Abstract
In the context of the ongoing COVID-19 pandemic, while millions of people await the administration of a vaccine, social distancing remains the leading approach towards the effect commonly known as “flattening the curve” of infections. Over the last year, governmental administrations throughout the globe have implemented various lockdown policies in hopes of slowing down the transmission of the disease. However, the current lack of consensus on when and how these policies should be implemented reflects the need for further studies regarding these questions. In this paper, we tackle the issue of lockdown policy management, in particular in terms of lockdown placement (how often, when, and how long these periods should be), in order to minimize the peak of infections in a specific population. We introduce a novel combination of classic mathematical disease modelling using the equation-based SEIR model, and Evolutionary Strategies (ES) for optimizing the peak of infections. The method is evaluated using data collected in different countries, and a particular focus is placed on the study of the effect of specific model parameters on lockdown optimization, such as the transmission rate (β), of which 4 alternative modelling functions have been proposed and analyzed. Our results indicate that this transmission rate parameter significantly influences the resulting optimal strategies. In particular, the presence of a gradual decay of the rate of transmission during lockdown leads to longer, more sparsely placed confinement periods while an abrupt, instantaneous drop in the amount of contacts per person favors shorter but more frequent lockdowns. Although these results are limited by the scope of action provided by the simplicity of the SEIR model, they suggest that the influence of the evolution of the rate of transmission along the disease should be assessed in further studies with alternative optimization strategies (agent-based) and models (SEIRSHUD).
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
No funding obtained
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Data available in a public (institutional, general or subject specific) repository that does not issue datasets with DOIs (non-mandated deposition).