58.97) [266, 116-309]</td>
<td>276 (30) [285, 192-292]</td>
<td>51 (23) [59, 25-99]</td>
</tr>
<tr>
<td>Days since vaccination</td>
<td>22 (3.29) [21, 16-26]</td>
<td>20 (1.85) [21, 17-25]</td>
<td>28 (1.5) [28, 26-31]</td>
<td>27.5 (2.0) [27, 26-31]</td>
<td>n/a</td>
</tr>
</tbody>
</table>

*Defined as PCR positive test in dialysis cohort, and onset of symptoms in HCW cohort

For 2/12 dialysis patients, time of infection was unknown as they were diagnosed by serology only.

At the time of writing, all patients in this group had survived.

Data are presented as mean (SD), [median, range] unless otherwise specified.

Figure Legend:

Figure 1: Anti-RBD IgG in Dialysis Patients and Health Care Workers. Each bar represents a different individual. Post-vaccine samples were taken 21 days (range 16-26) after a single dose of BNT162b2 mRNA vaccination in health-care workers, and after 28 days (range 26-31) in dialysis patients. Anti-RBD IgG levels were measured using ELISA, subtracting the signal obtained with bovine serum albumin, and normalized to the signal obtained with CR3022 monoclonal antibody to SARS-CoV-2 in each plate. Dotted line represents the "positive threshold for detection" of anti-RBD IgG, defined as the mean RLU plus 3 standard deviations from plasma samples obtained from ten volunteers before the pandemic. RLU = relative light units. A: Anti-RBD IgG in COVID-19 naïve vaccinated dialysis patients (n=46) and COVID-19 naïve vaccinated health care workers (n=16) (D1 vs. H1, 7.9 ± 9.4 vs. 42 ± 32 RLU p = 0.0007). No antibody response was observed in 1/16 (6%) of health-care workers, and 25/46 (54%) of dialysis patients (p=0.0008). B: Vaccinated dialysis patients (n=12) and vaccinated health care workers (n=16) each with evidence of prior COVID-19 infection (D2 vs. H2, 108 ± 90 vs. 196 ± 41 RLU post-vaccination; p = 0.0031 for delta RLU values, p= 0.0063 for post-vaccination RLU values). C: Convalescent plasma obtained from dialysis patients (n=12) between 4-12 weeks after COVID-19 infection (D3 vs. D1, 101 ± 77 vs. 7.9 ± 9.4 RLU, p = 0.0015); D3 vs. D2, 101 ± 77 vs. 108 ± 90, p= 0.8527).
A. Vaccinated Participants without Evidence of Prior COVID-19 Infection

p < 0.001, dialysis patients vs. health care workers

B. Vaccinated Participants with Prior COVID-19 Infection

p < 0.01, dialysis vs. health-care workers

C. Non-Vaccinated Participants with COVID-19

Weeks after positive PCR

Health Care Workers
(Group H1)

Dialysis Patients
(Group D1)

Health Care Workers
(Group H2)

Dialysis Patients
(Group D2)

Health Care Workers
(Group H3)

Dialysis Patients
(Group D3)