The mass balance model perfectly fits both Hall et al. underfeeding data and Horton et al. overfeeding data

Francisco Arencibia-Albité¹ Anssi H. Manninen²

¹Universidad del Sagrado Corazón, Natural Sciences Department, PO BOX 12383, San Juan PR 00914-0383, Puerto Rico. Email: franciscom.arencibia@sagrado.edu

²Dominus Nutrition Oy, Ylipääntie 438, 92220 Raahe, Finland. Email: anssi@dominusnutrition.fi

Corresponding author: Anssi H. Manninen

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background & Aims

Recently, the validity of mass balance model (MBM) was questioned based on two feeding studies. Thus, we simulated both of these feeding trials.

Methods

MBM describes the temporal evolution of body weight and body composition under a wide variety of feeding experiments. This computational study simulated, utilizing MBM, the underfeeding trial by Hall et al. (Cell Metab. 2015;22:427-36) and the overfeeding trial by Horton et al. (Am J Clin Nutr. 1995;62:19-29).

Results

Our simulation results indicate that data from both of these feeding trials perfectly match MBM-based predictions, i.e., MBM gives a remarkably accurate description of experimental data.

Conclusions

It is becoming increasingly clear that our model (MBM) is perfectly able to predict body weight and body composition fluctuations under a wide variety of feeding experiments.
Key words: obesity, weight loss, energy balance theory, mass balance model, macronutrients

“There is a stupid humility that is not at all rare, and those afflicted with it are altogether unfit to become devotees of knowledge. As soon as a person of this type perceives something striking, he turns on his heel, as it were, and says to himself: “You have made a mistake. What is the matter with your senses? This cannot, may not, be the truth.” And then, instead of looking and listening again, more carefully, he runs away from the striking thing, as if he had been intimidated, and tries to remove it from his mind as fast as he can. For his inner canon says: “I do not want to see anything that contradicts the prevalent opinion. Am I called to discover new truths? There are too many old ones, as it is...”

Introduction

Currently, weight management is based on the “calories-in, calories-out” rule, formally named the energy balance theory (EBT). It maintains that body weight increases as food calories are greater than expended calories and vice versa. However, our recent papers [1,2] indicate that EBT-based simulations are clearly erroneous. As an alternative, the **mass balance model (MBM)** was proposed; and our recent simulations [1,2] indicate that MBM-based predictions are remarkably accurate.

Recently, the validity of mass balance model (MBM) was questioned based on two feeding studies, namely the underfeeding trial by Hall *et al.* [3] and the overfeeding study by Horton *et al.* [4]. Thus, we decided to simulate, utilizing MBM, both of the above mentioned feeding trials.

Materials & Methods

Mass balance model (MBM)

The MBM describes the temporal evolution of body weight and body composition under a wide variety of feeding experiments by using of the following measurements:

Energy-providing mass (EPM): The daily mass intake given by carbohydrate, fat, protein, soluble fiber and alcohol.
Non-energy-providing mass (nEPM): The daily mass intake given by insoluble fiber, vitamins, minerals and the net daily water balance (i.e., water ingestion and metabolically produced water minus lost water).

R: The relative daily rate of mass excretion free of total daily O_2 uptake.

β: The mathematical formula that approximates the relationship between $dFFM/dFM$ and FM is an equilateral hyperbola where β is the constant term of the hyperbola, i.e., $FM (dFFM/dFM) = \beta$. This parameter sets the magnitude of the change in fat free mass (FFM) whenever fat mass (FM) changes.

These measurements are used to populate the following MBM formulas:

$$M = EPM + nEPM$$

$$\Delta BW(t) = (M/R - BW_0) [1 - (1 - R)^t]$$

$$\Delta FM(t) = \beta \cdot W \{ (FM_0/\beta) \exp[\Delta BW(t)/\beta + FM_0/\beta] \} - FM_0$$

where t is the time in days; M is the total daily mass intake; BW_0 is the initial body weight; $\Delta BW(t)$ and $\Delta FM(t)$ are the cumulative body weight and fat mass changes, respectively; FM_0 is the initial fat mass; and W is the product log function. For further details, consult the original MBM paper [1].

MBM and Hall et al. underfeeding data

As was already pointed out by Arencibia-Albite in “Discussion” of the original MBM paper [1], this model, in fact, perfectly fits Hall et al. data [3]. In their Table 3 and Figure 3F, it is shown that a period of six days of reduced carbohydrate diet (RC) resulted, on average, in a total weight loss of -1.85kg, whereas the reduced fat diet (RF) resulted in -1.3kg (RC vs. RF, $p=0.022$). According to their Table 1, EPM of each diet is as follows:

- RC: $EPM = 0.365$kg
- RF: $EPM = 0.495$kg

while the average BW_0 and FM_0 are 106kg and 42kg, respectively.

Using this data and standard numerical methods, we approximated that the remaining MBM parameters were:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>RC</th>
<th>RF</th>
</tr>
</thead>
<tbody>
<tr>
<td>$nEPM$</td>
<td>1.4846kg</td>
<td>1.6055kg</td>
</tr>
<tr>
<td>R</td>
<td>0.0205109</td>
<td>0.0219753</td>
</tr>
<tr>
<td>β</td>
<td>104.2324kg</td>
<td>50.5016kg</td>
</tr>
</tbody>
</table>

Therefore, the MBM formulas for each diet are as follows:
RC:

\[M = EPM + nEPM = 1.8496\text{kg} \]

\[\Delta BW(t) = \left(\frac{1.8496}{0.0205109} - 106 \right) \left(1 - \left(1 - \frac{0.0205109}{t} \right)^t \right) \]

\[\Delta FM(t) = 104.2324 \cdot W \left(\frac{42}{104.2324} \exp\left[\frac{\Delta BW(t)}{104.2324} + \frac{42}{104.2324} \right] \right) - 42 \]

RF:

\[M = EPM + nEPM = 2.1005\text{kg} \]

\[\Delta BW(t) = \left(\frac{2.1005}{0.0219753} - 106 \right) \left(1 - \left(1 - \frac{0.0219753}{t} \right)^t \right) \]

\[\Delta FM(t) = 50.5016 \cdot W \left(\frac{42}{50.5016} \exp\left[\frac{\Delta BW(t)}{50.5016} + \frac{42}{50.5016} \right] \right) - 42 \]

These formulas are plotted in Figure 1. For further details, see the figure legend.
Figure 1. MBM simulation of Hall et al. underfeeding data.

A1. MBM weight loss trajectories perfectly match those reported by Hall *et al.* [3] over the trial duration (6 days). **A2.** The graph shows the same weight loss trajectories as in panel A1 but extended for 180 days. The MBM predicts a greater weight loss in the RC diet in contrast to the RF diet. **B1.** Fat loss trajectories that underlay weight loss in A1 perfectly match those reported by Hall *et al.* [3] over the trial duration (6 days). **B2.** The graph shows the same fat loss trajectories as in panel B1 but extended for 180 days. The MBM predicts very similar levels of fat loss between diets. **[FIGURE LEGEND ENDS]**

MBM and Horton *et al.* overfeeding data

According to Table 1 in Horton *et al.* [4], the average initial characteristics of the lean and obese subjects were as follows:

<table>
<thead>
<tr>
<th></th>
<th>Lean</th>
<th>Obese</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW</td>
<td>68.4kg</td>
<td>103.9kg</td>
</tr>
<tr>
<td>FM</td>
<td>14.7kg</td>
<td>37kg</td>
</tr>
</tbody>
</table>

After an isocaloric overfeeding period of 14 days, the latter characteristics change (Table 2 in Horton *et al.* [4]):

<table>
<thead>
<tr>
<th></th>
<th>Lean</th>
<th>Obese</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High Carb. (HC)</td>
<td>High Fat (HF)</td>
</tr>
<tr>
<td>ΔBW</td>
<td>2.47kg</td>
<td>2.31kg</td>
</tr>
<tr>
<td>ΔFM</td>
<td>1.09kg</td>
<td>1.21kg</td>
</tr>
</tbody>
</table>

The associated EMPs that lead to these changes were as follows:

<table>
<thead>
<tr>
<th></th>
<th>Lean</th>
<th>Obese</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High Carb. (HC)</td>
<td>High Fat (HF)</td>
</tr>
<tr>
<td>EPM</td>
<td>0.861kg</td>
<td>0.678kg</td>
</tr>
</tbody>
</table>

Using the above data and standard numerical methods, we approximated that the remaining MBM parameters were:

<table>
<thead>
<tr>
<th></th>
<th>Lean</th>
<th>Obese</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High Carb. (HC)</td>
<td>High Fat (HF)</td>
</tr>
<tr>
<td>nEPM</td>
<td>0.650kg</td>
<td>0.820kg</td>
</tr>
</tbody>
</table>
Therefore, the MBM formulas for each diet are as follows:

Lean HC:

\[
M = \text{EPM} + n\text{EPM} = 1.511\, \text{kg}
\]

\[
\Delta BW(t) = \left(\frac{1.511}{0.019174 - 68.4}\right)\left\{1 - \left[1 - 0.019174\right]^{t}\right\}
\]

\[
\Delta FM(t) = 19.29597 W \left\{ \left(\frac{14.7}{19.29597}\right)\exp\left[\frac{\Delta BW(t)}{19.29597 + 14.7/19.29597} \right] \right\} - 14.7
\]

Lean HF:

\[
M = \text{EPM} + n\text{EPM} = 1.498\, \text{kg}
\]

\[
\Delta BW(t) = \left(\frac{1.498}{0.019173 - 68.4}\right)\left\{1 - \left[1 - 0.019173\right]^{t}\right\}
\]

\[
\Delta FM(t) = 13.90792 W \left\{ \left(\frac{14.7}{13.90792}\right)\exp\left[\frac{\Delta BW(t)}{13.90792 + 14.7/13.90792} \right] \right\} - 14.7
\]

Obese HC:

\[
M = \text{EPM} + n\text{EPM} = 1.878\, \text{kg}
\]

\[
\Delta BW(t) = \left(\frac{1.878}{0.01544 - 68.4}\right)\left\{1 - \left[1 - 0.01544\right]^{t}\right\}
\]

\[
\Delta FM(t) = 26.04379 W \left\{ \left(\frac{37}{26.04379}\right)\exp\left[\frac{\Delta BW(t)}{26.04379 + 37/26.04379} \right] \right\} - 37
\]

Obese HF:

\[
M = \text{EPM} + n\text{EPM} = 1.868\, \text{kg}
\]

\[
\Delta BW(t) = \left(\frac{1.868}{0.0157126 - 68.4}\right)\left\{1 - \left[1 - 0.0157126\right]^{t}\right\}
\]

\[
\Delta FM(t) = 21.56814 W \left\{ \left(\frac{37}{21.56814}\right)\exp\left[\frac{\Delta BW(t)}{21.56814 + 37/21.56814} \right] \right\} - 37
\]

All the above formulas are plotted in Figure 2. For further details, see the figure legend.
Figure 2. MBM simulation of Horton et al. overfeeding data. **A1.** MBM weight gain trajectories for the lean subjects perfectly match those reported by Horton et al. [4] over the trial duration (14 days). **A2.** Fat gain trajectories that underlay weight gain in A1 perfectly match those reported by Horton et al. [4] over the trial duration (14 days). Notice that the MBM predicts very similar levels of fat gain among diets over the 14 days. **A3.** The graph shows the same weight gain trajectories as
in panel A1 but extended for 365 days. A4. The graph shows the same fat gain trajectories as in panel A2 but extended for 365 days. B1. MBM weight gain trajectories for the obese subjects perfectly match those reported by Horton et al. [2] over the trial duration (14 days). B2. Fat gain trajectories that underlay weight gain in B1 perfectly match those reported by Horton et al. [2] over the trial duration (14 days). Notice that the MBM predicts very similar levels of fat gain among diets over the 14 days. B3. The graph shows the same weight gain trajectories as in panel B1 but extended for 365 days. B4. The graph shows the same fat gain trajectories as in panel B2 but extended for 365 days. HC = high-carbohydrate diet; HF = high-fat diet. [FIGURE LEGEND ENDS]

Discussion

Recently, the validity of MBM was questioned [5] based on two feeding studies [3,4]. Thus, we decided to simulate both of these feeding trials [3,4]. Our “mass in, mass out” model (MBM) describes the temporal evolution of body weight and body composition under a wide variety of feeding experiments.

If 1) nEPM, 2) R, and 3) β are the same between the diets, the diet with the greatest macronutrient mass will lead to greatest weight and fat gain during overfeeding, whereas the diet with the smallest macronutrient mass will result in greatest weight and fat loss during underfeeding. When these parameters (i.e., nEPM, R, β) are taking into consideration, MBM gives a remarkably accurate description of experimental data under a wide variety of feeding experiments (See also [1,2]).

Conclusion

Our results indicate that MBM is perfectly able to predict body weight and body composition fluctuations under a wide variety of feeding experiments. Thus, researchers around the world should acknowledge that the widely accepted EBT is clearly erroneous (See also [1,2]).

Authors contribution

Study concept and designing: Manninen, Arencibia-Albite
Acquisition of data: Manninen, Arencibia-Albite
Statistical analysis and interpretation of data: Manninen, Arencibia-Albite
Drafting the manuscript: Manninen, Arencibia-Albite
Critical revision of the manuscript for important intellectual content: Manninen, Arencibia-Albite
Administrative, technical or material support: Manninen, Arencibia-Albite.
Study supervision: N/A.
Funding sources

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Declaration of competing interests

The authors declare that they have no competing interests.

List of abbreviations

MBM = mass balance model; EBT = energy balance theory; BW = body weight; FM = fat mass; FFM = fat free mass; EPM = energy-providing mass; nEPM = non-energy-providing mass; RC = carbohydrate restricted diet; RF = fat restricted diet; HC = high-carbohydrate diet; HF = high-fat diet.

References

2. Arencibia-Albite F, Manninen AH. Macronutrient mass intake explains deferential weight and fat loss in isocaloric diets. medRxiv 2020.10.27.20220202; doi: https://doi.org/10.1101/2020.10.27.20220202

