
KEYWORDS: COVID-19, SARS-CoV-2, school health, testing, surveillance, pooling

AUTHORS: Ethan M. Berke, MD, MPH\(^1\), Lori M. Newman, MD\(^2\), Suzanna Jemsby, MA\(^3\), Natasha Bhalla, MEd\(^3\), Natalie E. Sheils, PhD\(^4\), Nandini Oomman, PhD\(^3\), John Reppas, MD, PhD\(^3\), Bethany Hyde, MHA\(^1\), Prateek Verma, MS\(^1\), Gerard A. Cangelosi, PhD\(^4\)

AFFILIATIONS:

1. OptumLabs, UnitedHealth Group, Minnetonka, MN
2. Washington, DC
3. Washington International School, Washington, DC
4. Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA

CORRESPONDING AUTHOR:

Ethan M. Berke, MD, MPH
OptumLabs, UnitedHealth Group
5995 Opus Parkway
Minnetonka, MN. 55343
603-286-0376
ethan.berke@uhg.com

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT:

The COVID-19 pandemic has prompted widespread primary and secondary school closures. Routine testing of asymptomatic students and staff, as part of a comprehensive program, can help schools open safely. “Pooling-in-a-pod” is a public health surveillance strategy whereby testing cohorts are composed based on social relationships and physical proximity. Pooling-in-a-pod allowed for weekly on-site point-of-care testing of all staff and students at an independent preschool to grade 12 school in Washington, D.C. Staff and older students self-collected anterior nares samples, and trained staff collected samples from younger students. Overall, 6,746 samples were tested for 815 students and 276 staff between November 30, 2020, and March 3, 2021. The average pool size was 7.3 people. Sample collection to pool result time averaged 40 minutes. The direct testing cost per person per week was $24.77, including swabs. One surveillance test pool was positive. During the study period, daily new cases in Washington, D.C., ranged from 24 – 46 per 100,000 population. A post-launch survey found most parents (90.3%), students (93.4%), and staff (98.8%) were willing to participate in pooled testing with confirmatory tests for positive pool members. The school reported a 32.6% decrease in virtual learning after initiation of the program. Pooling-in-a-pod is feasible, cost-effective, and an acceptable COVID-19 surveillance strategy for schools. School officials and policymakers can leverage this strategy to facilitate safe, sustainable, in-person schooling.
SUMMARY

1) What is the current understanding of this subject?
Routine COVID-19 testing as part of a comprehensive strategy to operate schools safely is currently not widely implemented.

2) What does this report add to the literature?
“Pooling-in-a-pod,” is a public health surveillance strategy whereby cohorts are composed based on social relationships and physical proximity. 6,746 samples were tested in 969 pools (average pool size 7.3 people) in a Washington, D.C. school, thereby requiring fewer test kits and less expense. The program was widely acceptable.

3) What are the implications for public health practice? Pooling-in-a-pod allows for more accessible testing to facilitate safe in-person schooling and minimize the negative effects of distance learning.
INTRODUCTION

The COVID-19 pandemic resulted in widespread closures of schools across the United States. Although these closures were intended to minimize the risk of disease transmission, early studies have shown that these school closures may be having an unintentional adverse impact on approximately 56.4 million school-aged children. Currently only about half of the student population is in the classroom, with the majority of those in hybrid learning models.¹ In Washington, D.C., for example, school closures resulted in second grade students falling significantly behind in reading.² Middle and high school students may have higher rates of depression.³-⁵ Furthermore, some studies suggest that students in school may actually be safer than students out of school, either due to differences in transmissibility or through stricter enforcement of masking and physical distancing compared to home and community settings.⁶

Returning students to in-person learning carries considerable value especially for economically disadvantaged populations and women.⁷,⁸ Students with gaps in education may experience income losses of nearly 10% over their lives, and national economies could be diminished for decades.⁹ Fear of acquiring COVID-19 may partly explain why record numbers of teachers have stopped teaching.¹⁰

Strategies to safely keep schools open include daily symptom screening, masking, physical distancing, extracurricular activity modifications, and optimization of facilities to minimize transmission.¹¹ Unfortunately, these approaches may not adequately reduce the risk of asymptomatic spread, which may account for as much as 60% of transmission in the community and specific sub-populations.¹² An optimal re-opening strategy for schools should also include routine SARS-CoV-2 testing with a high-performing test for all students and staff with a turnaround time that allows for rapid and impactful decisions. Substantial challenges include access to testing, cost, turnaround time, and policies for addressing positive test results.¹³ Most schools do not currently have the resources or bandwidth to implement a testing strategy for all.¹⁴,¹⁵

Pooling of samples from multiple individuals is a strategy used by commercial or reference laboratories to increase efficiency.¹⁶ By combining multiple samples in a single test, more people can be tested at lower cost. Pooling is most cost-effective for low-prevalence diseases, where most pools are expected to be negative. Because sample dilution may reduce sensitivity, it is critical to use technologies with high
analytical sensitivity.\textsuperscript{17} If the pool yields a negative test result, all samples are assumed to be negative. If it is positive, additional testing is used to identify the infected individuals.

The traditional application of pooling generally does not consider pool composition on social or geographic relationships. In contrast, “pooling-in-a-pod” is a public health surveillance strategy in which cohort-specific testing pools are composed using epidemiologic characteristics such as social relationships and physical proximity. In schools, pools may be classrooms or staffing clusters (e.g., cafeteria workers, administration team). Pooling-in-a-pod uses these natural relationships so that actions taken on a positive test result (e.g., contact tracing and confirmatory testing) can be similar for all pool members.

**PURPOSE**

The goal of this demonstration was to evaluate the feasibility of a pooling-in-a-pod strategy to reduce the number of infections on campus, minimize testing resource requirements, and maintain continuity of operations, thereby enabling schools to safely operate in the COVID-19 era.

**METHODS**

The demonstration project was conducted in a not-for-profit, independent day school in Washington, D.C., with 900 children and 276 faculty, staff, and contractors on two campuses, operating in a two-cohort, hybrid learning model for grade 1–12 students and fully in-person for preschool and kindergarten. This project was conducted as an institutional review board-approved study with consent from parents and staff, and assent by students. The school and its research partners used intentional design principles to design the project, including outlining project leadership, goals, available resources, scenario planning, operations, and stakeholder engagement (Figure 1).

An online calculator\textsuperscript{18} was used to compare various hypothetical testing scenarios.\textsuperscript{19} Weekly testing plus symptom tracking with a $20, 60\% positive agreement, 98\% negative agreement test (e.g., individual antigen test in asymptomatic people) was estimated to cost $30.95 per person per week with confirmatory testing or $20.45 without and would reduce infections compared to symptom tracking only by 47\% but result in 322 false positive results over 100 days. In contrast, a $175, 98\% positive
agreement, 99.5% negative agreement test (e.g., RT-PCR test) with same-day results administered weekly using pooling-in-a-pod with 14 people per pool was estimated to cost $21.57 per person per week with confirmatory testing, or $13.17 without, and would reduce infections by 98% but result in 82 false positive results over 100 days.

Based on this exercise, the school selected the portable, single-use Visby Medical COVID-19 test (Visby Medical, Palo Alto, CA), with performance similar to other nucleic acid amplification tests (NAATs), but conducted on-site with a 30-minute turnaround time. The device was validated for pool sizes of 5–25; limit of detection was 2000 genomic copies/mL at 15 swabs per pool. All swabs were introduced directly into a single buffer vial to minimize dilution during pooling. The target pool sizes of 8–14 for students and 4–6 for teachers/staff were based on class size, schedule, and estimated daily new cases in Washington, D.C. The range of 24 – 46 new cases per 100,000 population during the study period corresponded to a moderate community transmission risk. The school required persons to have a weekly negative test result to enter campus, either through the school pooled testing program at no cost to the participant, or through individual NAATs at the same frequency at their own expense. Alternatively, students could opt for distance learning only.

After a one-day, on-site training, the school operated all daily aspects including sample collection, device operation, data logging in secure software, and communications (Figure 2). Students tested twice per week when attending school in-person and did not test in their off week, resulting in an average testing frequency of once per week. Staff and younger students in full, on-site learning tested weekly. Grades 6–12 students and all staff provided self-collected anterior nares samples and a trained clinician collected anterior nasal samples from students preschool to grade 5.

Pooled, not individual, results were communicated to staff and families via a single community-wide email update after each round of testing. If a pool was negative, all participants remained on campus. If a student pool was positive, students in that pool were sent home and advised to seek a NAAT in a clinical setting. If a staff pool was positive, all participants in that pool were asked to provide additional samples for sub-pooling, which minimized the number of staff adversely impacted by being in a positive pool. When a staff sub-pool was positive, members were confidentially advised to seek NAATs covered.
by employer insurance. Individuals in a positive pool could not return until a negative NAAT result was available.

OUTCOMES

From November 30, 2020, to March 3, 2021, 815 students and 276 staff and contractors participated at least once in the testing program. Up to 420 students and 185 staff were tested each session; a total of 6,746 samples were tested in 969 pools. Average pool size was 7.3 (range 2–17). Testing time from sample collection to result averaged 40 minutes. Over 15 testing sessions in the study period, there were 967 negative and two positive pools. One positive pool of four staff led to one positive and one negative sub-pool. Outside individual confirmatory testing identified a single positive person. A second positive pool of four staff was determined to be a false positive based on follow-up sub-pooling. One individual reported a positive outside test during the study period, 4 days after a negative pooled test. Four people tested positive over the holiday break when no school testing was being performed. The weekly direct per-person cost of the program was calculated identifying the cost per person per week, including swab, and applying a weighted average to calculate the overall per person cost. The direct per-person cost of the program was $24.77.

Parents of grade 6–12 students and staff were surveyed after 3 weeks of testing; 309 parents, 88 students, and 84 staff responded (Table 1). After the program was launched, the majority of parents (90%), students (93%), and staff (99%) were open to participation. Parents, students, and staff reported increased comfort with in-person learning (82%, 76%, 65% respectively). Comments included the need for accurate, rapid results; a testing program that included everyone on campus; and minimized disruption to learning. Concerns centered on privacy, confidentiality, or responsibility for confirmatory testing. Prior to implementation in November 2020, 129 (14.3%) of students were in a distance learning model. As of March 1, 2021, only 87 (9.7%) of students remained in a distance learning model. This corresponded to a 32.6% decrease in virtual learning after initiation of the program.

LESSONS LEARNED

Pooling-in-a-pod allows for more accessible COVID-19 testing in primary and secondary schools. This approach balances cost and convenience while optimizing turnaround time, frequency, and performance. The program has a high acceptance and increases comfort with in-person attendance. It enables maximal
on-campus learning within the framework of local restrictions. This program identified asymptomatic infection, possibly averting ongoing transmission.

Pooling-in-a-pod reduces costs and increases throughput. By assembling pools based on social networks and geography, particularly when coupled with rapid turnaround time, schools can make rapid decisions that can preserve continuity of operations. Although this school required individual confirmatory diagnostic testing (and shifted this cost to insurance or publicly funded testing programs), other schools may instead use quarantine or isolation to further reduce organizational costs.²⁷

This program was implemented with only one month of lead time. This could be shortened through adaptation of existing protocols and educational materials. Pooling-in-a-pod could potentially be scaled up rapidly with funding, leadership, and support from federal, private, and non-profit partners in health and education, even in settings such as public schools where implementation and workforce capacity are more limited. Even as progressively larger numbers of teachers are vaccinated, vaccination of school children will take time. Not all members of a school community may be vaccinated, and it is not yet clear what the risk of asymptomatic shedding is among vaccinated individuals. Given the increasing body of evidence suggesting negative effects of remote learning on students, families, and society, introduction of school surveillance testing programs may be an important investment, complementing other mitigation efforts.

This study had several limitations. The overall high approval of the program may not be generalizable to other settings. Indirect costs were not included in actual cost estimates, the primary indirect cost being program staffing. Many schools will require additional human and financial resources to implement a testing program than were required for this demonstration project. However, pooled testing can reduce the cost of a testing program through efficiency gains. On-site or near-site high-throughput testing platforms may reduce costs further with a minimal loss of turnaround time.

Pooling-in-a-pod is a cost-effective, feasible, and acceptable surveillance testing strategy for primary and secondary schools to safely operate in-person when included as part of a comprehensive package of interventions to reduce transmission of SARS-CoV-2. Other innovations, including on-site and near-site dedicated labs, should be developed to facilitate national scale-up for all children. Pooling-in-a-pod
public health surveillance could also be implemented for businesses and other institutions where in-person presence is essential.

**ACKNOWLEDGEMENTS:** Students, parents, and staff of the Washington International School; Bruce Tromberg, PhD, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH).
REFERENCES


FIGURE 1. Design and implementation of a school-based pooling-in-a-pod strategy.

1. Identify roles and responsibilities (school lead and technical mentor)
2. Review program goals
3. Review current COVID-19 abatement strategies
4. Review current and potentially available resources
5. Explore and select testing technology
6. Identify natural pods for pooling
7. Use UHG's Calculator* to evaluate local prevalence, school population, and testing frequency
8. Develop SOPs for testing process
9. Develop SOPs for communicating positive and negative results, responding to positives and contact tracing
10. Ensure buy-in from all stakeholders

* calculator.unitedinresearch.com
FIGURE 2. Operational flowchart for pooling-in-a-pod testing of faculty and students.

<table>
<thead>
<tr>
<th>Testing Strategy</th>
<th>Testing Operations</th>
<th></th>
<th>Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pool size and test technology selected using calculator</td>
<td>Students and staff assigned to pools based on classes or work assignments</td>
<td>Test frequency determined by calculator and community virus levels</td>
<td>Swabs from a pool are combined into a single test tube and agitated</td>
</tr>
<tr>
<td>Samples are self collected under supervision</td>
<td>If pool is negative, classes continue, and participants (and parents) are notified.</td>
<td>If student pool is positive, parents of students in the positive pool are notified to pick up students and seek confirmatory testing.</td>
<td>If a staff pool is positive, staff are sub-pooled at school. All staff in a positive sub-pool are sent to a clinical facility for confirmatory testing.</td>
</tr>
</tbody>
</table>
TABLE 1. Parent, student, and staff attitudes to pooled testing in a survey administered three weeks after program initiation.

<table>
<thead>
<tr>
<th>QUESTION</th>
<th>PARENTS n=309</th>
<th>STUDENTS (Grades 6-12) n=88</th>
<th>STAFF n=84</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Response Rate (%)</strong></td>
<td>24</td>
<td>19</td>
<td>38</td>
</tr>
<tr>
<td><strong>QUESTION</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testing students, staff, and faculty on a regular basis is important to ensure that school can remain open and the WIS community can be as safe as possible.</td>
<td>92</td>
<td>95</td>
<td>93</td>
</tr>
<tr>
<td>Pre-launch: I am open to being part of a pooled testing protocol once or twice a week, with an individual confirmatory test required if the pool is positive</td>
<td>89</td>
<td>88</td>
<td>92</td>
</tr>
<tr>
<td>Post-launch: I am open to being part of a pooled testing protocol once or twice a week, with an individual confirmatory test required if the pool is positive</td>
<td>90</td>
<td>93</td>
<td>99</td>
</tr>
<tr>
<td>I feel that students or faculty who refuse to be tested individually or as part of a pool on a frequent basis should not be allowed to attend in person classes.</td>
<td>80</td>
<td>83</td>
<td>74</td>
</tr>
<tr>
<td>After being trained, I am comfortable collecting my own sample under observation at the school.</td>
<td>N/A^1</td>
<td>88</td>
<td>96</td>
</tr>
<tr>
<td>I believe the testing program increases my comfort with the school moving toward full, in-person learning, even if other schools in the area remain in hybrid or stay-at-home models.</td>
<td>82</td>
<td>76</td>
<td>65</td>
</tr>
<tr>
<td>Now that I have been tested, I believe it is just as important to wear a mask, wash hands, and maintain physical distancing.</td>
<td>N/A</td>
<td>92</td>
<td>96</td>
</tr>
</tbody>
</table>

^1 N/A: Not Applicable