Relating resting EEG power spectra to age-related differences in cognitive performance: An observational pilot study.

Pathania, A.¹, Clark, M.¹, Cowan, R.¹, Euler, M.², Duff, K.³, & Lohse, K.R.¹,⁴

¹Department of Health and Kinesiology, University of Utah
²Department of Psychology, University of Utah
³Department of Neurology, University of Utah
⁴Department of Physical Therapy and Athletic Training, University of Utah

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background: Previous research has shown that the slope of the electroencephalography (EEG) power spectrum mediates the difference between older and younger adults on a visuo-spatial working memory task. The present study sought to replicate and extend that work using a larger sample and a validated set of neuropsychological tests: The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS).

Methods: Forty-four participants (21 younger adults, 23 older adults) completed a battery of cognitive and motor tasks that included the RBANS. EEG data was collected both during rest and on-task. Excluding the alpha-band, RBANS scores were regressed onto the slope of the resting EEG power spectrum, controlling for age and using robust mediation analysis.

Results: Older adults performed reliably lower on the composite RBANS and the Coding, List Recall, List Recognition, and Figure Recall subtests. However, boot-strapped mediation models only showed a mediating effect of the spectral slope on the RBANS composite and the Coding subtest.

Conclusions: The resting slope of the EEG power spectrum mediated age-related differences in cognition in the current study, which replicates prior work and is consistent with the neural noise hypothesis of aging. In extending this work, it was shown that these effects are strongest in tasks requiring speeded processing and/or executive functions, whereas this effect was weaker (to absent) for delayed memory, even though age-related differences were present. This pilot study warrants further exploration of the EEG power spectrum in age-related cognitive decline.
Relating resting EEG power spectra to age-related changes in cognitive performance: An observational pilot study.

Voytek and colleagues (2015) showed that the slope of the resting EEG power spectrum mediated age-related differences in a visuospatial working memory task in a cross-sectional study of younger and older adults. Older adults were less accurate and slower in completing a task that required them to briefly study an array of stimuli and then, following a delay, indicate whether a new set of stimuli was the same or different from the previous set. Additionally, the older adults showed flatter spectral slopes at rest than the younger adults, a finding consistent with the neural noise hypothesis of aging (Voytek & Knight, 2015). That is, flatter spectral slopes are closer to “white noise”, a random signal with an equal power at each frequency. Thus, flatter slopes for older adults suggest an imbalance in low-frequency power compared to younger adults, which may reflect a reduced signal-to-noise ratio in neural processing. Critically, the spectral slopes also mediated the relationship between age and cognitive performance. Thus, those data are strongly suggestive that aging led to neurophysiological changes (reflected in the spectral slope) that led to worse performance in a visuospatial working memory task.

Although these data are exciting, there are a number of limitations we need to consider when generalizing the results of Voytek et al (2015). First, the sample size was limited (n=11 younger adults and n=13 older adults), which is appropriate for the first study of its kind, but needs to be expanded to improve generalizability. Second, cognition was only assessed via a single laboratory test of visuospatial working memory, and a broader view of cognition is warranted. While this finding is promising, the relevance of a tightly constrained visuospatial working memory task to cognitive performance is in daily life is not clear. As such, our primary motivation in the current study was to recruit a larger sample of participants and conceptually replicate the findings of Voytek et al., but using a larger battery of clinically validated cognitive tests.
Specifically, we used the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS; Randolph, 1998; 2012).

Thus, similar to Voytek et al., 2015, our primary hypothesis was that the slope of the EEG power spectrum (collected at rest), would mediate age-group difference in performance on different subtests of the RBANS. Before discussing the methods in detail, however, is worth spending some time discussing the slope of the EEG power spectrum, how it was operationally measured in this experiment, and what it may physiologically represent.

A Brief Explanation of the Spectral Slope (also called Inverse Frequency Noise)

Inverse frequency \(1/f\) noise is a common finding in many biological, physical, and even social systems (Ward & Greenwood, 2007). We can think of \(1/f\) noise as any pattern where low frequencies have the most power in the signal, and power decreases at higher frequencies; that is, there is a negative relationship between power and frequency, as is common in human EEG (Cohen, 2014; Luck, 2014). More broadly, however, \(1/f\) noise simply refers to a relationship that can be approximated by:

\[
P \sim \frac{k}{f^{\alpha}} ,
\]

where the power in a signal \(P\) is inversely proportional to the frequency \(1/f\), with this proportionality determined by a decay parameter \(\alpha\) and a constant \(k\). When transformed into log-log space, this relationship becomes a linear function:

\[
\ln(P) = \ln(k) - \alpha \cdot \ln(f) ,
\]

such that power in the signal monotonically decreases as the frequency increases, as shown in Figure 1. Many systems show this proportionality (with some relabeling of terms) from geology (Holliger, 1996), to music (Voss & Clark, 1975), to human cognition (Gilden et al., 1995; Wagenmakers et al., 2004). For our purposes, we will focus on this \(1/f\) pattern in the power spectrum for surface EEG. In human EEG, a large proportion of the signal follows a broad-band \(1/f\) pattern, with deviations away
from pattern in the canonical frequency bands (e.g., alpha, beta, delta) that are related to specific psychological states or processes (e.g., Linkenkaer-Hansen et al., 2001; Poil et al., 2013).
Figure 1. Three different time-series of hypothetical electrophysiological data. (A) Voltages are shown over time. (B) Following a fast Fourier transform, an exponential function ( — ) is fit to the raw power spectrum. (C) By log-transforming the Power and the Frequency of the power spectrum, we can now approximate this relationship with a linear function ( — ). These transformations are shown for three different cases where the value of the α exponent changes from 0 (shown in black, representing “white” noise), to 1 (shown in dark grey, representing “pink” noise), to 2 (shown in light grey, representing Brownian or “red” noise).
The ubiquity of $1/f$ noise makes it an intriguing puzzle for both mathematicians and applied researchers. However, simply because a pattern is prevalent across many systems does not mean those system share underlying properties. That is, although patterns of earthquakes and neural oscillations have similar features, their etiology is clearly different. In the brain, there is evidence this $1/f$ pattern may emerge passively, from anatomical features of the brain, skull, scalp, etc., which act as filters (Bédard et al., 2006). These anatomical factors would explain why there are strong individual differences in the resting EEG power spectrum (e.g., Pathania et al., in press) and why the power spectrum changes over the lifespan (e.g., as the brain and skull change during development; Voytek et al., 2015). As such, this $1/f$ pattern to the power spectrum is often thought of as noise—it is a background signal that needs to be controlled for, allowing us to focus on changes in narrow-band power that reflect specific psychological and neurological functions (e.g., detrended fluctuation analysis; Cohen, 2014; Hardstone et al., 2012).

This view of the $1/f$ component of the power spectrum as a background signal that underlies changes in narrow-band power is correct; certainly, changes in $1/f$ appear to happen on a much slower timescale than changes in narrow-band power (e.g., months and years compared to seconds and milliseconds; Cohen, 2014). However, studies have shown that $1/f$ noise in the EEG power spectrum can actually change on the order of hours (e.g., in a sleep deprivation study; Meisel et al., 2017) or minutes (e.g., in a videogame task; Pathania et al., in press). Furthermore, differences in the $1/f$ component of the EEG power spectrum can actually predict the presence of psychosis (Peterson, Rosen, Campbell, Belger, & Voytek, 2017) and individual differences in working memory (Voytek et al., 2015). As such, it is potentially misleading to refer to the $1/f$ component as “noise.” Rather, it is a slowly changing, tonic signal. When our interest is in rapid, phasic signals, we might justifiably treat the $1/f$ signal as noise, but it is important to recognize that it is a signal in itself (Cohen, 2014).
As such, we will hereafter refer to $1/f$ noise as the “spectral slope”. Indeed, as shown in Eq. 2., we define this term as a slope (the $\alpha$ term) when the power spectrum is plotted in log-log space. Other researchers have similarly redefined the $1/f$ component as the aperiodic slope (Donoghue et al. 2020), but that formulation uses a different method of estimation than we use below, so we will use the term spectral slope.

Methods

Participants

Forty-nine participants were recruited for the study: healthy young adults (YA; <35y; n=22); cognitively healthy older adults (OA; >59y; n=24); and adults with mild cognitive impairment (MCI; n = 3) following approval of the University Institutional Review Board. We originally planned to recruit a comparable sample of older adults with amnestic MCI, which is considered a prodrome of Alzheimer’s disease (Levey et al., 2006). This sample would allow for comparison of neurological changes between neurologically healthy older adults and those with MCI. Due to the onset of COVID19 during data collection, however, we had to postpone data collection in older adults with MCI as a safety precaution. Nevertheless, we hit our target sample sizes for healthy younger adults and healthy older adults, which are sufficient for the replication of Voytek et al. (2015). Thus, we are able to fulfill our primary aim focused on cognitively intact younger and older adults with the current sample. Descriptive statistics for older adults with MCI are provided in Supplemental Appendix I, but were not included in the analyses.

Following informed consent, participants completed a demographic survey, wherein they self-reported their education status, handedness, current medical status, and physical activity status. Older adults also self-reported their concurrent medications and sleep quality using The Pittsburgh Sleep Quality Index (PSQI), but these data we not obtained for younger adults.
Participants over 18 were recruited and did not have any impairments that would limit the function of their arms, hand, or legs. Participants were recruited from the local community by flyers and word of mouth recruitment. Older adults specifically were also recruited through a participant database maintained by the Center on Aging at the University of Utah. Participants with MCI were recruited from an ongoing study by one of the coauthors (KD), a licensed neuropsychologist, who also provided their diagnosis for amnestic MCI. Participants were excluded if they had any self-reported musculoskeletal, neurological, or perceptual impairments that they thought would affect their performance in these tasks, or any history of skin allergies (as a precaution for EEG data collection). In addition, participants were excluded if they had any medical history of severe cognitive impairment (e.g., dementia) or psychiatric conditions (e.g., severe depression, bipolar disorder, substance abuse).

**Tasks and Measures**

Participants completed a battery of cognitive and motor tasks: the RBANS to assess cognition, a maximum grip-force task, a simulated feeding task (Schaefer & Hengge, 2016; Schaefer et al. 2015), and a sensorimotor test of standing balance. A brief description of each task is provided below to give the full context of the experiment. However, for the purposes of replicating the findings of Voytek et al. (2015), the current study focuses only on the resting EEG data and the behavioral data from the RBANS.

**Cognitive Assessment**

**RBANS:** This individually-administered, paper and pencil battery has been validated to assess cognitive function in adults ages 20-89 (Randolph, 1998; 2012). It is a reliable and valid assessment of cognitive status for detecting dementia (Duff, Clark, O’Bryant, & Mold, 2008), discriminating among individual differences in healthy older adults (England, Gillis, & Hampstead, 2014; Patton, Duff, Schoenberg, et al., 2010), and in similarly aged clinical populations (Larson, Krischner, Bode, et al., 2005). Furthermore, there is good evidence of convergent validity to show that RBANS scores are associated with instrumental activities of daily living (Freilich & Hyer, 2007; Larson, Krischner, Bode, et al.,...
The RBA NS consists of 12 subtests that load onto 5 indices of cognition: immediate memory, visuospatial/constructional ability, language, attention, and delayed memory. To ensure consistency of administration and scoring, all tests were administered and scored by the same author, AP. Although age-corrected normative data is available, we elected to use non-age-corrected raw scores for the 12 subtests so that we could compare age-groups on their absolute performance (rather than performance relative to age-matched peers).

**Motor Assessments**

**Maximum Grip Force Task:** The maximum grip-force task was administered to provide a measurement of basic neuromuscular function. To measure maximal isometric grip-force and grip-force variability, a Biopac® TSD121C hand-grip dynamometer was used (amplified through a Biopac MP160). Maximum grip force was recorded over 3x 4-second trials, the mean force measured during the force plateau was recorded, and the mean of these three means served as our measure of average maximum grip force. Electromyography (EMG) surface electrodes were placed on the wrist extensors and flexors to record electrical activity during the grip-force task.

**Simulated Feeding Task (SiFT):** The next motor task administered was the simulated feeding task (Schaefer & Hengge, 2016; Schaefer, Hooyman, & Duff, 2020). This task has been validated in older adults and reflects participants’ ability to perform visually guided control of the arm and hand (Schaefer & Hengge, 2016), but has also been associated with cognitive function (Hooyman, Malek-Ahmadi, Fauth, & Schaefer, 2020; Schaefer, Hooyman, & Duff, 2020).

**Sensory Motor Integration Task:** Participants completed a sensory organization test as a measure of standing balance, modified from the Clinical Test of Sensory Interaction on Balance (Freeman et al., 2018).

**EEG Processing and Aggregation**
Scalp EEG was collected from a 32-channel actiCAP active electrode system housed in a 64-channel cap and amplified with a BrainAmp DC amplifier (BrainProducts GmbH). The electrodes were labelled in accordance with the standard 10-10 geodesic montage (Oostenveld & Praamstra, 2001). The specific electrode sites included, Fp1, Fz, F3, F7, FT9, FC5, FC1, C3, T7, TP9, CP5, CP1, Pz, P3, P7, O1, Oz, O2, P4, P8, TP10, CP6, CP2, Cz, C4, T8, FT10, FC6, FC2, F4, F8, and Fp2. The data were online referenced to the right ear, with a common ground on the left ear. The electrode impedances were maintained below 25 kΩ, with a sampling frequency of 1000 Hz.

EEG data processing was conducted with the BrainVision Analyzer 2.1.2 software (BrainProducts GmbH). No online filters were applied, but offline the data were band-pass filtered between 0.1 and 40 Hz with 24-dB rolloffs with a 60 Hz notch filter. The data were manually inspected, and eyeblinks marked for ICA-based ocular correction within BrainVision Analyzer software (BrainProducts 2013). This function was run with the FP2 electrode serving as the VEOG and the HEOG electrode. Using Welch’s method, the data were epoched in 1-s segments, which overlapped by 50%. Following that, segments with artifacts were removed (average 93% of segments retained per person, SD = 17.28%). The remaining segments were subjected to a fast Fourier transformation using 0.977 Hz bins and a Hamming window with a 50% taper (Welch, 1967). The data were then truncated between 2-32 Hz to exclude gamma-band power\(^1\) and higher frequency muscle activation and were then averaged within sets of electrodes to get the average power spectrum in each region (Frontal: F7, F3, Fz, F4, F8; Central: C3, Cz, C4; Parietal: P7, P3, Pz, P4, P8; and Occipital: O1, O2, O2). Finally, the alpha band (8-12 Hz) was excluded to remove the major periodic component from the signal, improving the linear fit of the statistical model and isolating the spectral slope (see Voytek et al., 2015).

\(^1\) Note that Voytek et al. (2015) restricted their data to 2-25 Hz. We selected 2-32 Hz to be more inclusive of the beta frequency band. Rerunning our analyses restricted to 2-25 Hz leads to a qualitatively similar pattern of results for both the effect of age and the mediation analyses that are presented below. All data and code are shared at https://github.com/keithlohse/spectral_slopes_aging, so interested readers can test the robustness of these results using different frequency cutoffs.
Statistical Analysis

Following truncation of the power spectrum and the exclusion of the alpha bandwidth, we used mixed-effects regression to fit the power spectrum for each participant and model the effects of age (Bates, Maechler, Bolker, & Walker, 2015). To account for the within-subject nature of the power-spectra, we included random slopes and intercepts, with fixed-effects of Frequency (2-32 Hz), Region (Frontal, Central, Parietal, and Occipital), Age Group (younger adults versus older adults), and the interactions between these terms.

To assess age-group differences in cognitive performance, we used independent samples t-tests to compare performance on the raw RBANS scores between age groups. A priori, we chose to conduct one-tailed tests as past data strongly suggest that older adults should generally score worse than younger adults. First, we tested the effect of age group for normalized composite RBANS scores, calculated from the percentage of the total sub-score on each subtest. As this difference was statistically significant, we subsequently compared older to younger adults on each subtest of the RBANS. This creates a multiplicity of t-tests, which increases the Type-I error rate of the experiment.

However, we conducted multiple tests for two reasons: (1) in this pilot study, we reasoned that the cost of a false negative error was greater than the cost of a false positive error and (2) only the subtests that statistically differed between conditions were selected for subsequent mediation analyses.

Finally, we used mediation analysis with non-parametric bootstrapping to assess the mediating effect of the spectral slope on age-related declines in cognition (Imai et al., 2010; Tingley et al., 2014). A priori, we chose to focus on the spectral slopes from the frontal electrodes only, reflecting our interest in higher cognitive function. The slopes were extracted from the mixed-effects models (one frontal slope value for each participant) and then used as a mediator in a series of regression models. Cognitive test

---

2 Note that this is a departure from the way RBANS scores are normally analyzed, which requires age-normalizing the scores. Because our planned analyses require us to test the effect of age and then its (potential) mediation, we chose not to age-normalize the RBANS scores. Thus, we focus on raw scores (when exploring individual RBANS subtests) or the percent-normalized composite score (when exploring cognitive status on average across subtests).
performance was regressed onto age group, the spectral slope was regressed onto age group, and
cognitive test performance was regressed onto age group and the spectral slope. Using $k=5,000$
iterations, these models were bootstrapped to estimate the total effect, the average direct effect, and
the average causal mediation effect. (We use the term causal here by convention, but we would
discourage a strictly causal interpretation of this association, as discussed below.)

Results

Demographics

Forty-nine participants were recruited from within the university and the larger community.
However, due to a data storage issue, we lost EEG data for one YA participant, bringing our total YA $n = 21$, and one OA participant, bringing our total OA $n = 23$. Demographic statistics for these participants are shown in Table 1. Data for the three participants with MCI are presented descriptively in the appendix. All subsequent analyses are based on only the $N=44$ cognitively intact older and younger adults.
Table 1. Summary statistics for the participant demographic surveys.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Younger Adults</th>
<th>Older Adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants (n)</td>
<td>21</td>
<td>23</td>
</tr>
<tr>
<td>Age, mean (SD)</td>
<td>23.29(3.47)</td>
<td>70.83(5.77)</td>
</tr>
<tr>
<td>Age, range</td>
<td>19, 33</td>
<td>59, 83</td>
</tr>
<tr>
<td>Male (n)</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>Education level (years), mean (SD)</td>
<td>14.93 (1.58)</td>
<td>15.45(2.61)</td>
</tr>
<tr>
<td># of Current Medications</td>
<td>Not Collected</td>
<td>1 to 23</td>
</tr>
<tr>
<td>No. of medications, mean (SD)</td>
<td>Not Collected</td>
<td>5.55(5.26)</td>
</tr>
<tr>
<td>Average Maximum Grip Force (kgf)</td>
<td>20.5 (6.5)</td>
<td>12.4 (4.2)</td>
</tr>
</tbody>
</table>

Self-Reported Physical Activity

<table>
<thead>
<tr>
<th></th>
<th>Younger Adults</th>
<th>Older Adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vigorous PA (Days per week)</td>
<td>2.98(1.75)</td>
<td>2.22(2.33)</td>
</tr>
<tr>
<td>Vigorous PA (Hours per day)</td>
<td>1.21(0.64)</td>
<td>0.87(0.91)</td>
</tr>
<tr>
<td>Moderate PA (Days per week)</td>
<td>3.67(1.72)</td>
<td>4.15(2.52)</td>
</tr>
<tr>
<td>Moderate PA (Hours per day)</td>
<td>1.42(0.83)</td>
<td>1.51(1.22)</td>
</tr>
<tr>
<td>Light PA (Days per week)</td>
<td>5.76(2.12)</td>
<td>5.43(2.42)</td>
</tr>
<tr>
<td>Light PA (Hours per day)</td>
<td>3.74(3.15)</td>
<td>2.91(2.08)</td>
</tr>
<tr>
<td>Resistance training (Days per week)</td>
<td>2.52(2.09)</td>
<td>1.17(1.59)</td>
</tr>
<tr>
<td>Sleep Quality, mean (SD)</td>
<td>Not Collected</td>
<td>5.33(3.57)</td>
</tr>
</tbody>
</table>

Note that details of medications taken and the Pittsburgh Sleep Quality Index were only added to the study protocol after data collection in the younger adults was finished. As such, these data are only available for the older adults.
**Age-Related Differences in EEG Power Spectra**

A linear mixed-effect regression model with fixed effects of Frequency, Region, Age Group, and their interactions reveal main-effects of Frequency, \( F(1,42)=580.3, p<0.001 \), and Age Group, \( F(1,42)=14.1, p<0.001 \), and interactions of Frequency x Region, \( F(3,4124)=4.6, p=0.003 \), and Frequency x Age Group, \( F(1,42)=7.3, p=0.009 \). However, these effects were superseded by a Frequency x Age Group x Region interaction, \( F(3,4124)=7.4, p<0.001 \). See Figure 2. To unpack this three-way interaction, we created smaller models within each age group and within each region. All models had random-effects for both the intercept and the slope (i.e., effect of Frequency).

Within the younger adults, there was a statistically significant effect of Frequency, \( F(1,20)=312.0, p<0.001 \), Region, \( F(3,1968)=3.7, p=0.011 \), and a Frequency x Region interaction, \( F(3,1968)=15.2, p<0.001 \). In contrast, older adults showed only a statistically significant effect of Frequency, \( F(1,22)=263.6, p<0.001 \). However, neither the main-effect of region, \( F(3,2156)=0.1, p=0.935 \), nor the Frequency x Region interaction, \( F(3,2156)=0.4, p=0.785 \), were statistically significant. This difference in the Frequency x Region interactions suggests that younger adults had greater regional differentiation in the spectral slope compared to older adults, who showed more similar slopes across regions. See Figure 2C.

With regard to the analyses of effects within region, results indicated that in the frontal region, as a group, older adults showed both lower intercepts \( (b=1.86, t(42)=-3.5, p<0.001) \) and flatter slopes \( (b=-0.95, t(42)=3.0, p=0.006) \) than younger adults (intercept: \( b=2.86, t(42)=14.1, p<0.001 \); slope: \( b=-1.25, t(42)=17.5, p<0.001 \)). In the central region, older adults showed both lower intercepts \( (b=1.86, t(42)=t(42)=3.8, p<0.001) \) and flatter slopes \( (b=-0.92, t(42)=3.6, p<0.001) \) than younger adults (intercept: \( b=3.0, t(42)=14.3, p<0.001 \); slope: \( b=-1.3, t(42)=18.0, p<0.001 \)). In the parietal region, older adults showed both lower intercepts \( (b=1.95, t(42)=3.7, p<0.001) \) and flatter slopes \( (b=-0.97, t(42)=2.5, p<0.001) \).
than younger adults (intercept: $b=2.95$, $t(42)=15.2$, $p<0.001$; slope: $b=-1.22$, $t(42)=-18.3$, $p<0.001$).

This pattern was slightly different in the occipital region, older adults showed lower intercepts ($b=1.87$, $t(42)=-2.7$, $p=0.010$), but not reliably flatter slopes ($b=-0.97$, $t(42)=1.0$, $p=0.324$) than younger adults (intercept: $b=2.68$, $t(42)=12.5$, $p<0.001$; slope: $b=-1.07$, $t(42)=-16.2$, $p<0.001$). Thus, as suggested by the Frequency x Age Group x Region interaction, older adults generally showed lower intercepts and flatter slopes, but the strength of this effect varied across regions.
Figure 2. (A) Average power spectra across the frontal electrodes (F7, F3, Fz, F4, F8) as function of group, shown in log-log space. Thin colored lines show individuals, thicker black lines show the average power spectra for the whole group (line dashing varies with group). (B) Average power spectra in log-log space shown as a function of group and electrode region (Frontal, Central, Parietal, and Occipital). Note that the alpha band (8-12 Hz) is shaded in grey to indicate that frequencies in this range were excluded from statistical analyses. (C) Slopes and intercepts from the mixed-effect regression for the frontal electrodes as a function of group. Boxplots show the median and the interquartile range, whiskers drawn to the last point within 1.5*interquartile range.
Age-Related Differences in Cognition

As shown in Figure 3, there was considerable variability both within and between groups on the different subtests of the RBANS. Statistical comparisons between the younger adults and older adults are presented in Table 2. For composite RBANS scores there was a statistically significant difference between younger and older adults (p=0.034), with older adults performing worse. Delving into the specific subtests of the RBANS, only Coding (p<0.001), List Recall (p=0.008), List Recognition (p=0.006), and Figure Recall (p=0.045) showed statistically significant differences.
Figure 3. RBANS subtest scores for each separate test as a function of group. LL = List Learning; SM = Story Memory; FC = Figure Copy; LO = Line Orientation; PN = Picture Naming; SF = Semantic Fluency; DS = Digit Span; Code = Coding; L Recall = List Recall; L Recog = List Recognition; S Recall = Story Recall; F Recall = Figure Recall.
Table 2. Descriptive statistics and comparisons between younger adults and older adults on the different RBANS subtests.

<table>
<thead>
<tr>
<th>RBANS Subtest</th>
<th>Younger Adults (n=21)</th>
<th>Older Adults (n=23)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Normalized Composite (%)</strong></td>
<td>Mean (SD)</td>
<td>95% CI</td>
<td>Mean (SD)</td>
</tr>
<tr>
<td>List Learning (max = 40)</td>
<td>78.8 (7.7)</td>
<td>[75.3, 82.3]</td>
<td>74.5 (7.7)</td>
</tr>
<tr>
<td>Story Memory (max = 24)</td>
<td>31.0 (3.8)</td>
<td>[29.3, 32.7]</td>
<td>28.9 (5.4)</td>
</tr>
<tr>
<td>Figure Copy (max = 20)</td>
<td>16.7 (3.8)</td>
<td>[14.9, 18.4]</td>
<td>17.3 (3.0)</td>
</tr>
<tr>
<td>Line Orientation (max = 20)</td>
<td>17.0 (2.2)</td>
<td>[16.2, 18.2]</td>
<td>17.1 (2.3)</td>
</tr>
<tr>
<td>Picture Naming (max = 10)</td>
<td>18.0 (3.3)</td>
<td>[16.5, 19.6]</td>
<td>16.9 (3.0)</td>
</tr>
<tr>
<td>Semantic Fluency (max = 40)</td>
<td>9.8 (0.5)</td>
<td>[9.6, 10.0]</td>
<td>10.0 (0.2)</td>
</tr>
<tr>
<td>Digit Span (max = 16)</td>
<td>12.2 (1.7)</td>
<td>[11.4, 13.0]</td>
<td>12.3 (2.8)</td>
</tr>
<tr>
<td>Coding (max = 89)</td>
<td>60.6 (8.8)</td>
<td>[56.6, 64.5]</td>
<td>45.1 (10.2)</td>
</tr>
<tr>
<td>List Recall (max = 10)</td>
<td>7.6 (1.7)</td>
<td>[6.8, 8.3]</td>
<td>5.8 (2.8)</td>
</tr>
<tr>
<td>List Recognition (max = 20)</td>
<td>19.9 (0.4)</td>
<td>[19.7, 20.0]</td>
<td>19.3 (1.0)</td>
</tr>
<tr>
<td>Story Recall (max = 12)</td>
<td>8.9 (2.8)</td>
<td>[7.6, 10.2]</td>
<td>9.1 (2.3)</td>
</tr>
<tr>
<td>Figure Recall (max = 20)</td>
<td>15.0 (4.1)</td>
<td>[13.2, 16.9]</td>
<td>13.0 (3.6)</td>
</tr>
</tbody>
</table>

Note that p-values refer to one-tailed hypothesis tests using Welch’s t-test for independent samples, based on the a priori assumption that older adults should score lower on the raw RBANS subtests relative to younger adults. Only the younger and older adults were statistically compared, given the limited sample size for older adults with mild cognitive impairment (MCI). All subtests are presented in their raw units except for the normalized composite, in which scores were converted to percentages for their respective subtests and then averaged together within a participant.
Does the spectral slope mediate age-related changes in cognition?

Spectral slopes from the frontal region were extracted for younger and older adults for inclusion in the mediation analyses. Again, older adults with MCI (n=3) were excluded from the statistical analyses, but their data are presented in the Appendix for a descriptive comparison. As shown in Figure 4, a priori we chose to focus only on those effects that showed the largest (statistically significant) differences between younger and older adults: composite scores, Coding, List Recall, List Recognition, and Figure Recall. Similarly, we focused only on the spectral slopes estimated in the frontal electrodes. The results of the casual mediation analysis for each of the four significant outcome measures are provided below. These mediations were based on a non-parametric bootstrapping procedure with \( k=5,000 \) iterations to obtain robust estimates (Imai et al., 2010; Tingley et al., 2014).

**Normalized Composite Scores.** As shown in Figure 5A, age group was negatively associated with the normalized composite scores on the RBANS. When frontal slopes were added into the model, this relationship was attenuated (from \( b=4.34 \) to \( b'=2.16 \)) and the relationship between normalized composite scores and frontal slopes was statistically significant (\( b=-8.31 \)). Nonparametric bootstrapping of the mediation effect revealed an average causal mediation effect that was statistically significant, 2.18, 95% CI=[0.02, 5.60], \( p=0.045 \). However, the average direct effect of age group was not statistically significant, 2.16, CI=[-2.34, 6.53], \( p=0.382 \), nor was the total effect, 4.34, CI=[-0.06, 8.75], \( p=0.053 \).

**Coding Subtest.** As shown in Figure 5B, age group was strongly associated with Coding scores when entered into the model by itself (with younger adults scoring better than older adults). When frontal slopes were added into the model, this relationship was attenuated (from \( b=15.42 \) to \( b'=12.47 \)) and the relationship between Coding and frontal slopes was itself statistically significant (\( b=-10.86 \)). Nonparametric bootstrapping of the mediation effect revealed an average causal mediation effect of 2.95, 95% CI=[0.35, 6.69], \( p=0.020 \). The average direct effect of age group remained statistically significant, 12.47, CI=[5.89, 18.99], \( p<0.001 \). The total effect, which combines the direct effect of age...
group with the variance in age group that was mediated by spectral slope, was also statistically significant, $15.42, \text{CI}=[9.66, 21.00], p<0.001$.

**List Recall Subtest.** As shown in Figure 5C, age group was strongly associated with List Recall scores when entered into the model by itself (with younger adults scoring better than older adults). When frontal slopes were added into the model, this relationship was attenuated (from $b=1.74$ to $b'=1.25$). The relationship between List Recall and frontal slopes was negative, but not statistically significant ($b=-1.87$). Nonparametric bootstrapping of the mediation effect revealed an average causal mediation effect that was not statistically significant, $0.49, 95\% \text{CI}=[-0.10, 1.43], p=0.116$. The average direct effect of age group was also not statistically significant, $1.25, \text{CI}=[-0.25, 2.56], p=0.102$. The total effect, however, was statistically significant, $1.74, \text{CI}=[0.41, 3.04], p=0.011$.

**List Recognition Subtest.** As shown in Figure 5D, age group was strongly associated with List Recognition scores when entered into the model by itself (with younger adults scoring better than older adults). When frontal slopes were added into the model, this relationship was attenuated (from $b=0.60$ to $b'=0.52$). The relationship between List Recognition and frontal slopes was negative, but not statistically significant ($b=-0.28$). Nonparametric bootstrapping of the mediation effect revealed an average causal mediation effect that was not statistically significant, $0.07, 95\% \text{CI}=[-0.12, 0.30], p=0.446$. However, the average direct effect of age group was statistically significant, $0.52, \text{CI}=[0.09, 0.99], p=0.017$, as was the total effect, $0.60, \text{CI}=[0.18, 1.05], p=0.004$.

**Figure Recall Subtest.** As shown in Figure 5E, age group was negatively associated with Figure Recall scores. When frontal slopes were added into the model, this relationship was attenuated (from $b=2.05$ to $b'=1.33$) and the relationship between Figure Recall scores and frontal slopes was negative, but not statistically significant ($b=-2.72$). Nonparametric bootstrapping of the mediation effect revealed an average causal mediation effect that was not statistically significant, $0.72, 95\% \text{CI}=[-0.21, 2.04]$. 
p=0.146. However, the average direct effect of age group was not statistically significant, 1.33, CI=[-1.00, 3.49], p=0.258, nor was the total effect, 2.05, CI=[-0.26, 4.28], p=0.079.
Figure 4. Normalized composite scores (A), Coding (B), List Recall (C), List Recognition (D), and Figure Recall subtest scores (D) as a function of the spectral slope across the frontal electrodes (estimated excluding alpha band power [8-12 Hz]). These subtests were selected for the statistically significant differences between younger (YA) and older adults (OA) shown in Table 2. Lines indicate the ordinary least squares regression line within each group (solid lines/black circles = younger adults; dashed lines/open circles = older adults).
Figure 5. Mediation pathways for normalized composite scores as a % across the RBANS (A), Coding (B), List Recall (C), List Recognition (D), and Figure Recall (E) subtest scores. Estimates are shown from ordinary least squares regression models for each pathway. Grey dashed lines and grey text reflect simple regressions and coefficients. Black lines and text reflect multiple regression with outcomes (A-E) explained by both Age Group and the estimated spectral slope in the frontal electrodes (averaging F7, F3, Fz, F4, and F8). Note the Frontal Slope~Age Group path is slightly different for Coding scores, because the Coding score was missing for one YA participant due to an administration error. Asterisks indicate p < 0.05.
Discussion

Consistent with the neural-noise hypothesis of aging, and in replication of Voytek et al. (2015), our data showed that (1) the slope of the resting EEG power spectrum is flatter in older compared to younger adults and (2) individual differences in the slope of the EEG power spectrum mediated age-related differences in cognition. However, it is important to note that this pattern was not evident across all subtests of the RBANS. The effect appeared to be strongest in the Coding subtest, and was potentially present in the normalized overall scores, List Recall, List Recognition, and Figure Recall. Other subtests of the RBANS were not examined, as we did not find reliable evidence of cognitive differences between the performance of younger adults and older adults. Thus, combining these data with those of Voytek et al. (2015), it appears that the flattening of the spectral of slope with age is a reliable effect.

Further, the spectral slope is related to cognition in both tightly controlled laboratory tasks (visuospatial working memory in the case of Voytek et al.) and in ecologically valid clinical tests (the Coding subtest of the RBANS in the present data).

The obtained pattern of results raises important questions about how the findings pertaining to Coding subtest of the RBANS should be interpreted. The Coding subtest falls under the “Attention” domain. Interestingly, the Digit Span is the other subtest in the Attention domain, and we failed to show a reliable difference between younger adults and older adults with respect to Digit Span scores. Ultimately, the reason for the strong association with the Coding subtest is not clear, but we posit a few possible (non-exclusive explanations). First, the Coding subtest has the strictest time requirements of any subtest on the RBANS, and is directly analogous to other symbol substitution tasks that are commonly used to assess the domain of processing speed in neuropsychology (Larrabee, 2017). To perform the task efficiently, participants need to memorize the correspondence between symbols presented on the paper and the numbers those symbols represent (i.e., a symbol-number pairing). As
the task goes on, more efficient participants are able to encode the symbol-number pairings into working memory, as opposed to repeatedly alternating between the symbol key and the response field.

Thus, these tasks require the rapid integration of various sub-processes, including visual scanning, working memory, sustained attention, and visuomotor coordination, and quantify an individual’s ability to rapidly learn, coordinate, and execute a set of simpler sub-tasks (Lezak, Howieson, Loring, & Fischer, 2004). A second, perhaps complementary, perspective on these measures highlights the importance of executive functions, via cognitive control and working memory, in allowing individuals to rapidly coordinate the necessary sub-processes when faced with a novel task and timed testing conditions (Koziol & Budding, 2009). Both of these perspectives are consistent with the large literatures that highlight: (1) the relative prominence of changes in the (interrelated) functions of processing speed, working memory, and fluid cognition with greater age (Salthouse, 2000; Salthouse & Davis, 2006), and (2) the effects of clinical conditions affecting distributed processing and/or white matter integrity on timed symbol-substitution tasks (e.g., Deluca et al., 2004; Kinnunen et al., 2011; Lezak et al., 2004).

Interestingly, we did not find evidence for the spectral slope mediating age-related differences in delayed memory, as reflected in the non-significant mediations for List Recognition, List Recall, and Figure Recall. From these pilot data, we cannot conclude that there is no relationship between spectral slopes and delayed memory, but these data do suggest that the relationships for delayed memory are (at least) smaller than those observed for processing speed/executive functions. Again, however, this may also be confounded by the speed requirements of the RBANS; if participants were required to retrieve information from long-term memory very quickly, perhaps a reliable pattern would emerge. If that were the case, however, that would again suggest that resting spectral slopes are more related to processing speed than they are to long-term memory per se.

Finally, it is unfortunate that we were unable to collect data from our sample of older adults with MCI. The descriptive data for three participants presented in Supplemental Appendix I are
interesting, but far too limited to allow a substantial qualitative interpretation. Based on the relationship between resting slopes and performance in cognitively intact older adults, however, we do think that these pilot data warrant further research into the clinical utility of the resting spectral slope as a biomarker of cognitive decline. We have shown the resting spectral slope is sensitive to individual differences in some aspects of cognition. Combined with past work showing how frequency-based EEG measures can longitudinally predict the conversion from MCI to Alzheimer’s disease (Engedal, Barca, Anderson et al., 2020; Poil, de Haan, van der Flier et al., 2013), we think the present data warrant longitudinal studies to see if the spectral slope possibly outperforms other biomarkers, or if the predictive utility of other biomarkers is improved after the spectral slope is accounted for (Donoghue et al., 2020).

Limitations

There are a number of limitations in the present study of which we need to be cognizant. First and foremost, we have a limited sample size and we need to careful in the interpretation of our hypothesis test results. Due to relatively low power in some analyses, significant results may not be representative of the real underlying effects, and non-significant results may have simply lacked adequate statistical power (Button et al., 2013; Lohse et al., 2016). Further, there were a number of processing choices in the handling of the EEG data that could have an effect on the results. For instance, as shown in Figure 2, the location of the alpha peak appeared to shift toward a lower frequency range from the younger adults to the older adults. As such, our decision to completely remove datapoints between 8-12 Hz as “the” alpha band is likely not trimming out alpha power equally for all participants. We could instead select individualized peaks for each person or adopt more sophisticated algorithmic methods (like “fitting oscillations with one-over-f”; Haller et al., 2018; Donoghue et al., 2020), but each of these methods would in turn require experimenter decisions that need to be justified. As such, we
opted for the simple but objective criterion of simply removing data between 8-12 Hz (which is also more consistent with Voytek et al., 2015). Additionally, we do suffer a multiple testing problem in examining age-group differences on all subtests of the RBANS. We fully acknowledge that this is a concern and the Type I (false positive) error rate is likely inflated. However, we would also argue that as a pilot study, the risk of Type II (false negative) errors is greater at this stage. Our goal was not to unequivocally test associations between these variables, but to attempt to replicate past work and generate confidence intervals for effects that will be helpful in planning future studies. Finally, although the RBANS does tap multiple cognitive domains, it does not have pure measures of executive functioning. Given the present results, future studies might examine if executive function specifically is influenced by age and spectral slope.

Conclusions

Consistent with the neural-noise hypothesis of aging, we replicated earlier work showing that the slope of the EEG power spectrum becomes flatter with age, and that individual differences in the spectral slope explain individual differences in cognition. We also extend this past work by demonstrating these effects in clinical assessments of cognitive status (rather than lab-based tasks) and show that these effects do not appear to be broadly applicable to all areas of cognition. These pilot data warrant the inclusion of the spectral slope as candidate biomarker in future studies on age-related cognitive decline.
References


