Estimating COVID-19 cases and deaths prevented by non-pharmaceutical interventions in 2020-2021, and the impact of individual actions: a retrospective model-based analysis

Kathryn R Fair1,*, Vadim A Karatayev1, Madhur Anand1, Chris T Bauch2

1 School of Environmental Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
2 Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
*kafair@uoguelph.ca

Abstract

Simulation models from the early COVID-19 pandemic highlighted the urgency of applying non-pharmaceutical interventions (NPIs), but had limited empirical data to use. Here we use data from 2020-2021 to retrospectively model the impact of NPIs. Our model represents age groups and census division in Ontario, Canada, and is parameterised with epidemiological, testing, demographic, travel, and mobility data. The model captures how individuals adopt NPIs in response to reported cases. The model predicts that school/workplace closure and individual NPI adoption together reduced the number of deaths in the best-case scenario for the case fatality rate (CFR) from 174,411 [CI: 168,022, 180,644] to 3,383 [CI: 3,295, 3,483] in the Spring 2020 wave. In the Fall 2020/Winter 2021 wave, the introduction of NPIs in workplaces/schools reduced the number of deaths from 17,291 [CI: 16,268, 18,379] to 4,167 [CI: 4,117, 4,217]. Deaths were several times higher in the worst-case scenario for the CFR. We also estimated that each additional 7 – 11 (resp. 285 – 452) individuals who choose to adhere to NPIs in the first wave prevented one additional infection (resp., death under a best-case scenario). Our results show that the adoption of NPIs prevented a public health catastrophe.

Introduction

Non-pharmaceutical interventions (NPIs) such as school and workplace closure, limiting group sizes in gatherings, hand-washing, mask use, physical distancing, and other measures are essential for pandemic mitigation in the absence of a vaccine [1]. Scalable NPIs, in particular,
are measures that can be taken up by the entire population in case containment strategies have failed [2]. These measures have been applied extensively during the 2019 coronavirus disease (COVID-19) pandemic in order to reduce severe outcomes [3]. Given the extensive social and economic consequences of the COVID-19 pandemic, there is significant value in assessing how many cases, hospitalizations, and deaths were prevented by pandemic mitigation measures that relied upon scalable NPIs.

Assessments of the effectiveness of NPIs sometimes rely upon comparing health outcomes in countries that did not implement certain NPIs, to those that did [4]. However, it may be difficult to control for confounding factors in cross-country comparisons such as differing social and economic circumstances. Another approach is to monitor outcomes longitudinally in a given population as they respond to a timeline of changing NPIs [5].

However, empirical approaches to predicting the number of COVID-19 cases in the absence of interventions are difficult or impossible since, in every country, governments implemented control measures and/or the population responded to the presence of the virus. Even in the case of Sweden, whose government famously adopted a de facto herd immunity strategy [6], the population exhibited enormous reductions in mobility in March and April 2020 (27%, 61%, and 82% reduced time spent at retail/recreation destinations, transit stations, and workplaces, respectively, at their maximal values) [7]. However, simulation models can be useful the task of estimating the number of cases in the absence of interventions, as well as many other questions concerning SARS-CoV-2 transmission and COVID-19 disease burden [8–18]. Simulation models that were developed early during the pandemic made projections for such scenarios, but required rational assumptions about crucial parameter values in the absence of empirical data specific to COVID-19 [9,16,18].

Here we adopt a retrospective approach of fitting a simulation model to empirical data from March 2020 to February 2021 in order to estimate how many COVID-19 cases and deaths would have occurred in the province of Ontario, Canada in the absence of NPIs. After fitting the model to empirical data, we relaxed the parameters relating to NPIs to predict what might have happened in their absence, or in the presence of only a selection of certain NPIs. The model includes the census area and age structure of Ontario, as well as travel between census areas. Moreover, the model accounts for population behavioural responses to pandemic waves: without volitional population uptake of NPIs, “flattening the curve” may not have been possible [17].
Results

Model overview

To capture the social-epidemiological dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission and COVID-19 cases, we developed a stochastic compartmental model incorporating age and spatial structure (Figure 1). Transmission dynamics in the population of each census region are described by a Susceptible (S), Exposed (E), Pre-symptomatic and infectious (P), Symptomatic and infectious (I), Asymptomatic and infectious (A), Removed (R) natural history. Populations in different regions are connected through commuter travel. Transmission is reduced through school and/or workplace closure and infection control efforts in those settings, under direction from public health authorities. However, transmission is also reduced outside of school and work settings as a result of volitional efforts by individuals to adopt NPIs, including measures such as physical distancing, hand-washing, and mask wearing (Appendix, Figure S2). This occurs in proportion to the daily incidence of reported cases. Transmission rates are region-specific to account for regional differences in contact patterns due to population density and other factors, and were also modified by seasonality in transmission. Age classes varies in their relative susceptibility. Age-specific testing rates increase over time from initially low levels in March 2020 to a constant level (with the date this is attained varying by age class).

Using Ontario data, we estimated deaths resulting from COVID-19 under best-case and worst-case scenarios for the crude case fatality ratio (CFR). In the best-case scenario we assume that CFR computed from the historical for the first and second waves also applies in counterfactual scenarios where the case incidence was much higher due to relaxing NPIs. In the “worst case”, we extrapolate the observed empirical relationship between case incidence and CFR to consider the possibility that the CFR increases with case numbers [19], due to increased strain on the healthcare system [20] (Appendix, Figure S6).

Epidemiological [21–23], testing [21–23], demographic [24], travel [25], and mobility data [7] for Ontario were used to parameterise the model. We employed a 2-stage non-linear optimization process to fit cases by age class at the provincial level, and total cases at the Public Health Unit (PHU) level [26–28]. The first stage used a global algorithm, with the results of that fitting input as the initial values for the second-stage local optimization. This allowed us to estimate the baseline transmission rate, as well as how it responded to school/workplace closure, and how many individuals adhered to NPIs in response to reported case incidence. Full details on
the model structure and parameterization appear in the Appendix: Methods.

Scenarios and outcomes analyzed

We generated model outputs for reported COVID-19 cases and deaths over three time periods. The first time period covers the first wave from 10 March 2020 to 15 August 2020. The second time period from 12 June 2020 to Feb 28 2021 covers Ontario’s reopening during the first wave and the subsequent second wave. These periods are studied separately because the first and second waves differed considerably in terms of their epidemiology, disease burden, and interventions. These two time periods were analyzed retrospectively: the empirical data from these time periods were used to fit the model. The last time period projected cases and deaths prospectively, under the scenario of re-opening the province in March 2021 in the presence of variants of concern with a higher transmission rate, such as B.1.1.7.

In the first time period, Ontario implemented school and workplace closure, and a significant proportion of the population adhered to recommended NPIs. For the first wave, we projected what might have happened under three counterfactual scenarios: (1) school/workplace closures were enacted but no individuals adhered to any other NPIs, (2) school/workplace closures were not enacted but individuals adhered to other NPIs in proportion to reported case incidence, and (3) school/workplace closures were not enacted and no individuals adhered to NPIs (a “do nothing” scenario).

In the second time period, Ontario closed schools and workplaces in late 2020/early 2021, and began re-opening in February 2021, but with mandatory NPIs in place to combat transmission, such as requiring mask use in schools. We considered two counterfactual scenarios for the re-opening phase in February 2021: (1) reopening does not occur (school/workplace closures continues indefinitely), and (2) schools and workplaces are reopened without NPIs in place.

Individual NPI adherence varied in response to cases in homes and other locations for all of these scenarios. We also note that all of our scenarios for the second time period incorporated the first provincial imposition of control measures in Spring 2020 followed by the first provincial re-opening in Summer 2020.

For the first time period and with reference to the average population uptake of NPIs during those periods, we also estimated how many additional individuals must adopt NPIs in order to prevent one additional case, or one additional death (i.e., incremental cases and death prevented by NPI uptake). These measures gauge the impact of individual-level efforts on the course of
the pandemic. The numbers are calculated as an incremental quantity because the incremental
effectiveness of an individual choosing to adopt NPIs depends upon how many other individuals
in the population are already doing so, on account of their impact on community transmission.

Cases and deaths prevented by NPIs in the first and second waves

Results for our three counter-factual scenarios in the first wave highlight the key role that
NPIs played in limiting the spread of SARS-CoV-2, and also show how school/workplace clos-
ures interact with individual-level behaviours concerning NPIs (Figure 2). The actual number
of daily reported cases peaked at 640 in Ontario in April 2020, and the modelled time series
of cases follows the empirical epidemic curve (Figure 2a, inset). However, in the absence of
both school/workplace closure and individual uptake of NPIs, the model predicts that daily
number of reported cases would have peaked at 65,000 in May 2020. Allowing for either
school/workplace closure or individual uptake of NPIs reduces this peak considerably, although
the peaks are still large compared to the factual (historical) scenario where both were applied.

Under the best case scenario for the CFR, the first wave would have resulted in 174,411
[CI:168,022, 180,644] deaths in the absence of both school/workplace closure and individual
adherence to NPIs (Figure 2b). This number greatly exceeds the 3,383 deaths that actually
occurred between 10 March and 15 August 2020 due to lockdown and population adoption of
NPIs [29]. The worst-case scenario for deaths is even higher under the “do nothing” scenario
(Figure 2c), on account of the unmanageable surge in cases causing a heightened CFR. However,
applying either school/workplace closure or individual uptake of NPIs significantly reduces the
number of deaths in both worst- and best-case scenarios. The reductions are greater for applying
only individual-level NPI measures than for applying school/workplace closure. This is because
school/workplace closure in our model only affects school-age children and working-age adults
working in non-essential businesses, whereas individual adoption of NPIs in our model spans
all employment sectors in all age groups.

These findings are qualitatively unchanged for the second wave, except that the difference in
cases and deaths across the scenarios is not as large, since we did not evaluate a “do nothing”
scenario. (Figure 3). As before, cases and deaths are considerably higher when NPI use is
limited (in this case, does not occur in workplaces/schools). Both the empirical epidemic curve
and the modelled epidemic curves share the feature of a relatively slow rise to a peak, followed
by a relatively rapid drop afterwards (Figure 3a). This is due to the combined effect of timing
of school/workplace closure, behavioural response, and seasonality in the transmission rate.

Impact of individual-level efforts

We estimated how many additional individuals must adopt NPIs in order to prevent one additional case, and one additional death, given what percentage of the population is already adherent to NPIs. We estimated this under both best-case and worst-case scenarios for the CFR. When the percentage of the population already adherent to NPIs in within empirically valid ranges for the first wave (shaded region in Figure 4), we estimated that every 7 to 11 individuals who adopted NPIs prevented a single SARS-CoV-2 infection. Similarly, every 285 to 452 (respectively, 159 to 280) individuals who adopted NPIs prevented a single COVID-19 death in the best-case (respectively, worst-case) scenarios.

In the extreme case where a very high percentage of the population is already adherent to NPIs, the incremental number of individuals who must adhere to NPIs to prevent one case or death increases dramatically. This is expected, since high uptake of NPIs can reduce case incidence to very low levels, and thus reduce the incremental benefit of a few more individuals adopting NPIs. Similarly, in the other extreme when few individuals in the population have adopted NPIs, the incremental benefit of each additional individual who adopts NPIs is higher.

Effect of SARS-CoV-2 variants on third wave

In our prospective analysis for the third wave, we projected the number of COVID-19 cases expected up until April 1, 2021 based on the assumption that variants of concern such as B.1.1.7. with a 50% higher transmission rate [30] would constitute 40% of SARS-CoV-2 infections by March 10, 2021. We modelled this process as an increase in the baseline transmission rate of the model (see Appendix: Methods). These figures show that the provincial re-opening plans in March 2021 would not have resulted in a significant rise in cases in the absence of variants of concern (Appendix, Figure S15). However, in the presence of these variants, re-opening is predicted to cause a large rise in cases in the second half of March 2021 (Appendix, Figure S15). The rise is more pronounced in Toronto and the greater Toronto area (Appendix, Figure S16, Figure S17).
Discussion

This suite of simulations informs a picture of how NPIs—particularly the combination of government mandated measures such as school/workplace closure and volitional individual level actions such as physical distancing and hand-washing—strongly mitigated COVID-19 cases and deaths across both age and census area in Ontario. School/workplace closure or individual-level NPIs implemented on their own would also have reduced both cases and deaths considerably, although the absolute numbers would still have been large.

The number of deaths averted by NPIs was particularly large in the first wave. Our projection of 174,411 deaths in the “do nothing” scenario for interventions and the best-case scenario for the CFR is plausible: supposing that 70% of Ontario’s 14.6 million people had been infected in a “do nothing” scenario, the adjusted CFR for Spring 2020 of 1.6% [19] would have resulted in 163,520 deaths. Moreover, the actual number of deaths would likely have been much higher than suggested by our best-case scenario. The adjusted CFR of 1.6% was estimated from a population where the ICU capacity in Spring 2020 was not greatly exceeded [29]. Therefore, the adjusted CFR would have been much higher in a population contending with a massive surge in cases.

Our results on the number of individuals who must adopt NPIs to prevent one case or death increased dramatically with the percentage of the population already adhering to NPIs (Figure 4). As a result, an individual in a population where most others have already adopted NPIs has a reduced personal incentive to practice NPIs, since the number of cases (and thus their perceived infection risk) is lowered. This suggests the possibility of a free-rider effect whereby non-mitigators gain the benefits of reduced community spread without contribute to infection control [31], although social norms can curb this effect [32,33].

Our model made several simplifying assumptions that could influence results and/or limit the conditions under which the model can be used. For instance, as our model describes community spread, we are not explicitly accounting for how transmission within congregate living settings, long-term care homes, etc. can cause case numbers to increase rapidly [29,34,35]. As well, our simplification of Ontario’s tiered system for NPIs at the level of individual public health units [36] into a single aggregate “open with NPIs in place” state may lead us to over/underestimate cases at the PHU level, if the tier that PHU is in is more/less restrictive than the aggregate state.

It is well known that mathematical models can be used for forecasting purposes, but they
can also be valuable for conveying insights, or for aspirational purposes. In the latter case, mathematical models can motivate the uptake of behaviours to avoid the worst-case scenarios predicted by the model. The prosocial preferences that humans often adopt toward infectious disease control [32,33] suggest that this use of models can be effective. Early mathematical models developed during the COVID-19 pandemic showed us what might happen if we chose not to mitigate the pandemic. Our retrospective analysis that uses data from the past year confirms that we prevented a very large loss of life by our decision to take action, and that each individual person who chose to adopt NPIs helped prevent both cases and deaths.

References

5. You Li, Harry Campbell, Durga Kulkarni, Alice Harpur, Madhurima Nundy, Xin Wang, Harish Nair, Usher Network for COVID, et al. The temporal association of introducing and lifting non-pharmaceutical interventions with the time-varying reproduction number.

Figure 1. Schematic representation of transmission model. Note that the epidemiological compartments were stratified by age as well as location (see Methods).
Figure 2. NPIs significantly reduced cases and deaths in the first wave. Figure panels show (a) new confirmed cases by day, and mean projected deaths from 10 March 2020 to 15 August 2020 in (b) the best-case scenario (values from left-right are: 2, 789, 3, 383, 20, 728, 36, 782, 174, 411) and (c) worst-case scenario (values from left-right are: 2, 789, 2, 797, 69, 590, 164, 311, 553, 460) for healthcare system functioning in a regime of very high case incidence. Transparent lines in panel (a) correspond to different stochastic realizations of model runs, with solid lines corresponding to the median value across all realizations. Error bars in panels (b,c) represent the minimal and maximal values across all stochastic realizations. Model parameter settings appear in Supplementary Appendix, Table 1.
Figure 3. NPIs significantly reduced cases and deaths in the second wave. Figure panels show (a) new confirmed cases by day, and mean projected deaths from 12 June 2020 to 28 February 2021 in (b) the best-case scenario (values from left-right are: 4, 493, 2, 154, 4, 167, 17, 291) and (c) worst-case scenario (values from left-right are: 4, 493, 1, 785, 3, 991, 20, 709) for healthcare system functioning in a regime of very high case incidence. Transparent lines in panel (a) correspond to different stochastic realizations of model runs, with solid lines corresponding to the median value across all realizations. Error bars in panels (b,c) represent the minimal and maximal values across all stochastic realizations. Model parameter settings appear in Supplementary Appendix, Table 1.
Figure 4. Impact of individual efforts. Figure panels show the incremental median number of individuals who needed to adopt NPIs in order to prevent (a) one infection, and one death under (b) the best-case scenario and (c) worst-case scenario for healthcare system functioning in a regime of very high case incidence, for the first wave (10 March to 15 August 2020). The shaded region demarcates the estimated range in the percentage of individuals adhering to NPIs over that time-period (see Figure S13). Model parameter settings appear in Supplementary Appendix, Table 1.