Title: Point-of-care ultrasonography for risk stratification of non-critical suspected COVID-19 patients on admission (POCUSCO): a prospective binational study

Author list
François Morin¹, Delphine Douillet², Jean François Hamei³, Dominique Savary⁴, Christophe Aubé⁵, Karim Tazarourte⁶, Kamélia Marou⁷, Florence Dupriez⁹, Philippe Le Conte¹⁰, Thomas Flament¹¹, Thomas Delomas¹³, Mehdi Taalba¹⁴, Nicolas Marjanovic¹⁵, Francis Couturaud¹⁸, Nicolas Peschanski¹⁹, Thomas Boishardy¹, Jérémie Riou²⁰, Vincent Dubé²¹,²², Pierre-Marie Roy¹,²

Affiliations
¹ Department of Emergency Medicine, University Hospital of Angers, Angers, France
² UNIV Angers, UMR MitoVasc CNRS 6215 INSERM 1083, Angers, France
³ Department of Methodology and Biostatistics, University Hospital of Angers, Univ Angers, France
⁴ UNIV Angers, IRSET (Institut de recherche en santé, environnement et travail) – UMR_S 1085, F-49000, Angers, France
⁵ Department of Radiology, University Hospital of Angers, Univ Angers, Angers, France
⁶ Claude Bernard University of Lyon, Research on Healthcare Performance (RESHAPE), INSERM U1290, Lyon, France
⁷ Groupement hospitalier Édouard-Herriot, Hospices Civils de Lyon, Emergency Department, Lyon, France
⁸ Department of Emergency Medicine, Hospital of Cholet, Cholet, France
⁹ Department of Emergency Medicine, Cliniques Universitaires Saint-Luc, Brussels, Belgium
¹⁰ Department of Emergency Medicine, University Hospital of Nantes, Nantes, France
¹¹ Department of Pulmonology University Hospital of Tours, Tours, France
¹² Société de Pneumologie de Langue Française, chest ultrasound working group (GECHO)
¹³ Department of Emergency Medicine, Hospital of Saint-Lo, Saint-Lo, France
¹⁴ Department of Emergency Medicine, University Hospital of Rouen, Rouen, France
¹⁵ Univ Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, France
¹⁶ Department of Emergency Medicine, University Hospital of Poitiers, Poitiers, France
¹⁷ INSERM CIC1402 Team 5 - Acute Lung Injury and VEntilatory support
¹⁸ Department of Internal Medicine and Chest Diseases, CHU Brest, EA3878, Univ Brest, Brest, France
¹⁹ Department of Emergency Medicine, University Hospital of Rennes, Rennes, France
²⁰ UNIV Angers INSERM, UMR 1066, CNRS 6021, MINT,
²¹ Infectious Diseases and Tropical Medicine, University Hospital of Angers, Angers, France
²² Univ Angers, Univ Nantes, CRCINA, Inserm, 44200 Nantes, France

Corresponding author information
François Morin, MD
Univ Angers, University Hospital of Angers, Emergency Department,
4, rue Larrey, 49933 Angers Cedex 9, France
Phone : +33(0)666431611 ; Fax : +33(0)241356651
Email : Francois.Morin@chu-angers.fr

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Background
Lung point-of-care ultrasonography (L-POCUS) is highly effective in detecting pulmonary peripheral patterns and may allow early identification of patients who are likely to develop an acute respiratory distress syndrome (ARDS). We hypothesized that L-POCUS performed during the initial examination would identify non-severe COVID-19 patients with a high risk of getting worse.

Methods
POCUSCO was a prospective, multicenter study. Non-critical adult patients who were admitted to the emergency department (ED) for suspected or confirmed COVID-19 were included and had L-POCUS performed within 48 hours following admission. The severity of lung damage was assessed using the L-POCUS score based on 36 points for ARDS. The primary outcome was the rate of patients requiring intubation or who died within 14 days following inclusion.

Results
Among 296 participating patients, 8 (2.7%) had primary outcome. The area under the curve (AUC) of the receiver operating characteristic of L-POCUS was 0.80 [95%CI:0.60-0.94]. The score values which achieved a sensibility > 95% in defining low-risk patients and a specificity > 95% in defining high-risk patients were <1 and ≥16, respectively. The rate of patients with an unfavorable outcome was 0/95 (0%[95%CI:0-3.9]) for low-risk patients (score=0) versus 4/184 (2.17%[95%CI:0.8-5.5]) for intermediate-risk patients (score 1-15) and 4/17 (23.5%[95%CI:11.4-42.4]) for high-risk patients (score ≥16). In patients with confirmed COVID-19 (n=58), the AUC of L-POCUS was 0.97 [95%CI:0.92-1.00].

Conclusions
L-POCUS allows risk-stratification of patients with suspected or confirmed COVID-19. These results should be confirmed in a population with a higher risk of an unfavorable outcome.

Trial registration number: NCT04338100
Key words: Prognosis; Lung ultrasound; COVID-19; Emergency department.
ARTICLE

BACKGROUND

The COVID-19 pandemic has developed worldwide since its emergence in China in December 2019.[1–3] The majority of patients has a mild or uncomplicated course (81%) with minor symptoms such as headache, loss of smell, or cough. However, around 14% of patients develop respiratory symptoms and require hospitalization.[4] Median time from illness onset to dyspnea is 6 to 8 days and around 5% of the patients develop acute respiratory distress syndrome (ARDS), usually between Day 7 and Day 10.[4–6] The rapid progression of respiratory failure soon after the onset of dyspnea is a striking feature of COVID-19.[7],[8] There is an urgent need for reliable tools which can identify patients who are likely to get worse and develop ARDS early on.

Pulmonary computed tomography (CT-scan) appears to be very sensitive (97%) and quite specific for diagnosis of COVID-19 in patients with a clinical suspicion, provided that it is not performed within the first 4 days after symptom onset.[9,10] COVID-19 manifests itself on CT-scans as bilateral, subpleural, ground-glass opacities with air bronchograms, and ill-defined margins.[11] Those patterns can precede the positivity of the Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) for SARS-CoV-2.[12,13]

Lung point-of-care ultrasonography (L-POCUS) is a simple, non-invasive, non-irradiating, inexpensive imaging tool that is available at the bedside and used more and more by emergency physicians in their everyday clinical practice. L-POCUS seems to be better than chest X-ray in detecting pneumonia and may be an alternative to the CT-scan as a screening and prognostic tool.[14] Indeed, L-POCUS is highly effective in detecting peripheral patterns and pleural abnormalities, and seems appropriate for triaging COVID-19 patients.[15] A recent review highlights its potential value in decision making for triage or follow-up.[16] Many physicians have placed their hopes in this device, as shown by the number of publications reporting personal experiences or case reports but few prospective studies have been carried out on this topic, and, to our knowledge, no robust data have been yet provided on the prognostic value of L-POCUS in COVID-19 patients.
The aim of this study is to determine the performance of L-POCUS at the time of ED admission in identifying, among patients with confirmed or highly suspected COVID-19, those who are at high-risk of adverse outcomes such as respiratory failure or death.
METHODS

Study design and participants
The point-of-care ultrasonography for risk stratification of COVID-19 patients’ study (POCUSCO) was a non-interventional, prospective, multicenter study that was conducted in 11 participating hospitals in France and Belgium.

Patients were enrolled if they met all of the following criteria: (1) adult patients (≥ 18 years old); (2) typical COVID-19 symptoms and at least one of the three following features: i) positive SARS-CoV-2 RT-PCR, ii) typical CT-scan lesions, iii) COVID-19 is the main diagnostic hypothesis by the in-charge physician; (3) no requirement for respiratory support and/or other intensive care, and not subject to a limitation of care; (4) membership of a social security scheme.

Patients for whom the follow-up at Day 14 was impossible or who had a condition making lung ultrasonography impossible (body mass index > 35 kg/m², history of pneumonectomy) were excluded.

The initial evaluation was carried out by the physician-in-charge and patients were treated as standard.[17] All participating patients underwent L-POCUS and a score reflecting the intensity and the extension of lung involvement was determined.[18] This score was previously developed for ARDS (see below).[18,19] For patients who were subsequently hospitalized, a second L-POCUS was performed on Day 5 ± 3 under the same conditions as the first one, whenever it was possible.

Patients were followed up by phone at Day 14 and their clinical status recorded according to the Ordinal Scale for Clinical Improvement for COVID-19 from the World Health Organization (WHO-OSCI) (Table 1).[20]

Table 1. Ordinal Scale for Clinical Improvement (OSCI) of the World Health Organization (WHO)

<table>
<thead>
<tr>
<th>Patient state</th>
<th>Descriptor</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uninfected</td>
<td>No clinical or virological evidence of infection</td>
<td>0</td>
</tr>
<tr>
<td>Ambulatory</td>
<td>No limitation of activities</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Limitation of activities</td>
<td>2</td>
</tr>
<tr>
<td>Hospitalized Mild Disease</td>
<td>Hospitalized, no oxygen therapy</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Oxygen by mask or nasal prongs</td>
<td>4</td>
</tr>
<tr>
<td>Hospitalized Severe Disease</td>
<td>Non-invasive ventilation or high-flow oxygen</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Intubation and mechanical ventilation</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Ventilation + additional organ support: pressors, renal replacement therapy, ECMO…</td>
<td>7</td>
</tr>
<tr>
<td>Dead</td>
<td>Death</td>
<td>8</td>
</tr>
</tbody>
</table>
Objectives and outcomes

The main objective was to assess the ability of L-POCUS to identify COVID-19 patients with a high-risk of an unfavorable outcome. The primary endpoint was the development of severe COVID-19 within the 14 days after ED admission defined as a stage of the WHO-OSCI ≥ 6. This stage relates to a severe inpatient requiring intubation and invasive ventilation (stage 6), and/or additional organ support (stage 7) or who died whatever the cause (stage 8). The ability of L-POCUS to predict the primary outcome occurrence was evaluated by the area under the curve (AUC) of the receiver operating characteristic (ROC) curve and its 95% confidence interval (95%CI). A sensitivity analysis was performed with the 14-day all-cause mortality rate as the outcome.

The secondary objectives were:

1) To determine the threshold values of L-POCUS to perform risk stratification in three groups of patients: low-risk patients, intermediate-risk patients, and high-risk patients.
2) To assess the impact of adding the result of POCUS evaluation to two risk-stratification clinical scores: the quick Sequential Organ Failure Assessment (qSOFA) and the CRB-65.[21,22]
3) To assess the impact of the knowledge and experience of the operator level (novice, confirmed or expert) on the L-POCUS performance.

We performed a subgroup analysis in patients for whom the diagnosis of COVID-19 was initially or subsequently confirmed by a positive RT-PCR for SARS-CoV-2.

Lung point-of-care ultrasonography

L-POCUS was performed with ultrasound scanners using low frequency (2-5 MHz) transducers, convex or small linear type probes. The Bedside Lung Ultrasound in an Emergency (BLUE)-Protocol was applied to patients in erect or semi-recumbent positions depending on dyspnea severity (Figure 1).[19] Each chest wall was divided by the anterior and posterior axillary lines into anterior, lateral, or posterior regions. All intercostal spaces of the upper and lower parts of these regions were examined, resulting in a total of 12 areas of investigation. Each area was examined for at least one complete respiratory cycle. Four ultrasound aeration patterns were defined and scored 0 to 3, allowing calculation of the L-POCUS score, theoretically ranging from 0 to 36 (Figure 1).[18,23] Considering biological risk of infection, special protective precautions were taken to protect the operator and other patients as recommended.[24]
Ethics and financials
This study was conducted in accordance with the Declaration of Helsinki, as amended. The protocol was approved by the Ethics Committee CPP Sud-Ouest et Outre-Mer II for France (No. 2020-A00782-37 / 2-20-025 id7566) and the Ethics Committee of the Cliniques Universitaires Saint-Luc for Belgium (No. 2020/14AVR/223). Written informed consent was obtained from all patients. The study was funded by a grant from the French Ministry of Health (PHRC-I, April 2020, COVID19_A_001). This study adheres to STROBE guidelines, and all its details have been verified before submitting the manuscript.[25]

Statistical analyses
Continuous variables were expressed as mean and standard deviation values. Categorical variables were described using numbers, percentages and their 95% confidence intervals (95%CI). The AUCs and their 95% confidence interval were determined by the .632 bootstrap method. For the primary outcome, we determined in advance that the L-POCUS prognostic value would be considered as clinically relevant with a good level of evidence if the lower bound of the 95%CI of the AUC was equal to or greater than 0.7. To perform risk stratification in three groups of patients with a low, intermediate, or high-risk of an unfavorable outcome, two thresholds were calculated. The first maximized specificity with a sensitivity greater than or equal to 95% and the second maximized sensitivity with a specificity greater than or equal to 95%. For these threshold values, sensitivity, specificity, predictive values and likelihood ratios were assessed. To study the impact of adding the results of the L-POCUS evaluation to several risk stratification clinical rules for pulmonary infection or sepsis (qSOFA and CRB65), AUCs were compared with or without their components with a DeLong test. For this purpose, we attributed 0, 1, or 2 points in the L-POCUS result as low, moderate or high risk according to the predefined threshold values and assessed the AUC of the risk-stratification rules with and without adding the L-POCUS result value. Assuming a rate of death or tracheal intubation requirement of 10%, and expecting an AUC of 0.8, the number of patients required to achieve a lower limit of the 95%CI, more than 0.7, was estimated as 286. Taking into consideration that 5% of patients were not followed up or could not be evaluated, the sample size was defined as 300 patients. Missing data were not imputed. A descriptive analysis of missing data was performed and compared to the available data to assess a potential bias. All statistical analyzes were performed using STATA, version 14.2; StataCorp; College Station, TX.
RESULTS

Characteristics of study population

A total of 307 patients with suspected or confirmed SARS-CoV-2 infection were enrolled in this study. Among them, 2 were subsequently excluded and 9 were could not be followed up (2.93%) leaving 296 patients for the main analyses (Figure 2). The mean age of the overall population was 57 years (± 20.8), and 146 (47.6%) were men (Table 2). The more common symptoms of COVID-19 were dyspnea (n=230 [74.9%]) cough (n=193 [62.9%]), abnormal thoracic auscultation (n=149 [48.5%]) and chest pain (n=125 [40.7%]).

The L-POCUS was performed by an emergency physician considered an expert, an advanced technician and a novice in 32.2% (n=99), 44.3% (n=133) and 24.4% (n=75) of cases respectively. A CT-scan was performed on 170 patients (55.4%) and 40 patients (22.9%) had a second L-POCUS at Day 5 ± 3.

Table 2: Demographic and clinical characteristics of participating patients

<table>
<thead>
<tr>
<th>Epidemiological characteristics</th>
<th>All patients (N = 307)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean ± SD</td>
<td>56.94 ± 20.76</td>
</tr>
<tr>
<td>Gender, N (%)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>146 (47.6%)</td>
</tr>
<tr>
<td>Female</td>
<td>161 (52.4%)</td>
</tr>
<tr>
<td>Comorbidities, N (%)</td>
<td></td>
</tr>
<tr>
<td>Neurovascular diseases</td>
<td>24 (7.8%)</td>
</tr>
<tr>
<td>COPD</td>
<td>26 (8.5%)</td>
</tr>
<tr>
<td>Asthma</td>
<td>46 (15.0%)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>104 (33.9%)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>37 (12.0%)</td>
</tr>
<tr>
<td>Active neoplasia</td>
<td>18 (5.9%)</td>
</tr>
<tr>
<td>Chronic renal failure</td>
<td>19 (6.2%)</td>
</tr>
<tr>
<td>Hepatic insufficiency</td>
<td>6 (1.9%)</td>
</tr>
<tr>
<td>Chronic heart failure</td>
<td>26 (8.5%)</td>
</tr>
<tr>
<td>Clinical characteristics, N (%)</td>
<td></td>
</tr>
<tr>
<td>Confusion or GCS &lt; 15</td>
<td>10 (3.3%)</td>
</tr>
<tr>
<td>Cough</td>
<td>193 (62.9%)</td>
</tr>
<tr>
<td>Anosmia/ ageusia/ dysgeusia</td>
<td>50 (16.3%)</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>230 (74.9%)</td>
</tr>
<tr>
<td>Rhinorrhea</td>
<td>52 (16.9%)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>61 (19.9%)</td>
</tr>
<tr>
<td>Abnormal pulmonary auscultation</td>
<td>149 (48.5%)</td>
</tr>
<tr>
<td>Chest pain</td>
<td>125 (40.7%)</td>
</tr>
<tr>
<td>Vital parameters</td>
<td></td>
</tr>
<tr>
<td>Heart rate (bpm), mean ± SD</td>
<td>90.67 ± 18.30</td>
</tr>
<tr>
<td>SBP (mmHg), mean ± SD</td>
<td>136.43 ± 22.48</td>
</tr>
<tr>
<td>Temperature (°C), mean ± SD</td>
<td>37.16 ± 1.00</td>
</tr>
<tr>
<td>SpO2 (%), mean ± SD</td>
<td>96.55 ± 3.09</td>
</tr>
<tr>
<td>Respiratory rate (cpm), mean ± SD</td>
<td>21.96 ± 6.08</td>
</tr>
<tr>
<td>Oxygenotherapy, N (%)</td>
<td>85 (27.7%)</td>
</tr>
</tbody>
</table>

RT-PCR: reverse transcriptase polymerase chain reaction; COPD: chronic obstructive pulmonary disease; GCS: Glasgow coma scale; SBP: systolic blood pressure; SpO2: pulse-oxymetry; qSOFA score: quick sepsis related organ failure assessment score; C(U)RB-65 score: pneumonia scores based on confusion/(urea)/respiratory rate/blood pressure/age ≥ 65
Outcomes in the overall population

The results of the L-POCUS are outlined in Figure 3. At Day 14, among 296 analyzable patients, the main outcome occurred in 8 (2.7%) patients (seven were dead and one patient had required intubation and invasive ventilation). The AUC of L-POCUS was 0.80 (95% CI: 0.60-0.94) (Figure 4). The lower value of the 95% CI did not achieve the predefined value of 0.7 necessary to consider the performance of L-POCUS as clinically relevant. In the sensitivity analysis with the 14-day all-cause mortality rate as an outcome, the AUC of L-POCUS was 0.83 (95% CI: 0.66-1).

The AUC slightly increased according to the experience of the POCUS operator without significant difference: 0.86 (95% CI: 0.70-0.99), 0.82 (95% CI: 0.34-1) and 0.68 (95% CI: 0.56-0.78), for experts, confirmed or novices, respectively.

The highest L-POCUS with a sensitivity of at least 95% was 0 point and the lowest value with a specificity of at least 95% was 16 points. Using these cutoffs, 95 patients (32.1%) had a low-risk (score =0) and none of them had an unfavorable outcome at Day 14 (0% [95% CI: 0.0-3.9]); Sensitivity 100% [95% CI: 63.1-100.0]; Specificity 33.0% [95% CI: 27.6-38.7]; Positive likelihood ratio (LR+) 1.49 [95% CI: 1.4-1.6]; Negative likelihood ratio (LR-) 0; Positive predictive value (PPV) 3.9% [95% CI: 3.7-4.3]; Negative predictive value (NPV) 100%). 184 patients (62.4%) had intermediate-risk (score 1 to 15) and, among them, 4 (2.17% [95% CI: 0.8-5.5]) had an unfavorable outcome (Positive likelihood ratio (LR+) 0.8 [95% CI: 0.5-1.3]; Negative likelihood ratio (LR-) 1.33 [95% CI: 0.8-2.1]). Finally, 17 patients (5.7%) had a high-risk (score ≥ 16) and, among them, 4 (23.5%) had an unfavorable outcome at Day 14 (23.5% [95% CI: 11.4-42.4]); Sensitivity 50% [95% CI: 15.7-84.3]; Specificity 95.5% [95% CI: 92.4-97.6]; LR+ 11.1 [95% CI: 4.6-26.5]; LR- 0.5 [95% CI: 0.3-1.1]; PPV 23.5% [95% CI: 11.4-42.4]; NPV 98.6% [95% CI: 97.2-99.3]).

The AUCs of the risk prediction clinical rules qSOFA and CRB65 with and without addition of the L-POCUS score were 0.75 [95% CI: 0.56 to 0.94] and 0.52 [95% CI: 0.32 to 0.71], and 0.82 [95% CI: 0.68 to 0.99] and 0.72 [95% CI: 0.49 to 0.95], respectively.

Patients with Positive SARS-CoV-2

Among 240 patients tested (78.2%), 58 (24.2%) had a positive RT-PCR for SARS-CoV2. At Day 14, 4 patients with confirmed COVID-19 were dead (4/58, 6.9%). The AUC of L-
POCUS was 0.97 (95%CI: 0.92 – 1.00). Using the two thresholds defined in the overall cohort, L-POCUS determined 6 patients (10.5%) with low-risk and none of them had an unfavorable outcome at Day 14 (0% [95%CI: 0 to 21.5]; Sensitivity 100% [95%CI: 39.8-100]; Specificity 11.3% [95%CI: 4.3-23.0]). 43 patients (75.4%) presented an intermediate-risk and none of them had an unfavorable outcome (0% [95%CI: 0-8.2]). Among 8 patients (14.0%) presenting a high-risk, 4 had an unfavorable outcome (50.0% [95%CI: 23.7-76.3]; Sensitivity 50% [95%CI: 15.7-84.3]; Specificity 92.0% [95%CI: 80.8-97.8].
DISCUSSION

In our prospective POCUSCO study of non-severe patients with confirmed or suspected COVID-19, L-POCUS has had good results in predicting the occurrence of death or requirement for invasive ventilation within the 14 days following ED admission and it appears to be a promising tool for risk stratification. However, because of a lower-than-expected rate of patients with an unfavorable outcome, the confidence intervals of our estimates are wide with an upper value of the AUC not achieving the predefined value of 0.7 to consider the L-POCUS prognostic value as clinically relevant with a good level of evidence. Based on its performance in diagnosing pneumonia and ARDS, L-POCUS ought to be a useful diagnostic and risk stratification tool in the initial assessment of suspected COVID-19 patients.[14,26,27] It is currently considered an alternative to physical examination for suspected COVID-19 patients in the emergency department.[27] However, this position is mainly based on expert opinion and few trials have been published. Moreover, most of them are monocentric studies assessing the correlation of L-POCUS with chest CT scans in detecting lung abnormalities suggestive of COVID-19 and/or its value in diagnosing patients with suspected COVID-19. Globally, they suggest a high sensitivity at around 90% but with a low specificity at around 25%, depending on disease prevalence.[28,29] Those estimates are greater than the first RT-PCR value.[29] L-POCUS would provide an effective estimate of the extent of the pulmonary histological damage.[30]

To our knowledge, only one previous study assessed the performance of L-POCUS in identifying patients with suspected or confirmed COVID-19 at risk of deteriorating. Indeed, Bonadia et al. conducted a prospective study in 41 COVID-19 patients and showed the higher the rate, the higher the in-hospital mortality and need for intensive care admission.[31] Our results therefore provide further important data regarding prognostication and triage with L-POCUS.

Ultrasonography including L-POCUS was questioned for its lack of reproducibility, being dependent on the examiner. To avoid this pitfall, standardized procedures have been proposed.[32] We used a revised BLUE protocol previously validated in patients with ARDS.[18] Based on the screening of twelve chest areas and on weighting with four aeration patterns, this score is quick and easy to achieve, which is particularly relevant in the Emergency Department and in the context of the strain on health resources.[18]
patterns are easy to recognize and the use in our study of pocket cards with the L-POCUS score (Figure 1) make it easy for most emergency physicians to apply. It is important to note that in previous studies, L-POCUS were performed by experienced emergency physicians, all certified for lung ultrasound.[33,34] In our trial, nearly a quarter of the exams were performed by novices physicians without any significant difference in terms of the AUC of L-POCUS from the exams performed by experts. Indeed, a short training with 25 supervised L-POCUS helps novices acquire skills in L-POCUS.[35]

With an AUC of 0.80, the global performance of L-POCUS is good in our overall population and similar results were observed by considering only patients who died as an outcome. They are even better in the subgroup of patients with positive RT-PCR for SARS-CoV2, the lower limit of the AUC being higher than 0.9. These results are particularly relevant in the current context of organized mass screening. Unlike at the start of the pandemic, most of the patients consulting the ED have the results of testing or could benefit from a quick test for COVID-19. Moreover, recent data suggest that "thickening of the pleural lining, may be an important pattern for L-POCUS assessment of the prognosis of COVID-19 patients.[36] The inclusion of this criterion in a revised version of the score in a future study may improve the risk-stratification performance of L-POCUS for COVID-19 patients.

In terms of implementing L-POCUS as a triaging tool in every day clinical practice, we aimed to stratify the result into three risk categories. None of the 95 patients who were determined to be low-risk (L-POCUS score = 0) suffered significant deterioration and home treatment may be suitable for these patients, if they lack comorbidities or a living condition which precludes this option. It is important to note that only one patient with a L-POCUS score < 6 had an unfavorable outcome within the 14 days following ED admission. This patient was not positive with SARS-CoV-2 and died from pulmonary malignancy. On the other hand, 4 of 17 patients determined as high risk (score ≥ 16) died. All of them had a positive RT-PCR SARS-CoV-2 and died from COVID-19. Nevertheless, these results must be considered carefully before using L-POCUS in the early triage of COVID-19 patients, at least as a standalone tool.

In our trial the prognostic performance of the qSOFA and CRB-65 were low but the addition of the L-POCUS to these clinical rules slightly improved their performance in terms of the AUC: +0.23 for qSOFA and +0.1 for CRB-65. These results are in line with the study of Bar et al showing that a model combining the qSOFA and 4 ultrasound findings has good value as
a diagnostic tool (AUC: 0.82 [95%CI: 0.75 – 0.90]) of.[37] The best result was obtained with CRB-65 + L-POCUS with an AUC of 0.82 [95%CI: 0.68 to 0.99]. However, the lower limit of the 95%CI did not achieve the prespecified level of 0.7.

To our knowledge, POCUSCO is the largest multicentric, prospective study evaluating L-POCUS to risk-stratify COVID-19 patients. Nevertheless, it has some limitations, one of the more important being the low primary endpoint rate. On the basis of the first cohorts of COVID-19 inpatients, we considered a rate of mortality or invasive ventilation requirement of 10%, at the time the protocol was written.[38] It was actually 7% in confirmed COVID-19 patients and only 2.4% in our overall cohort. Several factors may explain this discrepancy: differences in the completeness of testing and case identification, variable thresholds for hospitalization and Intensive Care Unit admission, and improvement in patients’ care.[39] Moreover, only a quarter of participating patients had a positive RT-PCR for SARS-CoV-2, the other patients may have had a minor form of COVID-19 or another less severe disease. Nevertheless, our results are in line with the 1.4% mortality rate and 2.3% rate of patients who underwent invasive mechanical ventilation in the cohort of Guan et al.[4] Finally, in the absence of a derivation model, it is not methodologically justified to assess the calibration of L-POCUS.[18] Another study must be carried out to validate our results on an independent cohort.
INTERPRETATION

L-POCUS allows risk-stratification of suspected or confirmed COVID-19 patients. Using a 36-points score initially defined for ARDS, L-POCUS determined patients with an exact score of to be low-risk and patients with a score $\geq 16$ to be high-risk of death or of requiring invasive ventilation. Further studies are needed to confirm these results and to determine whether a global multimodal model, integrating L-POCUS score value and other considerations, would enable the risk stratification of COVID-19 patients more precisely than the L-POCUS score alone.
REFERENCES


FIGURE LEGENDS

Figure 1.

Panel A. Lung Point Of Care Ultrasonography Method (L-POCUS)

a. Twelve chest areas of investigation following BLUE-PLUS Protocol: zone 1: upper anterior chest wall; zone 2: lower anterior chest wall; zone 3: upper lateral chest wall; zone 4: lower lateral chest wall; zone 5: upper posterolateral chest wall; zone 6: lower posterolateral chest wall

b. L-POCUS score grid: Each zone was examined to establish which of four ultrasound parenchymal aeration stages it exhibited, and points are assigned to them according to their severity. Stage 0 or normal aeration (0 point): Lung sliding sign associated with respiratory movement of less than 3 B lines; Stage 1 or moderate loss of lung aeration (1 point): a clear number of multiple visible B-lines with horizontal spacing between adjacent B lines ≤ 7 mm (B1 lines); Stage 2 or severe loss of lung aeration (2 points): multiple B lines fused together that were difficult to count with horizontal spacing between adjacent B lines ≤ 3 mm, including “white lung”; and Stage 3 or pulmonary consolidation (3 points): hyperechoic lung tissue, accompanied by dynamic air bronchogram.

Panel B. Examples of four ultrasound aeration stages

a. Stage 0 or normal aeration b. Stage 1 or moderate loss of lung aeration; c. Stage 2 or severe loss of lung aeration; d. Stage 3 or pulmonary consolidation.

Figure 2. Study flow chart. COVID-19: Coronavirus disease 2019; L-POCUS: lung point of care ultrasonography; OSCI: ordinal scale for clinical improvement

Figure 3. Distribution of L-POCUS score according to Ordinal Scale for Clinical Improvement at Day 14. Ordinal Scale for Clinical Improvement (OSCI) < 6 (blue); OSCI ≥ 6 (red)

Figure 4. L-POCUS prognostic performance. Receiver operating characteristic (ROC) curve of prognostic performance of global L-POCUS with its area-under-the-curve (AUC) and its 95% confidence interval (95%CI)
Figure 1.

Panel A.

Panel B.

<table>
<thead>
<tr>
<th>ZONE 5</th>
<th>ZONE 3</th>
<th>ZONE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 0</td>
<td>□ 0</td>
<td>□ 0</td>
</tr>
<tr>
<td>Stage 1</td>
<td>□ 1</td>
<td>□ 1</td>
</tr>
<tr>
<td>Stage 2</td>
<td>□ 2</td>
<td>□ 2</td>
</tr>
<tr>
<td>Stage 3</td>
<td>□ 3</td>
<td>□ 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZONE 6</th>
<th>ZONE 4</th>
<th>ZONE 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 0</td>
<td>□ 0</td>
<td>□ 0</td>
</tr>
<tr>
<td>Stage 1</td>
<td>□ 1</td>
<td>□ 1</td>
</tr>
<tr>
<td>Stage 2</td>
<td>□ 2</td>
<td>□ 2</td>
</tr>
<tr>
<td>Stage 3</td>
<td>□ 3</td>
<td>□ 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZONE 1</th>
<th>ZONE 3</th>
<th>ZONE 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 0</td>
<td>□ 0</td>
<td>□ 0</td>
</tr>
<tr>
<td>Stage 1</td>
<td>□ 1</td>
<td>□ 1</td>
</tr>
<tr>
<td>Stage 2</td>
<td>□ 2</td>
<td>□ 2</td>
</tr>
<tr>
<td>Stage 3</td>
<td>□ 3</td>
<td>□ 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZONE 2</th>
<th>ZONE 4</th>
<th>ZONE 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 0</td>
<td>□ 0</td>
<td>□ 0</td>
</tr>
<tr>
<td>Stage 1</td>
<td>□ 1</td>
<td>□ 1</td>
</tr>
<tr>
<td>Stage 2</td>
<td>□ 2</td>
<td>□ 2</td>
</tr>
<tr>
<td>Stage 3</td>
<td>□ 3</td>
<td>□ 3</td>
</tr>
</tbody>
</table>

L-POCUS score /36
307 patients with COVID-19 were enrolled

2 patients were excluded
  1 did not meet inclusion criteria
  1 withdrew consent

305 patients had L-POCUS performed within 48 hours

9 were lost to follow up at Day 14

296 patients were included in the main analysis at Day 14
Figure 3.

- Patients without intubation or death at Day 14 (OSCI < 6)
- Patients who have been intubated or who died of whatever the cause at Day 14 (Primary endpoint, OSCI ≥ 6)
Figure 4.

Empirical AUC of L-POCUS score
Fitted AUC of L-POCUS score

AUC 0.800
95% CI [0.56 - 0.93]