COVID-19 symptom frequency comparison:
non-hospitalised positively and negatively tested persons with flu-like symptoms in Austria

Nicolas Musch¹, Stefanie Gruarin², Alistair Martin¹, Jama Nateqi²,³, Thomas Lutz⁴, Judith H. Aberle⁵
Bernhard Knapp¹*

¹ Symptoma, Data Science Department, Vienna, Austria
² Symptoma, Medical Department, Attersee, Austria
³ Department of Internal Medicine, Paracelsus Medical University, Salzburg, Austria
⁴ Symptoma, Software Development Department, Salzburg, Austria
⁵ Department of Virology, Medical University of Vienna, Vienna, Austria

* Corresponding author: science@symptoma.com

Abstract

Background

A large number of studies report COVID-19 symptom frequencies but most studies focus on hospitalized patients. Therefore reported symptom frequencies vary and their applicability to the general population is limited. Here we report COVID-19 symptom frequencies for the general population of a central European country.

Methods

In a collaboration between the Vienna Social Fund (FSW) and the AI-biotech company Symptoma we report symptom frequencies based on the COVID-19 chatbot of the city government of Vienna and corresponding PCR-test results. Chatbot users answered 13 yes/no questions about symptoms and provided information about age and sex. Subsequently a
medically trained professional came to their address to take a sample and PCR results were obtained.

Findings

Between November 2 and January 5, a total of 3011 persons experiencing flu-like symptoms had a PCR-test by a medical professional at home and completed the chatbot session prior to the test, 816 (27.1%) of them were COVID-19 positive. We compared the symptom frequencies between COVID-19 positive and negative users, and between male and female users. The symptoms (sorted by frequency) of users with positive PCR-test are malaise (81.1%), fatigue (72.9%), headache (64.1%), cough (57.7%), fever (50.7%), sore throat (40.7%), close contact with COVID-19 cases (34.9%), rhinorrhea (31.0%), sneezing (28.4%), dysgeusia (27.1%), hyposmia (26.5%), dyspnea (11.4%) and diarrhea (10.9%). Among these, cough, fever, hyposmia, dysgeusia, malaise, headache, close contact with COVID-19 case and fatigue are significantly (P < 0.01) increased in COVID-19 positive persons while dyspnea, diarrhea and sore throat are significantly (P < 0.01) decreased in COVID-19 positive persons. There was no significant difference for rhinorrhea and sneezing.

Keywords: COVID-19; symptom checker; symptom frequencies, chat bot
Introduction

COVID-19 symptom frequencies are a valuable information for authorities during this pandemic (e.g. screening the population and rapidly identifying cases). Symptom frequencies are used in applications including triage recommendation [1] and COVID-19 diagnostic [2] [3]. However, the reported symptom frequencies vary considerably across studies [1]. An example is “fever” for which symptom frequencies were reported between 7% and 91% [1]. Causes for these discrepancies include the over-representation of patients in hospital settings [2] and the lack of clarity on how symptoms were collected [1].

This study describes the COVID-19 symptom frequencies observed in the non-hospitalized Austrian population experiencing flu-like symptoms and compares them with COVID-19 negatively tested persons also experiencing flu-like symptoms. The data was collected systematically via a standardized web interface and the COVID-19 status determined by PCR-tests.

Methods

Data collection

From November 2020, the City of Vienna's digital COVID-19 symptom checker provided inhabitants of Austria’s capital with an initial COVID-19 risk assessment, as well as possible options for further action, e.g. a PCR test. The aim was to offer, in addition to the non-emergency medical health line “1450”, a fast to use, always available, and accurate digital channel, available via https://coronavirus.wien.gv.at/site/symptomchecker/.

Fonds Soziales Wien (Vienna Social Fund) and the company Symptoma developed the chatbot based on database, artificial intelligence, and algorithms of Symptoma [3]–[5] together. During
the chatbot conversation, the user is answering a series of 13 yes/no questions about symptoms. These include fever, cough, dyspnea, sneezing, rhinorrhea, sore throat, malaise, fatigue, diarrhea, headache, hyposmia, dysgeusia and close contact with COVID-19 case. Each user is asked the same questions and answers are recorded. The statistics reported in this paper are based on the combined information of the chatbot conversation and the results of a PCR result carried out by a medical professional. A total of 3011 users were screened this way between the 2nd of November 2020 and 5th of January 2021.

Data analysis

All data were anonymised prior to this analysis. Only sex, age, the answers to the questions and the result of the PCR-test were used for this study. Users who did not provide a sex information were excluded from the symptom frequencies comparison between female and male. All analyses were done in Python 3.8 using the libraries numpy (1.19.4), pandas (1.1.5), scikit-learn (0.24.0) and statsmodels (0.12.1). P-values were calculated by a two-tailed Fisher's exact test and corrected for multiple testing by the Benjamini/Hochberg method.

Results

Symptom frequencies among C19+ and C19- users

Summary statistics of participants and numerical details can be found in Table 1. Our study cohort consists of 3011 non-hospitalised persons experiencing flu-like symptoms of which 816 tested positive for COVID-19 (C19+) and 2142 tested negative for COVID-19 (C19-). In Figure 1, we compared the symptom frequencies between C19+ and C19-. The symptoms most
frequently reported by C19+ users are malaise (81.1%), fatigue (72.9%), headache (64.1%),
cough (57.7%) and fever (50.7%). Users less frequently reported sore throat (40.7%), close
contact with COVID-19 case (34.9%), rhinorrhea (31.0%), sneezing (28.4%), dysgeusia (27.1%)
and hyposmia (26.5%). Dyspnea (11.4%) and diarrhea (10.9%) were rarely reported (Figure
1A).

C19+ users significantly ($P < 0.001$) more often experienced cough, fever, hyposmia,
dysgeusia, malaise, headache and close contact with COVID-19 case. On the contrary, C19-
users significantly ($P < 0.001$) more often experienced sore throat, diarrhea and dyspnea. ($P <
0.001$).

No significant difference between C19+ and C19- was found for rhinorrhea ($P = 0.19$) and
sneezing ($P = 0.11$) (Figure 1A).

The largest relative increase in C19+ persons can be found in hyposmia (+63% or +16 percent
points), dysgeusia (+46% or +12 percent points), cough (+39% or +22 percent points) and fever
(+39% or +20 percent points) while the largest relative decrease in C19+ persons can be found
in dyspnea (-56% or -6 percent points) and diarrhea (-60% or -7 percent points) (Figure 1B).

Table 1. Characteristics and summary statistics of users.

<table>
<thead>
<tr>
<th>Users characteristics</th>
<th>- Non-hospitalised</th>
<th>- Experiencing flu-like symptoms</th>
<th>- November 2020 until January 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tota l</td>
<td>Positive PCR</td>
<td>Negative PCR</td>
</tr>
<tr>
<td>N users</td>
<td>3011</td>
<td>816</td>
<td>2142</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>1646</td>
<td>409</td>
<td>1206</td>
</tr>
<tr>
<td>Male</td>
<td>1345</td>
<td>399</td>
<td>925</td>
</tr>
<tr>
<td>Unknown</td>
<td>20</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Age group</td>
<td><16</td>
<td>129</td>
<td>27</td>
</tr>
<tr>
<td>Age Group</td>
<td>Number of Patients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-20</td>
<td>173</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-30</td>
<td>1044</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31-40</td>
<td>813</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41-50</td>
<td>372</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-60</td>
<td>298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61-70</td>
<td>114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>71</td>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Number of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatigue</td>
<td>2077</td>
</tr>
<tr>
<td>Hyposmia</td>
<td>439</td>
</tr>
<tr>
<td>Sore Throat</td>
<td>1373</td>
</tr>
<tr>
<td>Cough</td>
<td>1250</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>481</td>
</tr>
<tr>
<td>Rhinorrhea</td>
<td>990</td>
</tr>
<tr>
<td>Malaise</td>
<td>2181</td>
</tr>
<tr>
<td>Dysgeusia</td>
<td>546</td>
</tr>
<tr>
<td>Sneezing</td>
<td>925</td>
</tr>
<tr>
<td>Fever</td>
<td>1113</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>476</td>
</tr>
<tr>
<td>Headache</td>
<td>1665</td>
</tr>
<tr>
<td>Close Contact COVID-19 Case</td>
<td>851</td>
</tr>
</tbody>
</table>
Figure 1. Symptom frequencies for the C19+ and C19- groups (left) and the difference between those groups in percentage and percentage point (right). Symptoms with a p-value less than 0.05, 0.01 and 0.001 are indicated with one, two and three asterisks respectively.

Co-occurrence and correlation of symptoms

Co-occurrence and correlation matrices between the symptoms for C19+, C19- and for all users together are shown in Supplementary Figure 1. The three highest co-occurrences can be found for malaise and fatigue in C19+ (present in 67%) and all users (60%) as well as for malaise and headache in C19+ (59%).

The three highest correlations can be found for dysgeusia and hyposmia in C19+ ($r_s=0.70$), all ($r_s=0.64$) and C19- ($r_s=0.58$). Other correlations for all users include expected pairs like malaise and fatigue ($r_s=0.48$), sneezing and rhinorrhea ($r_s=0.45$), malaise and headache ($r_s=0.37$), headache and fatigue ($r_s=0.33$) as well as fever and malaise ($r_s=0.31$). There are no notable correlations for age and sex. For details see Supplementary Figure 1.
Symptom frequency comparison between female and male users

In the C19+ group, fever is more frequently present for men than for women \((P = 0.010)\) while sneezing is more frequently present for women than for men \((P = 0.0012)\).

In the C19- group, the fever frequency is also higher for men than for women \((P < 0.001)\) but for sneezing the difference is insignificant \((P = 0.27)\). In the C19- group, women more frequently experience headache and sore throat \((P < 0.001)\) (Figure 2).

A) C19+ group

B) C19- group
Fig 2. Symptom frequencies among the female and male (left) and the difference between those frequencies in percentage and percentage points (right). (A) For the C19+ group and (B) for the C19- group. Symptoms with a p-value less than 0.05, 0.01 and 0.001 are indicated with one, two and three asterisks respectively.

Discussion

To our knowledge, it is the first study reporting COVID-19 symptom frequencies in Austria. Our results showed a cough frequency of 58% which falls within the previously reported symptom frequency range of the literature [6] (range [43%-71%]). Similar agreements were found for sore throat (41% vs [5%-71%]), fever (51% vs [7%-91%]), malaise (81% vs [19%-86%]) and headache (64% vs [3%-71%]). The upper limit of the reported literature ranges might represent hospitalized patients. Only the frequency of fatigue (73%) does not fall within the range of [6] (10%-57%). This discrepancy might be explained by the non-specific nature of fatigue.

The results also show that all the symptom frequencies reported here (with the exception of rhinorrhea and sneezing) are different between C19+ from C19- users. This agrees with other studies [7] [8] that also reported hyposmia, dysgeusia and fever as significantly increased in C19+ persons. Considering the high relative difference of hyposmia and dysgeusia frequencies for C19+ users, our study suggests that hyposmia and dysgeusia are specific but not sensitive, i.e. their presence likely leads to C19+ but no conclusion can be drawn from their absence.

Finally, results show symptoms were reported in different frequencies by men and women, which could be caused by sex-specific differences in the clinical course [9], [10].

One strength of our study is the systematic symptom collection i.e. each user was asked the same questions by the chatbot which allows for higher data consistency than handwritten reports. Additionally, the result of the PCR-test is automatically associated with the reported...
symptoms, instead of being communicated by the users themselves which would risk the inclusion of falsely reported PCR-test results. Another strength is that most symptom frequencies reported in the literature are based on hospitalized patients [1] while this study reports symptom frequencies for the general population in central Europe.

However, our study also has limitations: there is a selection bias for participants as old people are unlikely to use a chatbot (see Table 1 and [11]) and there is an overrepresentation of female participants in this study (45.0% male and 55.0% female). Also, the dyspnea frequency and difference reported here might be due to a sample bias as (a) dyspnea is often a late symptom of an infection while chat-bot users might rather be at an earlier stage of an infection and (b) dyspnea can be a distressing symptom and affected individuals might rather call an emergency hotline instead of using a chatbot [12].

Data Availability

All relevant data is reported within the study.

Funding

This study has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 830017 and by the Austrian Research Promotion Agency under grant agreement No 880939 (supported by the Federal Ministries Republic of Austria for Digital and Economic Affairs and Climate Action, Environment, Energy, Mobility, Innovation and Technology).

Declaration of interests

NM, SG, AM, JN, TL and BK are employees of Symptoma GmbH. JN and TL hold shares of Symptoma.
Ethical considerations

This study was exempted from ethics review by the ethics commission of the city of Vienna (MA15-EK/21-037-VK_NZ). All individuals using the chatbot agreed that their data will be used in an anonymised way.

Author contributions

Study design: BK, JN, TL. Data compilation: NM, TL. Data analysis and critical revision: NM, BK, AM, JA. Writing the manuscript: NM, BK. Revising the manuscript critically: BK, SG, AM, JN, JA.

Supplementary material
Supplementary Figure 1: Normalized co-occurrence (how often is a specific symptom present among all persons of the respective group) and spearman correlation matrices between symptoms.