SARS-CoV-2 Shedding Dynamics Across the Respiratory Tract, Sex, and Disease Severity for Adult and Pediatric COVID-19

Paul Z. Chen, BASc¹, Niklas Bobrovitz, DPhil, MSc¹,², Zahra Premji, PhD, MLIS², Marion Koopmans, DVM, PhD³, David N. Fisman, MD, MPH¹, Frank X. Gu, PhD¹*

¹University of Toronto, Toronto, Ontario, Canada
²University of Calgary, Calgary, Alberta, Canada
³Erasmus University Medical Center, Rotterdam, Netherlands

Corresponding author: Frank X. Gu, PhD, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada; e-mail, f.gu@utoronto.ca

Word count (abstract): 273 words

Word count (text only): 3,500 words
Background: SARS-CoV-2 shedding dynamics in the upper (URT) and lower respiratory tract (LRT) remain unclear.

Objective: To analyze SARS-CoV-2 shedding dynamics across COVID-19 severity, the respiratory tract, sex and age cohorts (aged 0 to 17 years, 18 to 59 years, and 60 years or older).

Design: Systematic review and pooled analyses.

Setting: MEDLINE, EMBASE, CENTRAL, Web of Science Core Collection, medRxiv and bioRxiv were searched up to 20 November 2020.

Participants: The systematic dataset included 1,266 adults and 136 children with COVID-19.

Measurements: Case characteristics (COVID-19 severity, age and sex) and quantitative respiratory viral loads (rVLs).

Results: In the URT, adults with severe COVID-19 had higher rVLs at 1 DFSO than adults ($P = 0.005$) or children ($P = 0.017$) with nonsevere illness. Between 1-10 DFSO, severe adults had comparable rates of SARS-CoV-2 clearance from the URT as nonsevere adults ($P = 0.479$) and nonsevere children ($P = 0.863$). In the LRT, severe adults showed higher post-symptom-onset rVLs than nonsevere adults ($P = 0.006$). In the analyzed period (4-10 DFSO), severely affected adults had no significant trend in SARS-CoV-2 clearance from LRT ($P = 0.105$), whereas
nonsevere adults showed a clear trend ($P < 0.001$). After stratifying for disease severity, sex and age (including child vs. adult) were not predictive of the duration of respiratory shedding.

Limitation: Limited data on case comorbidities and few samples in some cohorts.

Conclusion: High, persistent LRT shedding of SARS-CoV-2 characterized severe COVID-19 in adults. After symptom onset, severe cases tended to have higher URT shedding than their nonsevere counterparts. Disease severity, rather than age or sex, predicted SARS-CoV-2 kinetics. LRT specimens should more accurately prognosticate COVID-19 severity than URT specimens.

Primary Funding Source: Natural Sciences and Engineering Research Council.
INTRODUCTION

As of 17 February 2021, the coronavirus disease 2019 (COVID-19) pandemic has caused more than 109 million infections and 2.4 million deaths globally (1). The clinical spectrum of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is wide, ranging from asymptomatic infection to fatal disease. Risk factors for severe illness and death include age, sex, smoking and comorbidities, such as obesity, hypertension, diabetes and cardiovascular disease (2-4). Emerging evidence indicates that age and sex differences in innate, cross-reactive and adaptive immunity facilitate the higher risks in older and male cases (5-8). Robust immune responses putatively mediate nonsevere illness, in part, by controlling the replication of SARS-CoV-2 (9).

As SARS-CoV-2 is a respiratory virus, its shedding dynamics in the upper (URT) and lower respiratory tract (LRT) provide insight into clinical and epidemiological factors. URT viral load has been associated with transmission risk, duration of infectiousness, disease severity and mortality (10-16). Key questions, however, remain. While chest computed tomography (CT) evidence of viral pneumonitis suggests pulmonary replication in most symptomatic cases (17), the LRT kinetics of SARS-CoV-2, especially as related to disease severity, remain unknown. The relationships between sex, age and disease severity on respiratory shedding are unclear. Moreover, whether children clear SARS-CoV-2 at similar rates as adults, and if this correlates the age-based differences in disease severity, is unknown.

For insight into these questions, we conducted a systematic review on SARS-CoV-2 quantitation from respiratory specimens and developed a large, diverse dataset of respiratory viral loads (rVLs) and individual case characteristics. Stratified pooled analyses then assessed SARS-CoV-2 shedding dynamics across the respiratory tract, age, sex and COVID-19 severity.
METHODS

Our systematic review identified studies reporting SARS-CoV-2 quantitation in respiratory specimens taken during the estimated infectious period (-3 to 10 days from symptom onset [DFSO]) (15, 18). The systematic review protocol was based on our previous study (19) and was prospectively registered on PROSPERO (registration number, CRD42020204637). The systematic review was conducted according to Cochrane methods guidance (20). Other than the title of this study, we have followed PRISMA reporting guidelines (21).

Data Sources and Searches

Up to 20 November 2020, we searched, without the use of filters or language restrictions, the following sources: MEDLINE (Ovid), EMBASE (Ovid), Cochrane Central Register of Controlled Trials (CENTRAL, Ovid), Web of Science Core Collection, and medRxiv and bioRxiv (both searched through Google Scholar via the Publish or Perish program). We also gathered studies by searching through the reference lists of review articles identified by the database search, by searching through the reference lists of included articles, through expert recommendation (by Epic J. Topol and Akiko Iwasaki on Twitter) and by hand-searching through journals. A comprehensive search was developed by a librarian (Z.P.). Additional details on the search are included in the Supplement.

Study selection

Studies that reported SARS-CoV-2 quantitation in individual URT (nasopharyngeal swab [NPS], nasopharyngeal aspirate [NPA], oropharyngeal swab [OPS] or posterior oropharyngeal
saliva [POS]) or LRT (endotracheal aspirate [ETA] or sputum [Spu]) specimens taken during the estimated infectious period (-3 to 10 DFSO) in humans were included (additional details in the Supplement). As semiquantitative metrics (cycle threshold [Ct] values) cannot be compared on an absolute scale between studies based on instrument and batch variation (22), studies reporting specimen measurements as Ct values, without quantitative calibration, were excluded. Two authors (P.Z.C. and N.B.) independently screened titles and abstracts and reviewed full texts. At the full-text stage, reference lists were reviewed for study inclusion. Inconsistencies were resolved by discussion and consensus.

Data Extraction and Risk-of-Bias Assessment

Two authors (P.Z.C. and N.B.) independently collected data (specimen measurements taken between -3 and 10 DFSO, specimen type, volume of transport media and case characteristics, including age, sex and disease severity) from contributing studies and assessed risk of bias using a modified Joanna Briggs Institute (JBI) critical appraisal checklist (described in the Supplement and shown in Supplement Table 6). Data were collected for individually reported specimens of known type, with known DFSO, and for COVID-19 cases with known age, sex or severity. Case characteristics were collected directly from contributing studies when reported individually or obtained via data request from the authors. Data from serially sampled asymptomatic cases were included, and the day of laboratory diagnosis was referenced as 0 DFSO (15, 23). Based on the modified JBI checklist, studies were considered to have low risk of bias if they met the majority of items and included item 1 (representative sample). Discrepancies were resolved by discussion and consensus.
Respiratory Viral Load

For analyses based on rVL (viral RNA concentration in the respiratory tract) and to account for interstudy variation in the volumes of viral transport media (VTM) used, the rVL for each collected sample was estimated based on the specimen concentration (viral RNA concentration in the specimen) and dilution factor in VTM. Typically, swabbed specimens (NPS and OPS) report the viral RNA concentration in VTM. Based on the VTM volume reported in the study along with the expected uptake volume for swabs (0.128 ± 0.031 ml, mean ± SD) (24), we calculated the dilution factor for each respiratory specimen and then estimated the rVL. Similarly, liquid specimens (ETA, POS and Spu) are often diluted in VTM, and the rVL was estimated based on the reported collection and VTM volumes. If the diluent volume was not reported, then VTM volumes of 1 ml (NPS and OPS) or 2 ml (POS and ETA) were assumed (23, 25). Unless dilution was reported, Spu specimens were taken as undiluted (15). The non-reporting of VTM volume was noted as an element increasing risk of bias in the modified JBI critical appraisal checklist. For laboratory-confirmed COVID-19 cases, negative specimen measurements were taken at the reported assay detection limit in the respective study.

Case Definitions

As severity in the clinical manifestations of COVID-19 and case-fatality rates tend to increase among children (aged 0-17 y), younger adults (aged 18-59 y) and older adults (aged 60 y or older) (4, 26), the data were delineated based on these three age cohorts. Cases were also categorized by sex.

U.S. National Institutes of Health guidance was used to categorize disease severity as nonsevere or severe (27). The nonsevere cohort included those with asymptomatic infection
individuals who test positive via a molecular test for SARS-CoV-2 and report no symptoms consistent with COVID-19); mild illness (individuals who report any signs or symptoms of COVID-19, including fever, cough, sore throat, malaise, headache, muscle pain, nausea, vomiting, diarrhea, loss of taste and smell, but who do not have dyspnea or abnormal chest imaging); and moderate illness (individuals with clinical or radiographic evidence of LRT disease, fever $>39.4^\circ C$ or $\text{SpO}_2 \geq 94\%$ on room air) disease. The severe cohort included those with severe illness (individuals who have $\text{SpO}_2 < 94\%$ on room air, $[\text{PaO}_2/\text{FiO}_2] < 300$ mmHg, respiratory rate >30 breaths/min or lung infiltrates $>50\%$) and critical illness (respiratory failure, septic shock or multiple organ dysfunction).

Statistical Analysis

We used regression analysis to assess the respiratory shedding of SARS-CoV-2 and compare age, sex or severity cohorts. In COVID-19 cases, rVL tends to diminish exponentially after 1 DFSO in the URT, whereas it tends to do so after 4 DFSO in the LRT (15, 17, 19). Hence, rVLs (in units of \log_{10} copies/ml) between 1-10 DFSO for the URT, or 4-10 DFSO for the LRT, were fitted using general linear regression with interaction:

$$V = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2,$$

where V represents the rVL, α represents the estimated mean rVL (at 1 DFSO for URT or 4 DFSO for LRT) for the reference cohort, X_1 represents DFSO for the reference cohort, X_2 represents the comparison cohort, β_1 represents the effect of DFSO on rVL for the reference cohort, β_2 represents the effect of the comparison cohort on the intercept and β_3 represents the interaction between DFSO and cohorts. Regression analyses were offset by DFSO such that mean rVLs at 1 DFSO for URT, or 4 DFSO for LRT, were compared between cohorts by the
effect on the intercept (regression t-test for β_2). Shedding dynamics were compared between cohorts by interaction (regression t-test for β_3). The statistical significance of viral clearance for each cohort was analyzed using simple linear regression (regression t-test on the slope).

Regression models were extrapolated (to 0 log$_{10}$ copies/ml, rather than an assay detection limit) to estimate the duration of shedding.

To assess heterogeneity in shedding, rVL data were fitted to Weibull distributions (19), and the rVL at a case percentile was estimated using the Weibull quantile function. Each cohort in statistical analyses included all rVLs for which the relevant characteristic (LRT or URT, age cohort, sex or disease severity) was ascertained at the individual level. Cohorts with small sample sizes were not compared, as these analyses are more sensitive to potential sampling error.

Statistical analyses were performed using OriginPro 2019b (OriginLab) and the General Linear regression app or Matlab R2019b (MathWorks) and the Distribution Fitter app. P values below 0.05 were considered statistically significant.

Role of the Funding Source

This study was funded by the Natural Science Research Council of Canada (NSERC). The funder had no role in study design, collection or interpretation of the data, preparation of the manuscript, or the decision to submit the manuscript for publication.

RESULTS

Overview of Contributing Studies

After screening and full-text review, 26 studies met the inclusion criteria and contributed to the systematic dataset (Figure 1) (15, 16, 23, 25, 26, 28-48). We collected 1,915 quantitative
specimen measurements of SARS-CoV-2 from 1,402 COVID-19 cases (Table 1, rVL data summarized in Appendix Figure). For pediatric cases, the search found only nonsevere infections and URT specimen measurements. Appendix Table 1 summarizes the characteristics of contributing studies, of which 18 had low risk of bias according to the modified JBI critical appraisal checklist. Studies at high or unclear risk of bias typically included samples that were not representative of the target population; did not report the VTM volume used; had non-consecutive inclusion for case series and cohort studies or did not use probability-based sampling for cross-sectional studies; and did not report the response rate (Appendix Table 2).

URT Shedding of SARS-CoV-2 for Adult COVID-19

In the adult URT, regression analysis showed that, at 1 DFSO, the mean rVL for severe COVID-19 (8.28 [95% CI, 7.71-8.84] log_{10} copies/ml) was significantly greater (P for intercept = 0.005) than that of nonsevere COVID-19 (7.45 [95% CI, 7.26-7.65] log_{10} copies/ml) (Figure 2A). Meanwhile, these cohorts showed comparable rates of SARS-CoV-2 clearance from the URT (P for interaction = 0.479). For severe cases, the estimated mean duration of URT shedding (down to 0 log_{10} copies/ml) was 27.5 (95% CI, 21.2-33.8) DFSO; it was 27.9 (95% CI, 24.4-31.3) DFSO for nonsevere cases.

While regression analysis compared mean shedding levels and dynamics, we fitted rVLs to Weibull distributions to assess heterogeneity in shedding. Both severe and nonsevere adult COVID-19 showed comparably broad heterogeneity in URT shedding throughout disease course (Figure 2B). For severe disease, the standard deviation (SD) of rVL was 1.86, 2.34, 1.89 and 1.90 log_{10} copies/ml at 2, 4, 7 and 10 DFSO, respectively. For nonsevere illness, these SDs were 2.08, 1.90, 1.89 and 1.96 log_{10} copies/ml, respectively.
Based on our data, the distinction in rVL between severity cohorts was greater near symptom onset. Based on distribution fitting (Figure 2B), at 2 DFSO, the estimated rVL at the 80th case percentile (cp) for severe disease was 9.54 (95% CI, 8.78-10.4) log10 copies/ml, while it was 8.84 (95% CI, 8.49-9.20) log10 copies/ml for nonsevere illness. By 10 DFSO, this difference reduced: the 80th-cp estimates were 6.86 (95% CI, 6.20-7.59) and 6.45 (95% CI, 5.91-7.04) log10 copies/ml for severe and nonsevere disease, respectively.

After stratifying adults for disease severity, our analyses showed nonsignificant differences in URT shedding based on sex and age. For nonsevere illness, male and female cases had no significant difference in mean rVL at 1 DFSO (P for intercept = 0.085) or rate of viral clearance (P for interaction = 0.644) (Figure 2C). Similarly, for severe disease, male and female cases had comparable mean rVLs at 1 DFSO (P for intercept = 0.326) and URT dynamics (P for interaction = 0.280) (Figure 2D). For nonsevere illness, younger and older adults had no significant difference in URT shedding levels at 1 DFSO (P for intercept = 0.294) or post-symptom-onset dynamics (P for interaction = 0.100) (Figure 2E). For severe disease, the adult age cohorts showed similar mean rVLs at 1 DFSO (P for intercept = 0.915) and rates of viral clearance (P for interaction = 0.359) (Figure 2F).

LRT Shedding of SARS-CoV-2 for Adult COVID-19

Our analyses showed that high, persistent LRT shedding of SARS-CoV-2 was associated with severe COVID-19, but not nonsevere illness, in adults (Figure 3A). At the initial day in our analyzed period (4 DFSO), the mean rVL in the LRT of severe cases (8.42 [95% CI, 7.67-9.17] log10 copies/ml) was significantly greater (P for intercept = 0.006) than that of nonsevere cases (6.82 [95% CI, 5.95-7.69] log10 copies/ml). Between severities, the difference in LRT clearance...
rates was marginally above the threshold for statistical significance (P for interaction = 0.053).

However, severe cases had persistent LRT shedding, with no significant trend in SARS-CoV-2 clearance in the analyzed period (-0.14 [95% CI, -0.32 to 0.030] log$_{10}$ copies/ml day$^{-1}$, $P = 0.105$), whereas nonsevere cases rapidly cleared the virus from the LRT (-0.41 [95% CI, -0.64 to -0.19] log$_{10}$ copies/ml day$^{-1}$, $P < 0.001$). For nonsevere cases, the estimated mean duration of LRT shedding (down to 0 log$_{10}$ copies/ml) was 20.4 (95% CI, 13.2-27.7) DFSO.

Accordingly, the distributions of severe and nonsevere LRT shedding bifurcated along disease course (Figure 3B). At 6 DFSO, the 80th cp estimate of LRT rVL was 9.40 (95% CI, 8.67-10.20) log$_{10}$ copies/ml for severe COVID-19, while it was 7.66 (95% CI, 6.65-8.83) log$_{10}$ copies/ml for nonsevere illness. At 10 DFSO, the difference between 80th-cp estimates expanded, as they were 8.63 (95% CI, 8.04-9.26) and 6.01 (95% CI, 4.65-7.78) log$_{10}$ copies/ml for severe and nonsevere disease, respectively.

Our data indicated that nonsevere illness yielded greater skewing in LRT shedding than severe disease in the analyzed period (Figure 3B). For nonsevere COVID-19, the SD of rVL was 1.92, 2.01 and 2.09 log$_{10}$ copies/ml at 6, 8 and 10 DFSO, respectively. For severe disease, it was lesser 1.25, 1.37 and 1.61 log$_{10}$ copies/ml at 6, 8 and 10 DFSO, respectively.

For severe COVID-19, regression analysis showed, in the LRT, comparable mean rVLs at 4 DFSO between younger and older adults (P for intercept = 0.745) (Figure 3C). Both severe age cohorts also showed persistent LRT shedding in the analyzed period: younger adults (-0.20 [95% CI, -0.32 to 0.042] log$_{10}$ copies/ml day$^{-1}$, $P = 0.105$) and older adults (-0.13 [95% CI, -0.39 to 0.13] log$_{10}$ copies/ml day$^{-1}$, $P = 0.316$) both had no significant trend in SARS-CoV-2 clearance. Likewise, severely affected male cases had no significant trend in LRT shedding (0.001 [95%
CI, -0.16 to 0.19] \log_{10} \text{copies/ml day}^{-1}, P = 0.988). The female cohort included few samples, and statistically analyses were not conducted (Appendix Table 3).

Interestingly, nonsevere cases showed similar SARS-CoV-2 shedding between the URT and LRT, whereas severe cases shed greater and longer in the LRT than the URT (Figure 3, D and E). At 4 DFSO, the URT rVL of nonsevere adults was 6.62 (95% CI, 6.50-6.74) \log_{10} \text{copies/ml}, which was not different from the LRT rVL of nonsevere adults (P for intercept = 0.651). In contrast, at 4 DFSO, the URT rVL of severe adults (7.34 [95% CI, 7.01-7.68] \log_{10} \text{copies/ml}) was significantly lower than the LRT rVL of severe adults (P for intercept = 0.031).

Comparison of URT Shedding between Adult and Pediatric COVID-19

For the pediatric cohort, regression estimated, in the URT, the mean rVL at 1 DFSO to be 7.32 (95% CI, 6.78-7.86) \log_{10} \text{copies/ml} and SARS-CoV-2 clearance rate as -0.32 (95% CI, -0.42 to -0.22) \log_{10} \text{copies/ml day}^{-1} (Figure 4A). Both estimates were comparable between the sexes for children (Figure 4D). The estimated mean duration of URT shedding (down to 0 \log_{10} \text{copies/ml}) was 22.6 (95% CI, 17.0-28.1) DFSO for children with COVID-19.

Between pediatric cases, who had nonsevere illness in our dataset, and adults with nonsevere illness, both URT shedding at 1 DFSO (P for intercept = 0.653) and URT dynamics (P for interaction = 0.400) were similar (Figure 4A). Distributions of rVL were also comparable between these cohorts (Figure 4B). Conversely, URT shedding at 1 DFSO was greater for severely affected adults when compared to nonsevere pediatric cases (P for intercept = 0.017), but URT dynamics remained similar (P for interaction = 0.863) (Figure 4C).

DISCUSSION
Our study systematically developed a dataset of COVID-19 case characteristics and rVLs and conducted stratified analyses on SARS-CoV-2 shedding post-symptom onset. In the URT, we found that adults with severe COVID-19 showed higher rVLs shortly after symptom onset, but similar SARS-CoV-2 clearance rates, when compared with their nonsevere counterparts. In the LRT, we found that high, persistent shedding was associated with severe COVID-19, but not nonsevere illness, in adults. Interestingly, in the analyzed periods, adults with severe disease tended to have higher rVLs in the LRT than the URT.

After stratifying for disease severity, we found that sex and age had nonsignificant effects on post-symptom-onset SARS-CoV-2 shedding levels and dynamics for each included analysis (summarized in Table 2). Thus, while sex and age influence the tendency to develop severe COVID-19 (2-4), we find no such sex dimorphism or age distinction in URT shedding among cases of similar severity. This includes children, who had nonsevere illness in our study and show similar URT shedding post-symptom onset as adults with nonsevere illness.

Notably, our analyses indicate that high, persistent LRT shedding of SARS-CoV-2 characterizes severe COVID-19 in adults. This suggests that the effective immune responses associated with milder COVID-19, including innate, cross-reactive and coordinated adaptive immunity (5-9), do not significantly inhibit early, or prolonged, SARS-CoV-2 replication in the LRT of severely affected adults. Hence, uncontrolled LRT replication tends to continue, at least, to 10 DFSO, coinciding with the timing of clinical deterioration (median, 10 DFSO) (2, 49).

Furthermore, the bifurcated profiles of LRT shedding concur with the observed severity-associated differences in lung pathology, in which severe cases show hyperinflammation and progressive loss of epithelial-endothelial integrity (50-52).
Our results suggest that rVL may be a key prognostic indicator in SARS-CoV-2 infection. They reinforce that severe COVID-19 is associated with greater rVLs than nonsevere illness (12-14), and suggest that sex and age may not significantly influence prognostic thresholds. In the URT, both nonsevere and severe cases tend to clear SARS-CoV-2 at comparable rates. Thus, time course of disease (e.g., DFSO) should be considered alongside rVL, rather than simply employing rVL at admission. LRT shedding, however, bifurcates considerably between nonsevere and severe COVID-19, meaning that SARS-CoV-2 quantitation from the LRT may more accurately predict severity. While URT specimens are typically used to diagnose COVID-19, LRT specimens (our study predominantly analyzed sputum) may be collected from high-risk patients for severity prognostication.

While our analyses did not account for virus infectivity, higher SARS-CoV-2 rVL is associated with a higher likelihood of culture positivity, from adults (15, 16) as well as children (36), and higher transmission risk (10). Hence, our results suggest that infectiousness increases with COVID-19 severity, concurring with epidemiological analyses (53, 54). They also suggest that adult and pediatric infections of similar severity have comparable infectiousness, reflecting epidemiological findings on age-based infectiousness (54-56). Moreover, since respiratory aerosols are typically produced from the LRT (57), severe SARS-CoV-2 infections may have increased, and extended, risk for aerosol transmission. As severe cases tend to be hospitalized, this provides one possible explanation for the elevated risk of COVID-19 among healthcare workers in inpatient settings (58); airborne precautions, such as the use of N95 or air-purifying respirators, should be implemented around patients with COVID-19.

Our study has limitations. First, while our study design systematically developed a large, diverse dataset, there were few severe female cases with LRT specimens and no severe pediatric
cases included. Statistical comparisons involving these cohorts were not conducted based on increased sensitivity to sampling bias, as COVID-19 presents broad heterogeneity in rVL. Additional studies should permit these remaining comparisons. Second, our analyses did not assess the influence of therapies or additional case characteristics, including comorbidities. While the relationships between some comorbidities and SARS-CoV-2 kinetics remain unclear, recent studies indicate many potential therapies (e.g., remdesivir, hydroxychloroquine, lopinavir, ritonavir, low-dose monoclonal antibodies and ivermectin) have no significant anti-SARS-CoV-2 effects in patients (59-64). Third, the systematic dataset consisted largely of hospitalized patients, and our results may not generalize to asymptomatic infections.

In summary, our findings provide insight into SARS-CoV-2 kinetics and describe virological factors that distinguish severe COVID-19 from nonsevere illness. They show that high, persistent LRT shedding characterizes severe disease in adults, highlighting the potential prognostic utility of SARS-CoV-2 quantitation from LRT specimens. Lastly, each study identified by our systematic review collected specimens before October 2020. As widespread transmission of the emerging variants of concern likely occurred after this date (65, 66), our study presents a quantitative resource to assess the effects of their mutations on respiratory shedding levels and dynamics.
Acknowledgement: The authors thank S. Fafi-Kremer, PharmD, PhD (Strasbourg University Hospital); Y. Hirotsu, PhD (Yamanashi Central Hospital); M.S. Kelly, MD, MPH (Duke University); E. Lavezzo, PhD, and A. Crisanti, MD, PhD (University of Padova); J.Z. Li, MD, MMSc (Brigham & Women’s Hospital); Cédric Laouénan, MD, PhD, and Yazdan Yazdanpanah, MD, PhD (Bichat-Claude Bernard University Hospital); N.K. Shrestha, MD (Cleveland Clinic); T. Teshima, MD, PhD (Hokkaido University); S. Trouillet-Assant, PhD (Université Hospital of Lyon); J.J.A. van Kampen, MD, PhD (Erasmus University Medical Center); A. Wyllie, PhD, N. Grubaugh, PhD, and A. Ko, MD (Yale School of Public Health); and A. Yilmaz, MD, PhD (Sahlgrenska University Hospital) for responses to data inquiries.

Financial support: This study was supported by NSERC. Mr. Chen was supported by the NSERC Vanier Canada Graduate Scholarship (608544). Dr. Fisman was supported by the Canadian Institutes of Health Research (Canadian COVID-19 Rapid Research Fund, OV4-170360). Dr. Gu was supported by the NSERC Senior Industrial Research Chair.

Disclosures: Dr. Fisman has received honoraria related to work with Pfizer, Astra Zeneca and Seqirus on vaccines for respiratory viruses.

Reproducible Research Statement: Study protocol, statistical code and data set: Available from Dr. Gu (e-mail, f.gu@utoronto.ca).

Corresponding Author: Frank X. Gu, PhD, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada; e-mail, f.gu@utoronto.ca.
References

Table 1. Characteristics of adult and pediatric COVID-19 cases

<table>
<thead>
<tr>
<th></th>
<th>Adult</th>
<th>Pediatric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases, n</td>
<td>1,266</td>
<td>136</td>
</tr>
<tr>
<td>URT specimens, n</td>
<td>1,513</td>
<td>192</td>
</tr>
<tr>
<td>LRT specimens, n</td>
<td>210</td>
<td>0</td>
</tr>
<tr>
<td>Mean age (SD), y</td>
<td>51.8 (18.0)</td>
<td>8.7 (5.3)</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>528 (44.0)</td>
<td>63 (52.5)</td>
</tr>
<tr>
<td>Disease severity, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asymptomatic</td>
<td>2 (0.2)</td>
<td>5 (3.7)</td>
</tr>
<tr>
<td>Mild</td>
<td>710 (57.5)</td>
<td>112 (83.6)</td>
</tr>
<tr>
<td>Moderate</td>
<td>178 (14.4)</td>
<td>17 (12.7)</td>
</tr>
<tr>
<td>Severe</td>
<td>167 (13.5)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Critical</td>
<td>178 (14.4)</td>
<td>0 (0.0)</td>
</tr>
</tbody>
</table>

LRT = lower respiratory tract; URT = upper respiratory tract.

The table summarizes collected case characteristics in the systematic dataset. Adult cases were those aged 18 y or older, while pediatric cases were those aged younger than 18 y.
Table 2. Summary of statistical comparisons on SARS-CoV-2 shedding, across the respiratory tract, COVID-19 severity, sex and age cohorts

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>P value*</th>
<th>Intercept†</th>
<th>Interaction‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>URT, ≥18 y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonsevere</td>
<td>Severe</td>
<td>0.005*</td>
<td>0.479</td>
<td></td>
</tr>
<tr>
<td>Female (nonsevere)</td>
<td>Male (nonsevere)</td>
<td>0.085</td>
<td>0.644</td>
<td></td>
</tr>
<tr>
<td>Female (severe)</td>
<td>Male (severe)</td>
<td>0.326</td>
<td>0.280</td>
<td></td>
</tr>
<tr>
<td>Nonsevere (18-59 y)</td>
<td>Nonsevere (≥60 y)</td>
<td>0.294</td>
<td>0.100</td>
<td></td>
</tr>
<tr>
<td>Severe (18-59 y)</td>
<td>Severe (≥60 y)</td>
<td>0.915</td>
<td>0.359</td>
<td></td>
</tr>
<tr>
<td>LRT, ≥18 y §</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonsevere</td>
<td>Severe</td>
<td>0.006*</td>
<td>0.053</td>
<td></td>
</tr>
<tr>
<td>Severe (18-59 y)</td>
<td>Severe (≥60 y)</td>
<td>0.745</td>
<td>0.716</td>
<td></td>
</tr>
<tr>
<td>URT vs. LRT, ≥18 y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonsevere (URT, ≥18 y)</td>
<td>Nonsevere (LRT, ≥18 y)</td>
<td>0.651</td>
<td>0.231</td>
<td></td>
</tr>
<tr>
<td>Severe (URT, ≥18 y)</td>
<td>Severe (LRT, ≥18 y)</td>
<td>0.031*</td>
<td>0.151</td>
<td></td>
</tr>
<tr>
<td>URT, 0-17 y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonsevere (0-17 y)</td>
<td>Nonsevere (≥18 y)</td>
<td>0.653</td>
<td>0.400</td>
<td></td>
</tr>
<tr>
<td>Nonsevere (0-17 y)</td>
<td>Severe (≥18 y)</td>
<td>0.017*</td>
<td>0.863</td>
<td></td>
</tr>
<tr>
<td>Female (nonsevere)</td>
<td>Male (nonsevere)</td>
<td>0.667</td>
<td>0.333</td>
<td></td>
</tr>
</tbody>
</table>

COVID-19 = coronavirus disease 2019; DFSO = days from symptom onset; LRT = lower respiratory tract; nonsevere = asymptomatic, mild and moderate COVID-19; rVL = respiratory viral load; severe = severe and critical COVID-19; URT = upper respiratory tract.

* P < 0.05. Each regression analysis was shown in Figures 2 to 4.
† P value for the intercept in regression analysis compares the mean rVLs at 1 DFSO for the URT or, for any analyses including the LRT, at 4 DFSO.
‡ P value for interaction in regression analysis describes the difference in respiratory shedding dynamics along the time course of disease.
§ There were small sample sizes in the nonsevere cohorts and female (LRT, severe, ≥18 y) cohort, and these analyses were not included.
Figure 1. Study selection.
Figure 2. Comparison of SARS-CoV-2 shedding in the adult URT, across disease severity, sex and age cohorts.

COVID-19 = coronavirus disease 2019; DFSO = days from symptom onset; nonsevere = asymptomatic, mild and moderate COVID-19; rVL = respiratory viral load; SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2; severe = severe and critical COVID-19; URT = upper respiratory tract.

A and **B.** Regression analysis (A) and estimated distributions at 2, 4, 7 and 10 DFSO (B) of URT shedding for severe and nonsevere adult (aged 18 y or older) COVID-19. Arrows denote rVLs for the 80th case percentiles, in terms of rVL, for each age group. **C** and **D.** Regression analyses comparing URT shedding between sexes for nonsevere (C) and severe (D) adult COVID-19. **E** and **F.** Regression analyses comparing URT shedding between age cohorts (aged 18-59 y and 60
y or older) for nonsevere (E) and severe (F) adult COVID-19. Open circles represent rVL data and were offset from their DFSO for visualization. Lines and bands show regressions and their 95% CIs, respectively. P values for the intercept compare the rVLs at 1 DFSO. P values for interaction compare shedding dynamics.
Figure 3. Comparison of SARS-CoV-2 shedding in the adult LRT, across disease severity, age and with shedding in the adult URT.

COVID-19 = coronavirus disease 2019; DFSO = days from symptom onset; LRT = lower respiratory tract; nonsevere = asymptomatic, mild and moderate COVID-19; rVL = respiratory viral load; SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2; severe = severe and critical COVID-19; URT = upper respiratory tract.

A and B. Regression analysis (A) and estimated distributions at 6, 8 and 10 DFSO (B) of LRT shedding for severe and nonsevere adult (aged 18 y or older) COVID-19. Arrows denote rVLs for the 80th case percentiles, in terms of rVL, for each age group. C. Regression analyses comparing LRT shedding between age cohorts (aged 18-59 y and 60 y or older) for severe adult
COVID-19. **D** and **E**. Regression analyses comparing URT and LRT shedding for nonsevere (D) and severe (E) adult COVID-19. Open circles represent rVL data and were offset from their DFSO for visualization. Lines and bands show regressions and their 95% CIs, respectively. *P* values for the intercept compare the rVLs at 4 DFSO. *P* values for interaction compare shedding dynamics.
Figure 4. URT shedding of SARS-CoV-2 in pediatric COVID-19, compared with adults and across sex.

COVID-19 = coronavirus disease 2019; DFSO = days from symptom onset; nonsevere = asymptomatic, mild and moderate COVID-19; rVL = respiratory viral load; SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2; severe = severe and critical COVID-19; URT = upper respiratory tract.

A and B. Regression analysis (A) and estimated distributions at 2, 6, and 10 DFSO (B) of URT shedding for children (aged 0-17 y) with nonsevere COVID-19 and adults (aged 18 y or older) with nonsevere illness. Arrows denote rVLs for the 80th case percentiles, in terms of rVL, for each cohort. **C.** Regression analysis comparing URT shedding between nonsevere pediatric and
severe adult COVID-19. **D.** Regression analysis comparing URT shedding between sexes for pediatric cases. Open circles represent rVL data and were offset from their DFSO for visualization. Lines and bands show regressions and their 95% CIs, respectively. P values for the intercept compare the rVLs at 1 DFSO. P values for interaction compare shedding dynamics.