SEROPREVALENCE OF HEPATITIS B VIRUS INFECTION AMONG HIV INFECTED INDIVIDUALS IN UYO, AKWA IBOM STATE, NIGERIA

Hope C. Innocent-Adiele¹, Baah B. T. Michael¹, Iheanyi O. Okonko¹, Ogbonnaya Ogbu²

¹Virus Research Unit, Department of Microbiology, University of Port Harcourt, Port Harcourt, Nigeria; ²Virology, Immunology & Epidemiology Research Unit, Department of Applied Microbiology, Ebonyi State University, Abakaliki, Nigeria

*Corresponding author’s email address: iheanyi.okonko@uniport.edu.ng, Tel: +2348035380891

ABSTRACT

Aim: Hepatitis B and Acquired Immunodeficiency Syndrome (AIDS) are highly endemic in Nigeria and are important causes of death and disability. Co-infection between hepatitis B virus (HBV) and Human Immunodeficiency Virus (HIV) commonly occur as both viruses share a common mode of transmission. This leads to fulminant hepatitis and liver cirrhosis depending on the stages of infection which are acute and chronic stages respectively. This study was carried to determine the prevalence of hepatitis B virus (HBV) among HIV-infected individuals in Uyo, Akwa Ibom State, Nigeria.

Methods: In this study 176 HIV-infected individuals were recruited comprising 67 males and 109 females. These subjects were screened for the presence of hepatitis B surface antigen (HBsAg) using enzyme linked immunosorbert assay.

Results: From those tested, 11 were positive for HBsAg giving an overall prevalence rate of 6.3%. Co-infection rate of males (8.5%) did not differ significantly (p>0.05) from that of females (6.4%). Co-infection was highest in age group 6-30 years (28.2%). In relation to marital status, singles had the higher co-infection rates (10.5%) than married subjects (4.7%). Among the different occupational groups, students had the highest co-infection rate (22.2%) and was closely followed by business (16.7%). Higher HIV/HBV co-infection was observed among those with CD4 cell count <200 cells/µl (15.4%) and those with plasma viral loads (PVL) >5001 copies/mL (13.6%).

Conclusion: This study confirms the high HIV/HBV co-infection rate (6.3%) and thus, there is a need to screen all HIV-positive individuals for HBV infection. A high seroprevalence of HBV among this cohort of HIV-infected individuals contributes to the calls for pre-ART screening for HBV and the necessary paradigm shift in the ART nucleoside backbone to include agent(s) more dually effective against HIV and HBV.

Keywords: HBV; HIV; Co-infections; Nigeria

1.1 INTRODUCTION

Human immunodeficiency virus (HIV) and hepatitis B virus (HBV) are causes of significant morbidity and mortality across the World (WHO, 2014; 2015). HIV and HBV are blood-borne viruses transmitted mainly through sexual contact and use of unsterilized needles. Their similar means of transmission increases the risk of contracting both infections concurrently (WHO, 2020). Viral hepatitis is an acute or chronic inflammation of the liver caused by viral infection (CDC, 2019). HBV is globally the leading cause of death due to liver disease in people living with HIV/AIDS (Opaleye et al., 2017). In 2016, the World Health Organization (WHO) estimated that 36.9 million people are living with HIV (WHO, 2016). It was also reported that 248 million people have chronic HBV infection (Schweitzer et al., 2015; Katamba et al., 2020). It is estimated that chronic HBV infection affects an estimated 5–20% of people living with HIV (WHO, 2020). HIV-positive persons who become infected with HBV or hepatitis C virus (HCV) are at increased risk for developing chronic hepatitis (WHO, 2020). In addition, persons who are co-infected with HIV and hepatitis can have serious medical complications, including an increased risk for liver-related morbidity and mortality, chronic hepatitis, cirrhosis and hepatocellular carcinoma, all of which are of serious public health concern (Balogun et al., 2012; WHO, 2020).
HIV and HBV are both endemic in Nigeria. There is a heavy burden of HIV – HBV and HIV – HCV co-infections in many regions of the developing world (Cooper et al., 2009), including Nigeria (Ola et al., 2002; Forbi et al., 2007; Balogun et al., 2012). The burden of these co-infections is greatest in the African and South-East Asian regions (WHO, 2020). HIV is associated with a higher prevalence of both HBV and HCV in Sub-Saharan Africa. In this region, many people living with HIV are co-infected with HBV or HCV (Moges et al., 2006; Barth et al., 2010; Shimelis et al., 2017; Katamba et al., 2020). In Nigeria, hepatitis co-infection with HIV is associated with increased morbidity and mortality (Balogun et al., 2012). Nigeria has the second largest HIV prevalence in the world and one of the highest rates of new infection in sub-Saharan Africa (NACA, 2017; AVERT, 2020). Unprotected heterosexual sex accounts for 80% of new HIV infections in Nigeria, with the majority of remaining HIV infections occurring in key affected populations such as sex workers (NACA, 2015). Akwa Ibom State tops the prevalence rate chart with about 5.6% of its residents living with the virus (NAIIS, 2019) and it is one of the six states in Nigeria that accounted for 41% of people living with HIV in Nigeria (NACA, 2017).

The notable relationship between HIV and HBV is that they can be transmitted in the same way. Several studies strongly suggest that the influence of HIV on HBV is characterized by a chronic infection, an increased viral replication rate, higher viral levels, accelerated liver damage and an increased risk of liver cancer (Salmon-Ceron et al., 2005; Cooper et al., 2009; Thio, 2009; Ymele et al., 2012; Stabinski et al., 2015). On the other hand, the HBV infection aggravates the progression of HIV towards AIDS and an increased in vitro replication of HIV (Burnett et al., 2005; Ymele et al., 2012). Mortality among HIV/HBV co-infected persons is substantially higher than among HIV mono-infected persons (Fernández-Montero and Soriano, 2012; Mcroft et al., 2012; Teira and VACH Study Group, 2013; Kruse et al., 2014; Stabinski et al., 2015). A study in the USA, revealed that HIV/HBV co-infection increased mortality by 8-fold or 19-fold when compared with single infection with HIV or HBV alone respectively (Thio et al., 2002; Stabinski et al., 2015).

The exact impact of HBV on HIV disease progression is less clear (Hoffmann et al., 2009; Chun et al., 2012; Stabinski et al., 2015), although it is postulated that HBV infection may potentially lead to a blunted immune response in patients receiving antiretroviral therapy (ART) and increase patient susceptibility to ART-related liver toxicity (Wandeler et al., 2013; Stabinski et al., 2015). Unfortunately, access to anti-viral medication is limited in resource-poor countries and only 41% of people living with HIV have access to ART in sub-Saharan Africa (WHO, 2011; Ymele et al., 2012). The objective of this study was to determine the prevalence of hepatitis B virus (HBV) among HIV-infected individuals in Uyo, Akwa Ibom State, Nigeria.

2.1 Study Area

The study was conducted in Uyo, Akwa Ibom State, Nigeria. Akwa Ibom is one of the 36 states in Nigeria, with a population of over five million people. The state’s capital, Uyo, has over 500,000 inhabitants and is located in the coastal southern part of the country, lying between latitudes 4°32′N and 5°33′N, and longitudes 7°25′E and 8°25′E. The state is located in the South-South geopolitical zone, and is bordered on the east by Cross River State, on the west by Rivers State and Abia State, and on the south by the Atlantic Ocean and the southernmost tip of Cross River State.

2.2 Study design

This is a cross-sectional study carried out in University of Uyo Teaching Hospital (UUTH), Uyo, Akwa Ibom State, Nigeria. HIV antigen detection and serological analyses for hepatitis B surface antigen (HBsAg) were conducted at the Virus Research Unit of the Department of Microbiology, University of Port Harcourt. Port Harcourt, Nigeria.

2.3 Ethical Considerations

Approval to undertake the study was obtained from the University Research Ethics Committee of the University of Uyo Teaching Hospital (UUTH), Uyo, Akwa Ibom State, Nigeria. A formal informed consent form was received from each participant before commencement of the study. A healthcare officer of the
hospital who is knowledgeable in the care and support of people living with HIV/AIDS assisted with the administration of the informed consent forms, obtaining patients’ demographic data and other pertinent information within the administered questionnaires.

2.4 Study population

The study population included male and female individuals living with HIV that attend clinic at the University of Uyo Teaching Hospital (UUTH). One hundred and seventy-six (176) HIV-infected individuals were selected and participated in the study.

2.5 Inclusion and exclusion Criteria

Individuals that were included in the study were males and females confirmed and documented as being positive for HIV infection. These selected individuals had or did not have a drug history of anti-retroviral therapy (ART). While individuals who decline involvement in the study were not included in the study.

2.6 Data collection

A random sampling irrespective of age, gender and ethnicity was done to ensure that sampling was representative of Uyo, Akwa Ibom State, Nigeria. Necessary demographic (age, sex, marital status, education and occupation), clinical, and epidemiological data for every participant was obtained using a well-structured questionnaire.

2.7 Sample Collection and Preparation

After obtaining written informed consents from the participants, blood samples (about 5ml) were aseptically collected during routine investigations so that the participants were not bled twice. The samples were collected into sterile EDTA bottles and plasma samples were obtained after centrifugation. Samples were appropriately labelled and stored in two aliquots at -20°C and -80°C until analysis.

2.8 Serological analysis

2.8.1 Rapid Assay for Hepatitis B Surface Antigen (HBsAg)

The assay was carried out using DiaSpot HBsAg rapid test strip (DiaSpot Diagnostics, USA) and interpreted according to the manufacturer’s specifications. The test strip is a rapid, one step test for the qualitative detection of HBsAg in serum or plasma. The test strip uses the immuno-chromatographic method to detect the presence or absence of HBsAg in serum or plasma. All test strips, serum or plasma specimens, and controls were allowed to equilibrate to room temperature (15-30°C) prior to testing. The assay was performed within 1 hour in order to obtain best results according to the manufacturer’s specifications. The result was read at 15 minutes and no result was interpreted after 30 minutes because a low HBsAg concentration might result in a weak line appearing in the test region (T) after an extended period of time. The interpretation of test results was performed according to the manufacturer’s specifications.

2.8.2 ELISA for Detection of Hepatitis B Surface Antigen (HBsAg)

Serum samples were analyzed for hepatitis B surface antigen (HBsAg) using the ELISA kit (DIA.PRO Diagnostic Bioprobes, Italy). The tests were performed according to the manufacturer's instructions. The test results were calculated by means of a cut-off value determined on the mean OD450nm value of the negative control (NC) with the following formula: NC + 0.050 = Cut-Off (Co). Test results are interpreted as ratio of the sample OD450nm (S) and the Cut-Off value (Co), mathematically S/Co, according to the following: < 0.9 = negative, 0.9 – 1.1 = equivocal and > 1.1 = positive. A negative result indicated that the patient is not infected by HBV. A positive result was indicative of HBV infection and therefore the patients should be treated accordingly.
2.9 CD4 T cell count enumeration

EDTA-treated blood samples were used for CD4 T cell count using Partec CyFlow® Counter (Partec GmbH, Germany), following the instruction of manufacturer. The specimens were analyzed on a flow cytometer for detection of cell surface markers for CD4 cells. Results were classified based on the CDC (1997) guidelines.

2.10 HIV-1 Viral Load Testing (Abbott Real-Time Assay)

To assess the viral load (VL) of HIV-1 positive individuals used in this study, Abbott RealTime HIV-1 (m2000sp) assay was used to determine the viral load according to the manufacturer’s instruction. The results were presented in copies/mL of plasma.

2.11 Statistical analysis of data

Generated data from the study were presented with descriptive statistics (number with percentage; mean; standard deviation or median with range etc.). Data analysis was carried out and test of significance was done using Microsoft Excel 2016 version. Differences of P<0.05 was taken to be statistically significant.

3. RESULTS

3.1 General characteristics of HIV-infected individuals

As shown in Table 1, 176 (42.2%) from Akwa Ibom State, Nigeria. The age range of the 176 HIV-1 positive individuals who participated in the study was 6-72 years with an average age of 40.0 years. About 56.8% of them were in the 31-40 years age range. The majority (61.9%) of the HIV-1 infected individuals were females and 38.1% were males (Table 1).

3.2 Overall prevalence of HBsAg in HIV-infected individuals in Uyo, Nigeria

From Table 1, it was shown that 11 out of the 176 samples analyzed for hepatitis B surface antigen (HBsAg) tested positive, giving rise to a prevalent rate of 6.3%.

3.3 Age-specific prevalence of HBsAg among HIV-infected individuals in Uyo, Nigeria

The age-specific prevalence of HBsAg among HIV-infected individuals was higher in the age group of 6-30 years (28.6%) than in other age groups (Table 1).

3.4 Sex-specific prevalence of HBsAg among HIV-infected individuals in Uyo, Nigeria

The sex-specific prevalence of HBsAg among HIV-infected individuals was higher in males (8.5%) than in females (6.4%) (Table 1).

3.5 Marital status-specific prevalence of HBsAg among HIV-infected individuals in Uyo, Nigeria

The marital status-specific prevalence of HBsAg among HIV-infected individuals was higher in singles (10.5%) compared to the married (4.7%) (Table 1).

Table 1: Socio-demographic characteristics of HIV-infected individuals with HIV/HBV co-infection in Uyo, Nigeria

<table>
<thead>
<tr>
<th>Variables</th>
<th>No. Tested (%)</th>
<th>No. Positive (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age groups (Years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 – 30</td>
<td>30 (17.0)</td>
<td>5 (16.7)</td>
</tr>
<tr>
<td>31 – 40</td>
<td>100 (56.8)</td>
<td>4 (4.0)</td>
</tr>
<tr>
<td>41 & above</td>
<td>46 (26.1)</td>
<td>2 (4.7)</td>
</tr>
</tbody>
</table>
Sex

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td>47 (38.1)</td>
<td>4 (8.5)</td>
</tr>
<tr>
<td>Females</td>
<td>109 (61.9)</td>
<td>7 (6.4)</td>
</tr>
</tbody>
</table>

Marital Status

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Married</td>
<td>106 (60.2)</td>
<td>5 (4.7)</td>
</tr>
<tr>
<td>Singles</td>
<td>57 (32.4)</td>
<td>6 (10.5)</td>
</tr>
<tr>
<td>Divorced/Widowed</td>
<td>13 (7.4)</td>
<td>0 (0.0)</td>
</tr>
</tbody>
</table>

Educational Status

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Formal</td>
<td>3 (1.7)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Primary</td>
<td>24 (13.6)</td>
<td>2 (8.3)</td>
</tr>
<tr>
<td>Secondary</td>
<td>62 (35.2)</td>
<td>3 (4.0)</td>
</tr>
<tr>
<td>Tertiary</td>
<td>87 (49.5)</td>
<td>6 (7.0)</td>
</tr>
</tbody>
</table>

Occupation

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Trading</td>
<td>55 (31.3)</td>
<td>3 (5.5)</td>
</tr>
<tr>
<td>Teaching</td>
<td>15 (8.5)</td>
<td>1 (6.7)</td>
</tr>
<tr>
<td>Civil Servant</td>
<td>26 (14.8)</td>
<td>2 (7.7)</td>
</tr>
<tr>
<td>Public Servant</td>
<td>10 (5.7)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Business</td>
<td>6 (3.4)</td>
<td>1 (16.7)</td>
</tr>
<tr>
<td>Artisans</td>
<td>12 (6.8)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Driving</td>
<td>10 (5.7)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Retired</td>
<td>10 (5.7)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Farming</td>
<td>4 (2.3)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Student</td>
<td>18 (10.2)</td>
<td>4 (22.2)</td>
</tr>
<tr>
<td>Unemployed</td>
<td>10 (5.7)</td>
<td>0 (0.0)</td>
</tr>
</tbody>
</table>

CD4 counts (cells/µl)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>< 200</td>
<td>26 (14.8)</td>
</tr>
<tr>
<td>200-499</td>
<td>90 (51.1)</td>
</tr>
<tr>
<td>≥500</td>
<td>60 (34.1)</td>
</tr>
</tbody>
</table>

Plasma viral load (copies/mL)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>< 40 – 5000</td>
<td>110 (62.5)</td>
<td>2 (1.8)</td>
</tr>
<tr>
<td>5001 & above</td>
<td>66 (37.5)</td>
<td>9 (13.6)</td>
</tr>
<tr>
<td>Total</td>
<td>176 (100.0)</td>
<td>11 (6.3)</td>
</tr>
</tbody>
</table>

Key: HBV = Hepatitis B Virus, % = Percentage, No. = Number, TND = Target not detected; TD = Target detected

3.6 Education-specific prevalence of HBsAg among HIV-infected individuals in Uyo, Nigeria

The education-specific prevalence of HIV-HBV co-infections in this study revealed a higher prevalence among primary educational status (8.3%) compared to other educational status (tertiary 6.9% and secondary 4.9%) (Table 1).

3.7 Occupation-specific prevalence of HBsAg among HIV-infected individuals in Uyo, Nigeria

The occupation-specific prevalence of HBsAg among HIV-infected individuals was higher in students than any other variables in relation to occupation with a prevalence rate of 22.2% (Table 1).

3.8 CD4 count-specific prevalence of HBsAg among HIV-infected individuals in Uyo, Nigeria
Higher HIV/HBV co-infection was observed among HIV-infected individuals with CD4 T cell count <200 cells/μl (15.4%) compared to 200 -499 cells/μl (6.7%) and ≥500 cells/μl (1.7%) (Table 1).

3.9 Plasma viral load-specific prevalence of HBsAg among HIV-infected individuals in Uyo, Nigeria

Higher HIV/HBV co-infection was observed among HIV-infected individuals with plasma viral loads (PVL) 5001 copies/mL and above (13.6%) than those with <40-5000 copies/mL (1.8%) (Table 1).

4. DISCUSSION

Globally, it is estimated 5%–10% of people living with HIV are co-infected with hepatitis B virus (HBV) while HIV/HBV frequency in sub-Saharan Africa varied from 0.0% to 28.4% (Stabinski et al., 2015). HIV and HBV share common risk factors, and many cases of HIV occur in people with HBV, resulting in an increased risk for HIV/HBV co-infection (Hoffmann and Thio, 2007). Nigeria is also known to be highly endemic for Hepatitis B viral (HBV) infection (Anigilaje and Olutola, 2013). There is a relative paucity of data on HIV/HBV co-infection. Our study examined the prevalence of HBsAg among people living with HIV in Uyo, Nigeria. We observed HBsAg positivity of 11 (6.3%) among HIV infected individuals. The co-infection rate of 6.3% reported in this study is a clear indication due to the fact that HBV is a major threat to HIV/AIDs patients in Nigeria. It is comparable to some previous studies that have revealed 6.0% as prevalence of HIV/HBV co-infection in South Africa and in Greece (Lodenyo et al., 2000; Ramezani et al., 2009). It is higher than 2.2% documented in south-western part of Nigeria (Ajayi et al., 2013), and 5.8% reported in south eastern region of Nigeria (Nwolisa et al., 2013), but lower than the 15.0% reported in north central region of Nigeria (Adoga et al., 2009). The factors driving these regional differences are unclear.

The 6.3% reported in this study is lower than the values reported in other countries of the world. A study in the Netherlands identified that 3.6% (Bloquel et al., 2010) of HIV-infected patients were HBsAg positive. It is lower than 4.7% (Rahimi et al., 2009) obtained from a study in Spain. This study was also found to be higher than 3.7% obtained in a study in Brazil (Toukarka et al., 2009), 3.6% in Netherlands (Bloquel et al., 2010), 0.24% in Enugu (Ikeako et al., 2014), 0.7% in Anamba State (Ezegbudo et al., 2004), 0.78% in Cameroon (Ymele et al., 2012), 1.4% in United States (Kruse et al., 2014), 4.9% in Canada (Moradi et al., 2011), 5.4% in France (Nordenstedt et al., 2010), 4.5% in South America (Almeida et al., 2006), 4.7% in Spain (Rahimi-Movaghar et al., 2009), and 3.2% in Japan (Rai et al., 2007). The value reported in this study is not comparable with reports by Forbi et al. (2007) in North Central Nigeria, South Africa (Parboosing et al., 2008), Senegal (Diop-Ndiaye et al., 2008) and France (Larsen et al., 2008). This study was also found to be lower than the 12.1% prevalence obtained in a study in Burkina Faso (Lodenyo et al., 2000), and 8.7% in Thailand (Sungkanuparph et al., 2004). 7.3% in India (Osborn et al., 2007), 7.8% in France (Landes et al., 2008), 9.4% in Germany (Aparicio et al., 2012), 15.4% in Italy (Bloquel et al., 2014), 45.0% in France (Nikolopoulos et al., 2009), 59.0% in Finland (Piroth et al., 2008), 27.0% in China (Anggorowati et al., 2012), 14.5% in Iran (Fujisaki et al., 2011), 11.3% in Iran (Tsuchiya et al., 2012), 7.8% in Iran (Babamahmoodi et al., 2012), and 28.6% in another study in Iran (Liang et al., 2010).

The observed HIV/HBV co-infection rate (6.3%) in this study is not comparable with previous studies which reported high figures in different parts of Nigeria and overseas; 28.4% in Lagos (Balogun et al., 2012), 20.6% in Keffi (Forbi et al., 2007), 28.7% in Jos (Irisena et al., 2002), 30.4% in Ilorin (Olatunji and Iseniyi, 2008), 70.5% in Kano (Nwokedi et al., 2006), 33.8% in India (Sud et al., 2001), 9.5%, 9.9% and 12.2%, respectively, in Zambia (Katamba et al., 2020; Kapembwa et al., 2011; Vinikoor et al., 2015). It is also lower than results obtained by Mbanya et al. (2003) in 2001 and Laurent et al. (2010) at Yaounde, Cameroon. Indeed, Laurent et al. (2010) found among HIV-positive patients, 8.3% co-infections with HBV. Some previous reports of HIV/HBV co-infection from Nigeria, 26.5% and 10.4% among HIV-infected and non-HIV infected in Gombe (Mustapha and Jibrin, 2004), 15.0% in Maiduguri (Baba et al., 1998), 9.2% in Lagos (Lesi et al., 2007), and 9.7% Niger Delta (Ejele et al., 2004) are however higher than observed figures in this study.
The prevalence of HBV/HIV co-infections of males (8.5%) in this study is higher than that of females (6.4%), but this was not statistically significant. On the contrary, Mustapha and Jibrin (2004) reported higher rate in females (28.2%) than males (24.7%). Ymele et al. (2012) reported higher rate in females (1.30%) than males (0.74%), and that of Anigilaje and Olutola (2013) also reported that more female subjects (10.0%) were dually infected with HIV and HBV than male subjects (5.9%). However, the findings of this present study are comparable to that of another study we conducted in Rivers State, Nigeria (Okonko et al., 2020) and a study conducted in North Western Nigeria which found that males with higher prevalence (16.9%) compared to females (9.2%) (Muhammad et al., 2013). Balogun et al. (2012) also reported the prevalence of HBV/HIV co-infection to be higher among males (37.5%) than females (24.3%). Vinikoor et al. (2015) also demonstrated that HIV co-infected adult males were more likely to be co-infected with HBV than their female counterparts. This finding is also compatible with previous reports from Jos, North Central Nigeria (Irise et al., 2002), India (Sud et al., 2001) and Zambia (Vinikoor et al., 2015). The import of this finding may not be readily discernible (Anigilaje and Olutola, 2013). However, this observation may have been accounted for by the fact that men are more likely to have multiple sex partners and also practice unprotected sex in our polygamous setting (Balogun et al., 2012). The lack of statistically significant difference in this study collaborated with that of Balogun et al. (2012), Anigilaje and Olutola (2013) and Katamba et al. (2020), who reported that HBV presence was independent of gender.

On the contrary, Awwioro et al. (2014) reported that females are more infected with HBsAg (5.0%) than males (3.5%) in the same Niger Delta region of Nigeria. Prevalence of HBV was highest (28.6%) among HIV positive patients aged 6-30 years, and this supported previous studies in Rivers State, Nigeria (Okonko et al., 2020), in North-West Ethiopia (Hou et al., 2005), in Cameroon (Ymele et al., 2012) and in Abuja, Nigeria (Ogundej, 2018). This may be associated with higher sexual activities within this age group, especially those within adolescent age. Ymele et al. (2012) reported that HBV infection prevalence decreased with the age. Ogundej (2018) reported that age group of 21-40 years had the predominant HIV, HBV, and HCV prevalence in their study. This finding is in agreement to the finding of Olokoba et al. (2011) who reported that women between the ages 25-29 years have a greater prevalence rate. Katamba et al. (2020) also reported that one of the correlates of HIV and hepatitis B co-infections was age (between 20 and 39 years). In all epidemiological studies, younger age has always proved to be the most important factor. The age at which many infections occur calls for concern and concerted efforts aimed at implementing preventive measures that will reduce lifestyle practices among the most susceptible age bracket (Khakhkhar et al., 2012; Ogundej, 2018). On the contrary, Awwioro et al. (2014) found that individuals within the ages of 31-50 years had the highest prevalence, i.e. HBV infection prevalence increases with the age of the subjects. While Mustapha and Jibrin (2004) reported higher prevalence in age group 41-49 years of age with no case in ≤19 years in Gombe, Nigeria.

In relation to marital status, HBV sero-positivity was higher among HIV-infected individuals who were singles (10.5%) as compared to the married (4.7%) but this was not statistically significant. This may imply that marital status is not really a risk factor for HBV infection but an indicator to consider the sexual partner as a risk for infection, since unmarried people may tend to have many sexual partners or unprotected sex. Also, positivity of HBsAg among the infected married subjects in this study could be an indication that the infection might be through unprotected heterosexual intercourse or close contact with their infected partners as the virus can spread through body fluids.

The education-specific prevalence of HIV-HBV co-infections in this study revealed a higher prevalence among those with primary educational status (8.3%) compared to other educational status (tertiary 6.9% and secondary 4.9%). This is compatible with other previous studies. Katamba et al. (2020) also reported that correlates of HIV and hepatitis B co-infections were primary education (especially low level of education), and of course sexual activity. This may be influenced by the settings where our study was conducted, even when majority of the subjects had tertiary education.

Occupational-specific prevalence showed that students had the highest prevalence (22.2%) and closely followed by those in business (16.7%) compared to other occupations, civil servants (7.7%), teaching (6.7%), trading (5.5%) and those with zero prevalence. This might be due to high-risk sexual behaviour among students on campuses. This is not compatible with the low prevalence (12.2%) published for students in a study by Mustapha and Jibrin (2004). This study is also not compatible with the findings of
Ikeako et al. (2014) who reported higher prevalence in unemployed subjects and artisans. Ogundeji et al. (2018) also reported higher prevalence of HBV in unemployed subjects and artisans. Ezegbudo et al. (2004) who reported in their study that the occupation of the subjects influenced the infection of antenatal women.

CD4 counts-specific prevalence revealed higher HIV/HBV co-infection rate among HIV-infected individuals with low CD4 cell count <200 cells/μL (15.4%) compared to those with 200-499 cells/μL (6.7%) and >500 cells/μL (1.7%). In a related study by Anigilaje and Olutola (2013), many of the children co-infected with HIV-HBV also presented with a much-reduced CD4 counts. In a study by Rawizza et al. (2010), there were no significant differences in the CD4 cell count of children with HIV alone or HIV-HBV-co-infection.

Higher HIV/HBV co-infection was observed among HIV-1 individuals with plasma viral loads 5001 copies/mL and above (13.6%) than those with <40-5000 copies/mL (1.8%). Although this study did not show the effect of HIV-HBV co-infections on HIV replication, it has been reported previously that HIV-HBV co-infected subjects have higher HIV RNA levels, are more symptomatic with lower CD4 counts than their counterparts infected with HIV alone (Toussi et al., 2007; Anigilaje and Olutola, 2013).

Although the current study considered only hospital-based cases, it still provides a baseline seroprevalence data on HIV/HBV co-morbidity. The information obtained from this study will assist policy makers re-direct resources for concomitant screenings/diagnosis of HIV and HBV.

4.3 CONCLUSION

The present study has revealed a high prevalence of HBV c-infection in people living with HIV especially among young subjects aged 6–30 years in Uyo, Nigeria. Hence, routine screening of HBsAg should be considered for people living with HIV so as to proffer proper treatment to the co-infected individuals that will improve quality of life and reduce morbidity/mortality.

ACKNOWLEDGEMENTS

The authors wish to thank the administrations of University of Uyo Teaching Hospital (UUTH), Uyo, Akwa-Ibom State, Nigeria for the ethical approvals and all the individuals who participated in this study. Our immense gratitude also goes to Dr. Emeka Michael, Mr. Inyang Shedrack and Mrs. Onasochi Shedrack at the University of Uyo Teaching Hospital, Uyo, Nigeria.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

Almeida, P. R. A., Mussi, A. D., Azevedo, S. V. C. and Souto, F. J. (2006). Hepatitis B Virus infection in HIV-positive population in Brazil: results of a survey in the state of Mato Grosso and a comparative analysis with other regions of Brazil. BMC Journal of Infectious Diseases. 6(34): 34

HIV/AIDS Department, Geneva 27, Switzerland
https://www.who.int/hiv/topics/hepatitis/hepatitisinfo/en/

press; Geneva.

chronic hepatitis B infection. WHO press; Geneva.

World Health Organization: Global health sector response to HIV 2000–2015: focus on innovations in

Blood Donors in Cameroon: A Proposed Blood Screening Algorithm for Blood Donors in