Epidemiological Philosophy of Pandemics

Tareef Fadhil Raham
Consultant pediatrician MOH-Iraq
tareeffadhil@yahoo.com

Abstract

Objectives: Currents estimates of total cases of COVID-19 are largely based on previously determined case fatality rates (CFR)s. The background theory in this study is based on two: There is no evidence that during epidemics CFR is fixed throughout time or place and there is evidence that viral load (dense of infection) leads to more fatalities.

Study Design: This study was done to look for any relationship between mortality rate (MR) presented as deaths/ million (M) population with both of the total cases / (M) population (density of infection) and of CFR. We chose 31 countries with testing coverage > 400,0000 tests /M and with> 1 million population.

Methods: We used ANOVA regression analyses for testing the associations.

Results: CRF is not a fixed ratio as it changed with a change in (MR). The COVID-19 deaths / million data were fit to calculate the total cases through the equation: total deaths /M =0.006593 X (total cases 1.016959) with a too highly significant correlation between total deaths / 1M and total cases (P-value 0.0000).

There was a high positive influence of COVID-19 MR on the CFR (P-value = 0.0002) by non-linear regression (power model), through the equation:

\[\text{CFR} = (0.093200) X (\text{total deaths/ M.})^{0.366580} \]

Conclusions: There is new evidence of using MR for estimation of CFR and total cases through uniform formulae applicable during this pandemic and possibly for every epidemic. This evidence gives us an understandable idea about epidemics’ behavior.

Key words: COVID-19, CFR, MR, Pandemic, Epidemic

Introduction

There is strong evidence from various studies on the importance of the dose of the inoculum of a pathogen that can lead to severe infection.\(^1\) Of worth mention these pathogens include : Influenza,\(^2,3\) Measles,\(^4\) Human Immunodeficiency Virus (HIV)
Tuberculosis (TB), Streptococcus pneumonia, HBV, flavivirus West Nile virus, and Coronaviruses.

The proposed mechanism by which a high viral inoculum leads to more severe disease is via a dysregulated and overwhelmed innate immune response to a higher viral dose in which immunopathology plays a role in viral pathogenesis, as it is the possibility in COVID-19.

It was suggested that minimal viral inoculum may be controlled sub-clinically by innate defense mechanisms, while massive doses can overwhelm innate immunity and may cause severe disease and rapid death.

Unfortunately, this issue has received surprisingly no challenge trials. Furthermore, there is a lack of epidemiological studies to correlate the association between the clustering of cases with both the mortality rate (MR) and the CFR.

Several research groups have developed epidemiological models of COVID-19. These models use confirmed cases and deaths, testing rates, and a range of assumptions and epidemiological knowledge to estimate true infections and other important metrics.

CFR gained great importance in the COVID-19 pandemic because the expected total mortality burden of COVID-19 is directly related to CFR. Current estimates of CFR as active cases are resolved. Countries are currently criticized by a wide variation in CFR estimates over the course of an epidemic, which tends toward a stable difficult to compare for several reasons. This makes current models using predetermined CFR subjected to great bias. According to WHO, there were broad variations in naïve estimations of CFR that may be misleading. These models might not accurately track the pandemic since applying previous IFRs whether from local sources or abroad.

Testing capacity may be limited and restricted to people with severe cases and priority risk groups. This makes continuous massive COVID-19 testing for continuous estimation of IFR or CFR a difficult task.
In the context of current variances and difficulties in CFR estimates and to put light on unknown parameters associated with COVID-19 mortality which were poorly understood, we put the question of this study whether CFR is associated with MR expressed as the number of mortalities / million population. Moreover, this study also conducted to look for an association between MR expressed as deaths / M and no. of cases / M population as far as cases / M population represent the density of infection.

Methods

Study Design

This study was done to look for any relationship between mortality rate (MR) presented as deaths/ million (M) population with both of the total cases / (M) population (density of infection) and of CFR. We chose 31 countries with testing coverage > 400,0000 tests /M and with> 1 million population.

Methods: We used ANOVA regression Thirty-one countries were chosen which had > 1 million populations residents accounts and have accounted > 400,0000 test /M. Inhabitants’ population.

Data collection was done from the public reference websites:

2- COVID-19 pandemic by country and territory - Wikipedia

3- COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU)". ArcGIS. Johns Hopkins University

4- COVID-19 Virus Pandemic - Worldometer (worldometers.info)

Information collected for COVID-19 cases /M and COVID-19 deaths/M as it is on January,16,2021. Additional country - specific references are included within supplementary appendices.

We used ANOVA regression analyses for testing the associations throughout the study (SPSS-21)
As the test coverage for COVID-19 differs among these 31 countries, we correct the no. of cases to 1 million population tested for total cases then we did correction for CFR accordingly. The total cases became corrected total cases and CFR became corrected CFR.

CFR is calculated by dividing the number of COVID-19 deaths till January 16, 2021 by the number of confirmed cases till that time expressed as %. The MR is calculated by dividing the number of COVID-19 deaths per 1 M population.

Results

Table (1) and fig. (1) show a meaningful nonlinear regression (logarithm model) tested in two-tailed alternative statistical hypotheses. The slope value indicated that with increasing one unit of the "test no. / 1M.". There was a decreasing effect on the unit of "total cases/M corrected to 1M tested", and estimated as (-40924.93), which recorded a significant effect at P-value<0.05. The relationship coefficient was accounted as (0.44178) which has a meaningful and significant determination coefficient (R² = 19.517%). Another source of variations that was not included in the studied model, i.e. the "intercept" showed that a highly significant level is accounted at 0.0062 P-value.

Table (2) and fig (2) show a meaningful nonlinear regression (power model) tested in a two-tailed alternative statistical hypothesis. The slope value indicated that with increasing one unit of the "tested no./1M. tested ", there was a negative impact on the unit of "CFR", which was estimated as (-0.931198). This recorded significant influence at P-value<0.05. The accounted relationship coefficient was (0.43924) with a meaningful and significant determination coefficient (R-Square = 19.293%). Another source of variations that was not included in studied model, i.e. "intercept" was not significant (P.value>0.05).

Table (3) and fig, (3) show a meaningful nonlinear regression (power model) tested in a two-tailed alternative statistical hypothesis. The slope value indicated that with increasing one unit of the total cases corrected to1 M tested. There was a positive influence on the unit
of total deaths/1M which was estimated as (1.016959). This was recorded as a too highly significant influence at 0.000 P-value, as well as the relationship coefficient which was accounted (0.80260) with meaningful and significant determination coefficient (R² = 64.416%). Another source of variations that was not included in the model, i.e. "intercept" showed no significant level at P>0.05.

Standardization for the equation: total deaths /M=0.006293x(total cases corrected to 1 M tested)¹⁰¹⁶⁹⁵⁹

We considered Diamond Princess for the standardization of our results. Data can be found at the public github repository: https://github.com/thimotei/cCFRDiamondPrincess. Further references are listed in the discussion section of this paper.

Deaths were 7, total passengers 3711 total cases 619 infections (301 symptomatic, 318 asymptomatic) and CFR= 1.9 as it in February, 20,2020.

Expected total deaths corrected to 3711 passengers = 5.004227 the actual death = 7 (Providing our estimates based on confirmed cases equation).

Table (4) shows a meaningful nonlinear regression (Power model) tested in a two-tailed alternative statistical hypotheses. The slope value indicated that with increasing one unit of the "total deaths no./1M", there was a positive impact on the unit of "CFR", which was estimated as (0.366580). This was recorded as a too highly significant influence at P-value<0.0001, as well as the relationship coefficient which was accounted as (0.61437) with meaningful and significant determination coefficient (R² = 37.746%). Intercept" showed no significant P-value.

The curve in fig 4 shows clearly that CFR is increasing with decreasing increment.

Standardization for the equation: CFR=0.093200xtotal death no./M⁰.³⁶⁶⁵⁸⁰:

we consider *Diamond Princess* for standardization again to calculate CFRs

If total deaths 7, the CFR = 1.479.

If total deaths 14, the CFR= 1.911

CFR = deaths/ cases

1.911=7/? x 100
=368,421,052 total cases which include all the symptomatic cases (301 symptomatic) and part of asymptomatic cases because our equation calculates slandered confirmed cases, not all cases.

Discussion

In this study, we proved that we can estimate CFR and total no. of confirmed cases once the ratio deaths /M are known. By building new models and equations suitable for IMR we can calculate true total cases (confirmed and not confirmed) rather than estimation of equivalent confirmed cases. Furtherly it is possible to standardize the current equations and predicted models and can be re-evaluated and readjusted. *Diamond Princess* cruise ship possibly does not represent a convenient sample as far as there is conflicting data regarding CFR, since previous estimations were carried out for IMR.\(^\text{18,19,20}\) It is more convenient to obtain our IMR equation and model rather than CFR. However, we considered CFR and confirmed cases at this urgent situation. Anyhow, we considered the initial assessment for our equations and models as encouraging.

Anyhow, the results prove that there was a too high positive influence of COVID-19 MR on the CFR and no. of confirmed cases by non-linear regression (tables 3 and 4).

The most important confounder is testing coverage (tables 1 and 2). We try to adjust this factor because decrease coverage can lead to a spurious increase of the ratio; no. of cases/million population tested, and spurious increase in CFR. In table 1 and table 2 despite we adjust cases for 1 M tested for COVID-19, we found significant negative associations between no. of tests with no. of cases/M population and with CFR. This limitation leads to an underestimation of asymptomatic infections which were estimated to be 10–70% of total true infections elsewhere.\(^\text{21}\) Furthermore, limited access to testing could result in undercounting of deaths.

Another limitation in this study (due to estimation coverage in part) is that we estimate confirmed cases / M and CFR. IMR estimates are more convenient to derive MR vs IMR equation instead of CFR which represent only part of the problem.

One of further limitations is the relatively small number of the study sample.

In real-time, estimates of the case fatality ratio (CFR) and infection fatality ratio
(IFR) can be biased upwards by under-reporting of cases and downwards by failure to account for the delay from confirmation-to-death.

Virulence of pathogens depends largely on the previous immunity of the host whether cross-reacting or due to previous infection or vaccination. Clinical trials should proceed to identify the role of both highly transmitted and not highly transmitted viruses and pathogens. These studies should also answer the question: whether a high load of a low virulent viral infection among not previously exposed subjects leads to high mortality.

Factors such as mobility, social distancing policies, population density, and host factors can interfere greatly with the no. of cases. The scope of this study was not designed to look for causes of variances in no. of cases with different times and places. Anyhow, we test how the total number of cases affect MR and CFR. The no. of cases as a factor determines MR and CFR is something new instead. The underlying mechanism might be explained by viral load and density of infection. Although was studied in certain conditions before, the contribution of no. of cases in disease pathogenesis should be examined in depth now again. Previous many works during this pandemic try to answer the question of why CFR differs rather than why the no. of cases/ M differs.

It was suggested for example, that when viral load is high this can lead to severe COVID-19 disease and can lead to multisystem inflammatory syndrome in children (MIS-C)22, a Kawasaki disease (KD) like syndrome suggested to be related to overdrive of innate immunity 23,24,25,26. Family and community clusters of severe COVID-19 infection have been reported early in this pandemic.27,28

Reported excess deaths estimates were thought to represent misclassified COVID-19 deaths, or potentially could be indirectly related to the COVID-19 pandemic. It was suggested that this excess was related to the pandemic itself and not to disease i.e. it was attributed to lack of facilities during pandemic.29 According to our estimates, this excess could be part of total cases calculated through IFR/CFR and total deaths/ M and total cases/ M.

Not previously easily explained extraordinary high mortality rates during certain epidemics are of scientists’ concern. For example, there were high mortality rates during
measles epidemics in Pacific Islands such as Fiji in 1875, and Rotuma in 1911 with mortality rates of 20% and 13% of total residents died respectively. The Faroe Islands during 1846 was nearly 10 times higher during the 1911 epidemic on Rotuma.30 One of the amazing things in these epidemics there was no direct evidence of hypervirulent strains of the measles virus or genetic predispositions to fatal outcomes after measles infection.31

Again in the 1918 influenza epidemic, it was notable for its virulence when deaths exceeded 20 million deaths worldwide, approximately half a million in the United States.32 The noteworthy evidence of the 1918 epidemic was the one-quarter of the American population had clinically recognizable cases of flu during the epidemic giving the impression of a high attack rate.33 Before the 1918 epidemic, one has to go back to the black death (bubonic plague) of 1346 to find a similarly devastating epidemic.32

During the COVID-19 pandemic, clinicians have struggled to understand why some infected patients experience only mild symptoms while others exhibit progressive, fatal disease.27 I think this new evidence enable us to understand these amazing situations.

Advantages and conclusions:

During previous epidemics and current pandemic, there was no such prediction model or equation which is based on mortality rate to predict the total number of cases or CFR.

During outbakes, routine case detections for asymptomatic patients consume time, effort, equipment, finance, and subject health personals to get and transmit infection.

We provide uniform equations applied everywhere with flexible CFR /IFR.

The number of infected persons can be calculated in two ways either through CFR and total deaths or through the presented equation.

We think possibly these equations can be applied for every epidemic as far as it’s based on the estimation of mortality no./M i.e. the curve and equations could be the same. The estimated equivalent confirmed cases should be adjusted to total true cases.
No. of total infections is not a major determinant factor for no. of deaths in pre-estimated CFR modules. While in our study, no. of deaths/M is a determinant for current CFR and total confirmed cases.

Increased deaths/M coincide with increased cases / M and CFR. This means that increased total deaths outnumber the increased total infections which leads to increased CFR. The proxy indicator for increase in total cases is the no. of deaths/M.

The proposed new definition for an epidemic that we put forward is: increase in CFR from its standard level.

These findings will help in the development of infection control policies to break the chain of pandemic and help to understand the philosophy of pandemic.

Health systems should focus on decreasing the no. of the total cases, since MR and CFR increased with an increase in no. of total cases. All health systems could have the same fatality rates.

Better understanding of the pandemic behavior through showing that increased CFR with increased no. of cases support viral over load theory.

Conflict of interest: There are no conflicts of interest worth mentioning.

There is no funding source.

Acknowledgment

I am deeply grateful to Emeritus Professor Abdulkhaleq Abduljabbar Ali Ghalib Al-Naqeeb, Ph.D. in the Philosophy of Statistical Sciences at the Medical & Health Technology college, Baghdad-Iraq, for his assistance and support in data analysis, interpretations of finding results, and statistical revision of the paper.

Ethical approval was not required for this study, as far as we used publically available data and patients were not involved.

References

9. Asabe, S. et al. The size of the viral inoculum contributes to the outcome of hepatitis B virus infection. J. Virol. 83, 9652–9662 (2009). This study investigated the influence of dose of infecting HBV on the pathogenesis of liver disease and clearly showed that very high or very low doses of infection led to severe liver damage.

14 How epidemiological models of COVID-19 help us estimate the true number of infections by Charlie Giattino

18 Viable Opposition: The Diamond Princess - Estimating the COVID-19 Case Fatality Ratio in a Closed System

19 Timothy W Russell, Joel Hellewell, Christopher I Jarvis, Kevin Van Zandvoort, Sam Abbott, Ruwan Ratnayake, CMMID COVID-19 working group, Stefan Flasche, Rosalind M Eggo, W John Edmunds, Adam J Kucharski

Estimating the infection and case fatality ratio for COVID-19 using age-adjusted data from the outbreak on the Diamond Princess cruise ship

medRxiv 2020.03.05.20031773; doi: https://doi.org/10.1101/2020.03.05.20031773

20 Dimple D Rajgor, Meng Har Lee, Sophia Archuleta, Natasha Bagdasarian, Swee Chye Quek

The many estimates of the COVID-19 case fatality rate. the lancet. VOLUME 20, ISSUE 7, P776-777, JULY 01, 2020 Published:March 27, 2020DOI: https://doi.org/10.1016/S1473-3099(20)30244-9
21 CDC COVID-19 Pandemic Planning Scenarios.

29 CDC. Excess Deaths Associated with COVID-19.

Accessed February ,20,2021

https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm

30 Morens D. Measles in Fiji, 1875: thoughts on the history of emerging infectious diseases. *Pac Health Dialog.* 1981;(5) 1;119-128

Figure (1): Long term trend of the scatter diagram concerning impact of test no. / 1M. on total cases corrected to 1M. tested

Figure No. (2): Shows the long term trend of scatter diagram effectiveness of tested no./1M. tested on corrected CFR.
Figure (3): Long term trend of the scatter diagram concerning impact of total confirmed cases corrected to 1 M. tested on total deaths / 1 Million.

Figure No. (4): Shows the long term trend of scatter diagram effectiveness of Total Deaths No./1M. on Case Fatality Rate.
Figure (4): Long term trend of the scatter diagram concerning total deaths No./1M. population on CFR
Table (1): Impact of test No. /1M. on total confirmed cases corrected to :1M. tested

| Dep. variable Method... Logarithm -Shape Model " total cases corrected to :1M .tested" |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|
| List wise Deletion of Missing Data |
Correlation Coefficient 0.44178 (S)	Meaningful Non Linear regression	Tested in two tailed alternative
R- Square 0.19517	Statistical hypothesis	
F Statistic of Reg. ANOVA 7.03249	Sign. F = 0.0128 (S) (*)	

Variables in the Equation

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>SE.B</th>
<th>Beta</th>
<th>t-test</th>
<th>Sig. level (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test No./1M. tested</td>
<td>-40924.926</td>
<td>15432.398</td>
<td>-0.44178</td>
<td>-2.652</td>
<td>0.0128</td>
</tr>
<tr>
<td>(Constant)</td>
<td>610219.45</td>
<td>206780.36</td>
<td>-</td>
<td>2.951</td>
<td>0.0062</td>
</tr>
</tbody>
</table>

Predicted Equation - Logarithm-Shape Model

\[
(\text{total cases corrected to :1M. tested}) = (610219.45) - (40924.926 + \ln (\text{Test No.}/1 \text{ M }))
\]

(*) S: Sig. at P<0.05; Testing Non Linear Regression (Logarithmic Model): whose equation is \(Y \)

Table (2): Impact of tested no./1M population on corrected CFR

| Dependent variable Method... Power -Shape Model "Case Fatality Rate." |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|
| List wise Deletion of Missing Data |
Correlation Coefficient 0.43924 (S)	Meaningful Non Linear regression	Tested in two tailed alternative
R- Square 0.19293	Statistical hypothesis	
F Statistic of Reg. ANOVA 6.93265	Sign. F = 0.0134 (S) (*)	

Variables in the Equation

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>SE.B</th>
<th>Beta</th>
<th>t-test</th>
<th>Sig. level (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test No./1M. tested</td>
<td>-0.931198</td>
<td>0.35367</td>
<td>-0.43924</td>
<td>-2.633</td>
<td>0.0134</td>
</tr>
</tbody>
</table>
Table (3): Impact of total cases corrected to :1M. tested on total deaths / 1M.

<table>
<thead>
<tr>
<th>Dependent variable Method... Power -Shape Model "Total deaths / 1Million."</th>
<th>Method</th>
<th>List wise Deletion of Missing Data</th>
<th>Correlation Coefficient</th>
<th>0.80260 (HS)</th>
<th>Meaningful Non Linear regression</th>
<th>Tested in two tailed alternative</th>
<th>Statistical hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>R- Square</td>
<td>0.64416</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F Statistic of Reg. ANOVA</td>
<td>52.49770</td>
<td></td>
<td></td>
<td></td>
<td>Sign. F =</td>
<td>0.0000 (THS) (*)</td>
<td></td>
</tr>
</tbody>
</table>

Variables in the Equation

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>SE.B</th>
<th>Beta</th>
<th>t-test</th>
<th>Sig. level (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total cases Corrected to :1 M. tested</td>
<td>1.016959</td>
<td>0.140357</td>
<td>0.802597</td>
<td>7.246</td>
<td>0.0000</td>
</tr>
<tr>
<td>(Constant)</td>
<td>0.006593</td>
<td>0.009926</td>
<td>-</td>
<td>0.664</td>
<td>0.5118</td>
</tr>
</tbody>
</table>

Predicted Equation - Logarithm-Shape Model

\[
\text{(Total Deaths / 1Million)} = (314432.61) \times \text{(Total tested No /1M. tested)}^{-0.931198}
\]

(*) THS: Too Highly Sig. at P<0.000; Testing Non Linear Regression (Power Model): Model whose equation is \(Y = b_0 \times (x^{b_1}) \) or \(\ln(Y) = \ln(b_0) + [b_1 \times \ln(x)] \).
Table (4): Non Linear (Power Mode) Regression for Total Deaths No./1M. on Case Fatality Rate

<table>
<thead>
<tr>
<th>Dependent variable Method... Power -Shape Model "Case Fatality Rate."</th>
</tr>
</thead>
<tbody>
<tr>
<td>List wise Deletion of Missing Data</td>
</tr>
<tr>
<td>Correlation Coefficient</td>
</tr>
<tr>
<td>0.61437</td>
</tr>
<tr>
<td>(THS)</td>
</tr>
<tr>
<td>Meaningful Non Linear regression</td>
</tr>
<tr>
<td>Tested in two tailed alternative</td>
</tr>
<tr>
<td>Meanings</td>
</tr>
<tr>
<td>R- Square</td>
</tr>
<tr>
<td>0.37746</td>
</tr>
<tr>
<td>Statistical hypothesis</td>
</tr>
<tr>
<td>F Statistic of Reg. ANOVA</td>
</tr>
<tr>
<td>17.58308</td>
</tr>
<tr>
<td>Sign. F = 0.0002 (THS)**</td>
</tr>
<tr>
<td>Variables in the Equation</td>
</tr>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>Total Deaths No./1M.</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>Predicted Equation - Logarithm-Shape Model</td>
</tr>
<tr>
<td>(Case Fatality Rate) = (0.093200) * (Total Deaths No./1M.)^{0.366580}</td>
</tr>
</tbody>
</table>

THS: Too Highly Sig. at P<0.0002; Testing Non Linear Regression (Power Model): Model whose equation is \(Y = b_0 \times (x^{b_1}) \) or \(\ln(Y) = \ln(b_0) + [b_1 \times \ln(x)] \).
Epidemiological Philosophy of Pandemics

Tareef Fadhil Raham
tareeffadhil@yahoo.com
Consultant pediatrician MOH-Iraq
00964 7901584338

Abstract

Objectives: Currents estimates of total cases of COVID-19 are largely based on previously determined case fatality rates (CFRs). The background theory in this study is based on two: There is no evidence that during epidemics CFR is fixed throughout time or place and there is evidence that viral load (dense of infection) leads to more fatalities.

Study Design: This study was done to look for any relationship between mortality rate (MR) presented as deaths/ million (M) population with both of the total cases / (M) population (density of infection) and of CFR. We chose 31 countries with testing coverage > 400,0000 tests /M and with> 1 million population.

Methods: We used ANOVA regression analyses for testing the associations.

Results: CFR is not a fixed ratio as it changed with a change in (MR). The COVID-19 deaths / million data were fit to calculate the total cases through the equation: total deaths /M =0.006593 X (total cases 1.016959) with a too highly significant correlation between total deaths / 1M and total cases (P-value 0.0000).

There was a high positive influence of COVID-19 MR on the CFR (P-value = 0.0002) by non-linear regression (power model), through the equation:

CFR = (0.093200) X (total deaths/ M.)0.366580

Conclusions: There is new evidence of using MR for estimation of CFR and total cases through uniform formulae applicable during this pandemic and possibly for every epidemic. This evidence gives us an understandable idea about epidemics’ behavior.

Key words: COVID-19, CFR, MR, Pandemic, Epidemic