Morrison AC et al.

Efficacy of a Spatial Repellent for Control of Aedes-Borne Virus Transmission:

A Cluster Randomized Trial in Iquitos, Peru

Amy C. Morrison, Ph.D.1,2+, Robert C. Reiner Jr., Ph.D.3+, William H. Elson, M.B.B.S.4, Helvio Astete, M.S.2, Carolina Guevara, M.S.2, Clara del Aguila, B.S.5, Isabel Bazan, M.D.2, Crystyan Siles, M.D.2, Patricia Barrera, M.S.2, Anna B. Kawiecki, M.S.1, Christopher M. Barker, Ph.D.1, Gissella M. Vasquez, Ph.D.6, Karin Escobedo-Vargas, B.S.6, Carmen Flores-Mendoza, Ph.D.6, Alfredo A. Huaman, B.S.2, Mariana Leguia, Ph.D.7, Maria E. Silva, Ph.D.,2 Sarah A. Jenkins, Ph.D.2, Wesley R. Campbell, M.D.2, Eugenio J. Abente, Ph.D.2, Robert D. Hontz, Ph.D.2, Valerie A. Paz-Soldan, Ph.D.8, John P. Grieco, Ph.D.9, Neil F. Lobo, Ph.D.9+, Thomas W. Scott, Ph.D.4+, and Nicole L. Achee, Ph.D.9++

1 Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
2 Department of Virology and Emerging Infectious Diseases, U.S. Naval Medical Research Unit No. 6, Lima, Peru
3 Department of Health Metrics Sciences, University of Washington, Seattle, Washington, USA
4 Department of Entomology and Nematology, University of California, Davis, California, USA
5 Dirección General de Saneamiento Ambiental (DIGESA), Calle Alzamora 410, Iquitos, Peru

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Morrison AC et al.

6 Department of Entomology, U.S. Naval Medical Research Unit No. 6, Lima, Peru

7 Genomics Laboratory, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, San Miguel, Lima, Peru

8 Department of Global Community Health and Behavioral Sciences, Tulane School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA

9 Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, 239 Galvin Life Sciences Center. Notre Dame, Indiana, USA

*Indicates equal seniority

*Corresponding author:
Nicole L. Achee, PhD
Research Professor
Eck Institute for Global Health
Department of Biological Sciences
239 Galvin Life Science Center
Notre Dame, Indiana 46556
Ph: 574.631.1561
Email: nachee@nd.edu
ABSTRACT

Background: Over half the world’s population is at risk for viruses transmitted by *Aedes* mosquitoes, such as, dengue and Zika. The primary vector, *Aedes aegypti*, thrives in urban environments. Despite decades of effort, cases and the geographic range of *Aedes*-borne viruses (ABV) continue to expand. To date, there are no rigorously proven vector control interventions that prevent ABV diseases. Spatial repellents, a new option, are designed to decrease human exposure to ABV by releasing active ingredients into the air that disrupt mosquito-human contact.

Methods: A parallel, cluster-randomized controlled trial was conducted in Iquitos, Peru to quantify the impact of a transfluthrin-based spatial repellent on ABV infection. From 2,907 households across 26 clusters (13 per arm), 1,578 participants were assessed for seroconversion (primary endpoint) by survival analysis. Incidence of acute disease was calculated among 16,683 participants (secondary endpoint). Bi-monthly adult mosquito collections were conducted to compare *Ae. aegypti* abundance, blood-fed capture rate and parity status through mixed effect difference-in-difference analyses.

Results: The spatial repellent significantly reduced ABV infection by 34.1% (95% CI 6.9%, ∞); *p* = 0.0236, *z*=1.98). *Aedes aegypti* abundance and blood-fed capture rates were significantly reduced by 28.6% (95% CI 24.1%, ∞); *z*=-9.11) and 12.4% (95% CI 4.2%, ∞); *z*=-2.43), respectively.
Conclusions: Our trial provides the first conclusive evidence of significant protective efficacy by any chemical vector control intervention, in this case a spatial repellent, to reduce the risk of ABV transmission. Results support vector control as a beneficial component to ABV disease prevention.

Trial registration number: NCT03553277 (clinicaltrials.gov)
Introduction

Aedes-borne viral diseases (ABVD) [e.g., dengue (DENV), chikungunya (CHIKV), Zika (ZIKV), and yellow fever (YF)] are devastating, expanding global public health threats that disproportionately affect low- and middle-income countries. Currently, the primary means for ABVD prevention is controlling the primary mosquito vector, *Aedes aegypti*. Existing vector control interventions, however, have failed to prevent ABV transmission and epidemics. Dengue alone, one of the most rapidly increasing vector-borne infectious diseases,\(^1,2\) with 4 billion people at risk of infection annually,\(^3\) results in 400 million infections each year.\(^2\)

There is an urgent need to develop evidence-based guidance for the use of new and existing ABV vector control tools. The evidence-base for vector control against ABVs is weak, despite considerable government investments in WHO-recommended control of larval habitats (larviciding, container removal) and ultra-low volume (ULV) insecticide spraying.\(^4\)–\(^8\) These strategies continue to be implemented despite the lack of rigorously generated data from controlled clinical trials demonstrating they reduce ABV infection and disease.\(^9\) The only ABV intervention with a proven epidemiological impact in a cluster randomized control trial (cRCT) assessed community mobilization to reduce mosquito larval habitats.\(^10\) A recent test-negative trial with *Wolbachia*-infected mosquitoes reported a significant reduction of dengue illness in Indonesia.\(^11\)

Spatial repellents (SR) are devices that contain volatile active ingredients that disperse in air. The active ingredients can repel mosquitoes from entering a treated
space, inhibit attraction to human host cues or disrupt mosquito biting and blood feeding behavior, and, thus, interfere with mosquito-human contact.12-14 Any of these outcomes reduce the probability of pathogen transmission. Pyrethroid-based spatial repellents have shown efficacy in reducing malaria infections in China15 and Indonesia.16 There have, however, been no clinical trials evaluating the protective efficacy of spatial repellents against ABV infection or disease.

To generate evidence for public health consideration we conducted a parallel, cluster-randomized controlled trial (cRCT) to quantify the epidemiological impact of a transfluthrin-based spatial repellent against ABV transmission in Iquitos, Peru.

Methods

The trial is registered at clinicaltrials.gov (NCT03553277).

ETHICAL STATEMENT

Our study protocol (#NAMRU6.2014.0021, Supplementary Information (SI)) was approved by the U.S. Naval Medical Research Unit No. 6 (NAMRU-6) Institutional Review Board (IRB), which includes Peruvian representation and complies with US Federal and Peruvian regulations governing the protections of human subjects, and the Regional Health Authority (DIRESA), the local branch of the Peruvian Ministry of Health. IRB authorization agreements were established between the NAMRU-6, the University of Notre Dame (Sponsor), the University of California at Davis, and the University of Washington.
TRIAL DESIGN

Detailed study methods are provided in the SI.

Our trial was conducted from June 2015 through March 2019 in the Iquitos and Punchana Districts of Iquitos, Peru (Figure 1, SI Section 1.1). Clusters were selected in January 2015. Enrollment began June 2015. Participation included: 1) a house census, 2) disease surveillance, 3) annual blood draws, 4) bi-monthly entomological surveys, and 5) intervention application in the house. Epidemiological monitoring and entomological surveillance lasted from February 2016 through March 2019 (Figure 2).

Our main objective was to demonstrate and quantify the protective efficacy (PE) of a SR in reducing ABV infection incidence in a human cohort. Qualifying participants were individuals in a participating house who were seronegative or had a monotypic DENV antibody response when they entered the trial. Assuming the probability of seroconversion for seronegative or monotypic individuals was 10% with a coefficient of variation of 0.25, and an alpha of 5%, we estimated we would need 26 clusters (13 per arm) with approximately 60 qualifying individuals to achieve a power of 80% to detect a reduction in the odds of 30%.

The primary endpoint was ABV seroconversion, as measured by DENV- or ZIKV-specific neutralizing antibodies, in blood from children ≥2 years to <18 years. To
increase the pool of baseline seronegative participants, we expanded screening to >18 years. Secondary endpoints were clinically apparent laboratory confirmed ABV disease and indoor female Aedes aegypti: 1) abundance, 2) blood-fed status (proxy for human-biting rates), and 3) parity status (proxy for age-structure). Participants followed for seroconversion were the 'longitudinal cohort' and those followed for disease were the 'febrile surveillance cohort'.

RANDOMIZATION AND INTERVENTION

A total of 26 clusters (13 per arm) each with approximately 140 households (60 qualifying participants) were randomly allocated in August 2016 to receive SR or placebo intervention by the external statistician serving on the Data Safety Monitoring Board (DSMB) using a random number generator (https://www.random.org) (SI Section 1.2.1). Investigators, research staff, and study participants were blinded to cluster allocation. Our intervention was a transfluthrin passive emanator designed and produced by SC Johnson (Racine, WI), replaced at 2-week intervals, as described previously (Figure S1, SI Section 1.3.2). Spatial repellent and placebo intervention had identical packaging and were deployed in houses by study personnel using a blinded coding scheme. The placement of the intervention followed manufacturer specifications for indoor use conditions.

SEROCONVERSION AND DISEASE SURVEILLANCE

Recruitment for the longitudinal cohort focused on children because they were likely to be antibody test-negative or monotypic at baseline, which would facilitate
interpretation of laboratory assays, and less mobile than adults17, thus spending more time in their houses or their assigned cluster. Baseline blood samples were obtained within 2 weeks before or after initial intervention deployment. As new families moved into the study area, they were recruited to participate, resulting in longitudinal participant enrollment throughout the interval between Baseline (B), First (F), and Second/Final (S) longitudinal blood draws (Figure 3). Samples were tested by microneutralization enzyme immunoassay (MNT) for seroconversion to each DENV serotype and ZIKV (SI Sections 1.3.3.1 and 1.3.4.1). Only participants that provided at least 2 blood samples were included in final analyses.

The febrile surveillance cohort was recruited by nurse technicians during door-to-door wellness starting with the first week of intervention deployment. Suspected cases exhibited axillary temperature of \(\geq 37.5 \)°C or, for suspected ZIKV infection, absence of fever but presence of rash, arthralgia, arthritis, or non-purulent conjunctivitis for \(\leq 5 \) days. Participants meeting these criteria provided acute and convalescent (14–21 days later) serum samples and were monitored clinically daily. Acute serum samples were tested for viral RNA by PCR (DENV and ZIKV; SI Sections 1.3.3.2-1.3.3.4) and by ELISA for DENV IgM (SI Sections 1.3.3.5,1.3.4.2).

ENTOMOLOGICAL ENDPOINTS

Indoor Prokopack aspirations18 were conducted in all consented homes at time of first intervention deployment and subsequent intervention replacement; i.e., two-week intervals. Adult mosquitoes were transported to the NAMRU-6 Iquitos laboratory,
Morrison AC et al.

sedated at 4°C, identified to species and sex, counted by date and house. Up to 30 female Ae. aegypti per household per collection were examined for blood meal status and scored as unfed, blood-fed (fully engorged, half-engorged, or trace amounts), or gravid. Standard insecticide resistance assays were used to assess vector susceptibility to transfluthrin one-year into the trial (SI Section 1.3.5.2).

SAFETY MONITORING

Adverse events (AEs) and serious adverse events (SAEs) were actively collected throughout the trial during surveillance follow-up and entomological surveys (SI Section 1.3.6). Reported AEs were investigated by study staff and appropriate care was recommended by a study physician within 24 hours. Safety reporting to the NAMRU-6 IRB was managed by UC Davis in accordance with the approved protocol. Quarterly reports summarizing reported AEs and SAEs were reviewed by the DSMB for trial safety assessment.

STATISTICAL ANALYSIS

Details of our analytical approach are provided in the statistical analysis plan (SAP) and SI Section 1.5. All analyses were conducted by RCR using R 3.6.1 (R Core Team) and the Ime4 and survival packages. No correction for multiple testing was performed for secondary endpoint analyses and, as such, in accordance with CONSORT guidelines, we do not present p-values.
The primary analysis was an intent-to-treat (ITT) assessment of ABV seroconversion for all qualifying participants per treatment assignment who were \(>2 \) years to \(\leq 18 \) years of age. Due to the rolling nature of enrollment, we used a survival analysis with a proportional hazards model and exponential distribution assumption for the baseline hazard (i.e., constant baseline hazard through time) and a frailty component to account for correlation within clusters. If \(h(t_{ij} | x_{ij}) \) is the hazard rate of the \(i^{th} \) individual in the \(i^{th} \) cluster with covariate values \(x_{ij} \) then this individual’s hazard rate of an arbovirus infection can be written as:

\[
h(t_{ij} | x_{ij}) = h_0(t_{ij}) \cdot \exp (\beta^T x_{ij} + W_i)
\]

where \(W_i \sim N(0, \sigma_i^2) \) is the random effect of the \(i^{th} \) cluster. Covariates included age, sex, and treatment status (SR or placebo). PE was estimated as \(PE = (1 - \exp(\hat{\beta})) \times 100\% \), where \(\hat{\beta} \) is the estimated regression coefficient for the intervention group and \(\exp(\hat{\beta}) \) is the estimated hazard ratio (HR) between SR and placebo. The null hypothesis of \(PE = 0\% \) is equivalent to \(\beta = 0 \), which is tested by Wald’s test \(z = \beta / s \), where \(s \) is the estimated standard error of \(\hat{\beta} \), at the 1-sided significance level of 5%.

A Poisson generalized linear regression was used to assess intervention impact on clinical disease, with an offset for the number of participant-days each participant spent in each cluster. No covariates were used and due to the small sample size, no random effects were incorporated.
Indoor adult female *Ae. aegypti* abundance, blood-fed rates, and parity were tested through a difference-in-difference Poisson generalized linear mixed models. Collections conducted in 2016 were defined as ‘baseline’ and collections conducted in 2017 and 2018 were estimated as ‘post-baseline’. Each analysis accounted for month of year and year as fixed effects and contained a random effect by cluster. Model formulation details are in **SI Sections 1.5.4-1.5.6**.

The primary analysis conducted differs from that in the original SAP (SI SAP). Procedures called for yearly blood draws from children. To increase the number of qualifying participants, an expansion of the age range to all ages ≥2yrs. The rolling enrollment resulted in substantial variation in time intervals between blood draws. Simple logistic regression, therefore, was inadequate. The decision to alter the primary analysis was discussed and agreed upon by the study statistician and the external DSMB statistician before outputs were unblinded to the DSMB statistician.

Results

STUDY POPULATION

A total of 2,215 persons were enrolled in the longitudinal cohort. Of these, 1,578 qualifying participants were included in the ITT analysis for seroconversion (**Figure 3**) representing a total of 196 ABV infections from 754 (1,090 paired samples) qualifying participants in the SR arm and 294 ABV infections from 824 (1,237 paired samples)
qualifying participants in the placebo arm. Baseline covariates were balanced at both the cluster and individual level (Table 1).

A total of 16,707 participants were followed for clinical disease of which 16,683 were included in the ITT analysis (Figure S2). Baseline covariates for analysis of the secondary endpoint were balanced at both the cluster and individual level (Table S5).

SPATIAL REPELLENT EFFICACY

The estimated PE of SR intervention was 34.1% (1-sided 95% CI lower limit, 6.9%; (Table 2). Reduction in the arbovirus infection hazard rate was significant at the 5% significance level (Test statistic: \(z = 1.98 \), 1-sided p-value = 0.02). The originally proposed analysis indicates a consistent result to those presented here; i.e., PE > 30% and statistical significance at the 5% level.

There were 96 disease cases detected, 51 in the SR arm and 45 in the placebo arm, from 10,793,792 participant days which appeared balanced between SR and placebo clusters (Table S5).

The estimated reduction adult female *Ae. aegypti* abundance in clusters receiving SR intervention was 28.6% (1-sided 95% CI lower limit: 24.1%, test statistic: \(z = -9.11 \)). Baseline abundance was balanced between treatment arms (Table S6) with post-baseline quantities estimated based on 47,518 and 43,417 household collections in SR and placebo arms, respectively. Baseline abundance averaged 0.277 (standard
deviation [SD] 0.153) and 0.279 (SD 0.122) per house collection in SR and placebo arms, respectively, whereas post-baseline abundance averaged 0.276 (SD 0.091) and 0.391 (SD 0.142) in the SR and placebo arms, respectively (Table S8). There was a strong indication of seasonality, with z-scores comparing each month to the reference month of January being at least 6 away from 0 (Table S9).

The estimated reduction in the rate of blood-fed *Ae. aegypti* collected inside houses was 12.4% (1-sided 95% CI lower limit: 4.2%, test statistic: $z = -2.430$) (Table S8). Baseline abundance of engorged *Ae. aegypti* was balanced treatment arms (Table S6) with post-baseline quantities estimated based on 9,257 and 11,496 mosquitoes assessed for blood-fed status in SR and placebo arms, respectively. Baseline abundance of blood-fed mosquitoes averaged 0.593 (standard deviation 0.440) and 0.536 (standard deviation 0.451) per collection in SR and placebo arms, respectively, and post-baseline rates averaged 0.606 (SD 0.460) and 0.634 (SD 0.447) in SR and placebo arms, respectively. There was no strong indication of seasonality (Table S10).

There was no observed intervention effect on the parity rate of *Ae. aegypti* females (Table S8).

ADVERSE EVENTS (AE) AND SERIOUS ADVERSE EVENTS (SAE).

There were 29 AEs reported during the trial (SI Section 2.8). Of these, 3 were associated with blood draw (vasovagal response, 2 from SR and 1 from placebo...
clusters) and 26 were consistent with transfluthrin (pyrethroid) exposure (22 from SR and 4 from placebo clusters). Of the latter, the 26 affected individuals came from 18 households, often reporting different combinations of the following symptoms: allergic response with itching and skin irritations (n=19; 15 from SR, 4 from placebo clusters), dry mouth/bad taste (n=5, from SR clusters only), breathing issues (n=7, from SR clusters only) including exacerbation of chronic bronchitis or asthma (n=2), and headaches (n=4, from SR clusters only). No reported SAEs (deaths) were deemed associated with the spatial repellent intervention.

Discussion

Arbovirus disease threats come from multiple viruses, which have expanding regions of transmission and increasingly frequent epidemics. There is, therefore, a growing unmet need for effective ABV disease prevention. Our cRCT provides the first conclusive evidence of significant PE against human ABV infection by any chemical-based vector control intervention, in this case a spatial repellent.

PE was detected despite assumed dilution and contamination effects due to participant movement in and out of study clusters. Our outcome was demonstrated in an operational context, reflecting complex interactions among ongoing Ministry of Health interventions across the study area, imperfect coverage at the household-level (rooms closed to intervention, homeowner removal and/or loss of intervention), <100% household participation within clusters, and suggestion of pyrethroid resistance in the local *Ae. aegypti* population. Reduced risk of ABV
infection was associated with a significant reduction in indoor female *Ae. aegypti* abundance and blood feeding. Although entomological outcomes were modest, these effects are consistent with the expected mode of action of SRs; i.e., deterrence from house entry and/or interfering with human-biting.\(^{12,24}\) Entomological data will help guide indicators for next-generation product development.

Our results support SRs as a flexible class of vector control products with positive public health impact not limited to ABV diseases. Transfluthrin\(^ {15}\) and metofluthrin-based\(^ {16,25}\) mosquito coils have been shown to reduce malaria and the same spatial repellent device used in our Iquitos trial reduced malaria infections in an Indonesia cRCT.\(^ {15}\) Together, these results highlight the potential for SRs to reduce a variety of vector-borne diseases, augment existing public health efforts and be an effective component of vector control intervention strategies. To help guide implementation and programmatic scale-up, additional assessments, which have already begun,\(^ {26–29}\) are needed.

Our Peru cRCT is one of two trials recommended by the WHO for assessing public health value and developing global health policy for the SR intervention class.\(^ {30}\) Our study was powered to detect a 30% reduction in ABV infection risk. During the trial period, dengue prevalence was lower than previous years and a Zika epidemic occurred in 2016.\(^ {31}\) This uncertainty is typical of ABV transmission, making powering of cRCTs challenging and helps explain why, until now, ABV cRCTs with epidemiological outcomes have been rare.\(^ {32}\) We used seroconversion as our primary
endpoint of PE to address this challenge. In our setting, powering a trial based on clinically apparent ABV disease would not be logistically feasible.

Fully integrating vector control into ABV disease prevention programs will require quantitative guidance based on the impact contribution from each intervention component. Ministries of Health, local to national governments, and non-governmental organizations can use our trial results as an evidence-base for informed application of SRs. Considering the growing ABV public health threat, difficulties of developing vaccines against multiple viruses and past, poorly informed vector control failures,9 enhanced ABV disease prevention will benefit greatly from interventions with proven public health value.
Acknowledgements

We extend sincere appreciation to DSMB members: Dennis Shanks, Chris Drakeley, and Neal Alexander for assurances on data integrity and safety assessments. We thank the WHO Vector Control Advisory Group (VCAG) for their comments during project assessments. We are grateful for the efforts of Marianne Kent, Program Coordinator at the University of Notre Dame, for her administrative, and logistical support of the program, as well as, Brett Fox of the University of Notre Dame Center for Research Computing for assisting with central database development for data verification. We thank Kristina Davis and Matthew Sisk of the University of Notre Dame Center for Research Computing and Hesburgh Libraries, respectively, for their assistance in graphic development. We acknowledge Audrey Lenhart of the Centers for Disease Control and Prevention (CDC) in Atlanta, GA USA and J. Kevin Baird of the Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia and Nuffield Department of Medicine, Centre for Tropical Medicine, University of Oxford, Oxford, United Kingdom for their role on the Scientific Advisory Committee.

We express our gratitude to the Bill and Melinda Gates Foundation for their long-term generosity and support of spatial repellent product evaluation and development, especially Kate Aultman, Dan Strickman, and Alan Magill. We are deeply grateful to SC Johnson for providing integral industry and product expertise including the independent funding of the development, manufacturing, delivery, and shipment of the intervention (SR and placebo) used in the study. SC Johnson provided expertise
Morrison AC et al.

in ensuring intervention quality, storage, application and disposal assurances throughout the trial.

We thank the residents of Iquitos for their support and participation in this study and willingness to allow this study to be conducted in their community. We greatly appreciate support of the Loreto Regional Health Department including Drs. Hugo Rodriguez-Ferruci, Christian Carey, Carlos Alvarez, and Lic. Wilma Casanova Rojas, who facilitated our work in Iquitos. We thank the NAMRU-6 Virology and Emerging Infections Department (VEID) leadership who provided institutional support, IRB guidance, and support supervising field staff. We appreciate the careful commentary and advice provided by the NAMRU-6 IRB and Research Administration Program for the duration of this study. We thank the NAMRU-6 VEID field who provided daily support through the duration of the project and without whom the recruitment of acute dengue cases would not have been possible. In particular, we thank Cecilia Gonzales, Gloria Talledo, and Gabriela Vasquez de la Torre for their administrative support of the project.

Author contributions

Data were gathered by the field team in Iquitos (ACM, WHE, HA, IB, CS, and ABK); laboratory testing by CG, PB, and AH; insecticide resistance testing by GMV, KEV, and CFM; and human use issues were managed by ACM, SAJ, and WRC. ML developed a Zika virus PCR assay used in the study. CDA provided Ministry of Health entomological information and coordinated activities with Iquitos field teams. The NAMRU-6 supervisory team in Lima included MS, SAJ, WRC, EJA, and RHD.
CM provided data management and ZIKV MNT laboratory testing. Statistical analysis was conducted by RCR. The first draft of the manuscript was written by ACM, RCR, TWS, and NLA, with revision following comments from all the authors.

Copyright statement
SAJ, WRC, EJA and RDH are military service members and ACM, HA, CG, IB, CS, GMV, KE, CF, AAH, and MES are employees of the U.S. Government. This work was prepared as part of their official duties. Title 17 U.S.C. §105 provides that “Copyright protection under this Title is not available for any work of the United States Government”. Title 17 U.S.C. §101 defines a U.S. Government work as a work prepared by a military service member or employee of the U.S. Government as part of that person's official duties.

Disclaimer
The views expressed in this article are those of the author and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, nor the U.S. Government.

Financial disclosure statement
This study was funded by the Bill and Melinda Gates Foundation (BMGF) to the University of Notre Dame (Grant# OPP1081737). Further support was provided by the Defense Threat Reduction Agency (DTRA), Military Infectious Disease Research Program (MIDRP, S0520_15_LI and S0572_17_LI), and the U.S. National Institute of Allergy and Infectious Diseases (NIH/NIAID) award number P01 AI098670. SC
Johnson used internal company financial resources for the development, manufacturing, delivery, and shipment of the intervention (SR and placebo) used in the study.

Competing interests
The authors have declared that no competing interests exist.

References

22. Therneau TM. A Package for Survival Analysis in S. version 2.38 [Internet]. 2015 [cited 2021 Jan 19];Available from: http://cran.r-project.org/package=survival

Morrison AC et al.

Figure 1. Location of 26 study clusters in Iquitos and Punchana Districts, Loreto Department, Iquitos, Peru. Each cluster consisted of ca. 140 households with an average distance of 300m between clusters.
Morrison AC et al.

Figure 2. Study timeline. Top panel: Human blood-sampling, disease surveillance, and entomological monitoring in relation to deployment of the spatial repellent intervention. Bottom panel: Intervention roll-out between August-December 2016 by cluster (horizontal numbers correspond to cluster numbers shown in Figure 1).
Figure 3. Allocation and follow-up of the longitudinal cohort population during three collection periods (Baseline [B], First [F] and Second/Final [S]). The majority (62%) of participants provided blood samples at each collection period, whereas some only during year 1 (B-F) or year 2 (F-S). Participants with a single sample were lost to follow-up and four individuals who moved or had two houses located in the spatial repellent and placebo clusters are shown as removed at the baseline period for clarity.
Table 1. Summary of baseline characteristics, for qualifying participants of the intent-to-treat (ITT) longitudinal cohort population in spatial repellent (SR) and placebo arm. Qualifying participants were defined as individuals in a participating house who were seronegative or had a monotypic DENV antibody response when they entered the trial.

Individual-Level

<table>
<thead>
<tr>
<th>Variable</th>
<th>SR</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in years (mean±sd) (min, max)</td>
<td>10.88±4.62</td>
<td>10.19±4.39</td>
</tr>
<tr>
<td></td>
<td>(2,47)</td>
<td>(2,22)</td>
</tr>
<tr>
<td>Sex (% male)</td>
<td>51.6%</td>
<td>55.0%</td>
</tr>
<tr>
<td>Duration in years between samples (mean±sd) (min, max)</td>
<td>1.15±0.42</td>
<td>1.16±0.43</td>
</tr>
<tr>
<td></td>
<td>(0.02,2.29)</td>
<td>(0.01,2.35)</td>
</tr>
<tr>
<td>No. qualifying participant observations</td>
<td>1,090</td>
<td>1,237</td>
</tr>
<tr>
<td>No. of arbovirus seroconversions</td>
<td>196</td>
<td>294</td>
</tr>
</tbody>
</table>

Cluster-Level

<table>
<thead>
<tr>
<th>Variable</th>
<th>SR</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster population (mean±sd) (min, max)</td>
<td>58.2±30.4</td>
<td>73.5±35.3</td>
</tr>
<tr>
<td></td>
<td>(21,124)</td>
<td>(12,132)</td>
</tr>
<tr>
<td>Baseline susceptibility (mean±sd) (min, max)</td>
<td>81.0%±12.8%</td>
<td>84.9%±6.3%</td>
</tr>
<tr>
<td></td>
<td>(54.7%,98.1%)</td>
<td>(73.3%,92.5%)</td>
</tr>
</tbody>
</table>
Table 2. Protective efficacy (PE) of the spatial repellent (SR) intervention against Aedes-borne virus (ABV) infection.

<table>
<thead>
<tr>
<th>SR vs placebo comparison</th>
<th>95% one-sided CI</th>
<th>PE (%) (95% one-sided CI)</th>
<th>One-sided p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survival analysis</td>
<td>0.694</td>
<td>34.1</td>
<td>0.0236</td>
</tr>
<tr>
<td>Hazard ratio</td>
<td>(−∞, 0.955)</td>
<td>(6.9, ∞)</td>
<td></td>
</tr>
</tbody>
</table>