Treatment of irritant contact dermatitis in healthcare settings during the COVID19 pandemic: The emollient Dermol 500 exhibits virucidal activity against influenza A virus and SARS-CoV-2.

Christine T. Styles¹, Michael Vanden Oever², Jonathan Brown¹, Sweta Rai², Sarah Walsh¹, Finola M. Ryan³,⁴, Wendy S. Barclay¹ and Rachel S. Edgar¹*
¹Department of Infectious Diseases, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK.
²Department of Dermatology, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS.
³Department of Occupational Health & Wellbeing, Jennie Lee House, King’s College Hospital NHS Foundation Trust, London SE5 8AD, UK.
⁴Department of Targeted Intervention, University College London, Gower Street, London WC1E 6BT, UK.
*Correspondence to Rachel S. Edgar; rachel.edgar@imperial.ac.uk

Key words: virucidal, antiviral, Dermol 500, antimicrobial emollient, influenza virus, SARS-CoV-2, COVID19, benzalkonium chloride (BAK), chlorohexidine dihydrochloride (CD), work-related contact dermatitis.

KEY MESSAGES

1. What is already known about this subject?
 • Work-related contact dermatitis is a prominent issue among healthcare workers, and likely exacerbated by the enhanced hand hygiene and personal protective equipment required to control infection during the COVID19 pandemic.
 • The antimicrobial lotion Dermol 500 is frequently prescribed as an emollient and soap substitute to help prevent and treat dermatitis, but its use during the COVID19 pandemic was not advised as its capacity to inactivate viruses was unknown.

2. What are the new findings?
 • Increased incidence of irritant contact dermatitis was recorded amongst healthcare workers at King’s College Hospital NHS Foundation Trust in 2020 compared to 2019.
 • Dermol 500 lotion and its antimicrobial components, benzalkonium chloride (BAK) and chlorohexidine dihydrochloride (CD), exhibit virucidal activity against influenza A virus and SARS-CoV-2, the virus responsible for COVID19 pandemic.

3. How might this impact policy or clinical practice in the foreseeable future?
 • Our results demonstrate that Dermol 500 can be safely used as a soap substitute to treat work-related contact dermatitis in clinical care settings during the COVID19 pandemic.
 • Employers can meet their obligations under COSHH to eliminate workplace exposure to a harmful substance and substitute with an alternative product for hand hygiene.

ABSTRACT

Objectives: To investigate whether the antimicrobial emollient Dermol 500 and its active components, benzalkonium chloride (BAK) and chlorohexidine dihydrochloride (CD), exhibit virucidal activity thus informing whether Dermol 500 is a suitable soap substitute for use during the COVID19 pandemic, to combat the increased incidence of work-related contact dermatitis in clinical settings that we report here.

Methods: Inactivation of influenza A virus and SARS-CoV-2 by Dermol 500 and the independent and combined virucidal activity of the Dermol 500 components BAK and CD was assessed by influenza A virus and SARS-CoV-2 infectivity assays. Viruses were treated with concentrations of BAK and CD comparable to Dermol 500, and lower, and infectivity of the viruses assessed by titration.

Results: Dermol 500 exhibits comparable virucidal activity to alcohol-based sanitisers against influenza A virus and SARS-CoV-2. In addition, the Dermol 500 components BAK and CD exhibit independent and synergistic virucidal activity against influenza A virus and SARS-CoV-2, the causative agent of COVID19.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

Conclusions: The synergistic virucidal activity of the Dermol 500 components BAK and CD makes Dermol 500 suitable as a soap substitute to treat and prevent work-related contact dermatitis in healthcare settings.
ABBRévIÁtIOns

IAV: Influenza A virus
SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2
PPE: Personal protective equipment
COSHH: Control of Substances Hazardous to Health Regulations
RIDDOR: Reporting of Injuries, Diseases and Dangerous Occurrences Regulations
BAK: Benzalkonium chloride
CD: Chlorhexidine dihydrochloride
RT: Room temperature
SFM: Serum-free medium
CCV: Canine coronavirus
HSV1: Herpes simplex virus 1
HIV: Human immunodeficiency virus
CMV: Cytomegalovirus
RSV: Respiratory syncytial virus
SARS-CoV-1: Severe acute respiratory syndrome coronavirus 1

INTRODUCTION

Hand hygiene is imperative in healthcare settings and hand washing with soap or use of alcohol-based hand sanitisers are advised worldwide to assist infection control. However, such hand hygiene measures and use of personal protective equipment (PPE) such as gloves and masks can precipitate irritant contact dermatitis. This skin condition is characterised by damage to the stratum corneum layer of the epidermis, resulting in cracked, dry and itchy skin with impaired barrier function, and advances to severe irritation and inflammation. Following the development of dermatitis there is an elevated risk of bacterial colonisation and subsequent transmission to other healthcare workers or patients.

Work-related contact dermatitis in healthcare professionals has been exacerbated by the infection control measures required during the COVID-19 pandemic. 84.6% of surveyed Wuhan healthcare workers reported adverse skin reactions attributed to increased hand washing frequency. Since March 2020, we have observed a sharp increase in NHS staff presenting with irritant hand dermatitis (Figure 1). Between 26th March – 6th May, 468 staff within King’s College Hospital NHS Foundation Trust presenting to a staff dermatology clinic were diagnosed with irritant hand dermatitis. For comparison, only 8 staff had this diagnosis recorded over the same time period in 2019 at the occupational health department of the hospital. A 9.5 fold increase in irritant contact dermatitis diagnoses has been observed overall in 2020 compared to 2019 (Figure 1C), with significant increases in both occupational health walk-in cases and those diagnosed following management referral (Figures 1A and B).

Although dermatitis is a prominent issue for healthcare workers, it is manageable with appropriate interventions. Under UK health and safety law, legislation details that employers have a duty of care and statutory legal obligation to employees to minimise and avoid health problems caused by work, including development of skin conditions such as work-related dermatitis. The Control of Substances Hazardous to Health Regulations, (COSHH) 2002, (as amended) requires employers to identify substances that may be hazardous to health, assess risks and implement adequate control measures to control exposure and protect health. Indeed, if the contact dermatitis is considered solely caused by work, it is reportable under the Reporting of Injuries, Diseases and Dangerous Occurrences Regulations (RIDDOR) 2013. Prior to the COVID19 pandemic, the use of soap substitutes and emollients was advised to treat work-related contact dermatitis in healthcare workers by the Royal College of Physicians and other medical bodies, meeting the COSHH requirement to eliminate exposure to the hazardous substance and substitute with an alternative. Notably, Dermol 500 lotion is usually prescribed as an antimicrobial emollient and soap substitute to aid skin conditions such as dermatitis. However, due to a lack of evidence regarding whether Dermol 500 can inactivate virus particles, its use in clinical settings was discouraged during the COVID19 pandemic.
Dermol 500 contains the antimicrobial components benzalkonium chloride (BAK) and chlorohexidine dihydrochloride (CD), which both have broad and well-established antimicrobial activity. This includes activity against the bacterial genera *Chlamydia*, *Pseudomonas*, *Streptococcus*, and *Staphylococcus* amongst others. BAK has been independently shown to exhibit virucidal activity against various enveloped viruses, including Canine coronavirus (CCV), herpes simplex virus 1 (HSV1), human immunodeficiency virus (HIV), cytomegalovirus (CMV) and respiratory syncytial virus (RSV). In addition, surface disinfectants where BAK is the principle active component have been shown to inactivate the SARS-CoV-1 coronavirus. Virucidal activity has been demonstrated for the parental compound of CD (chlorohexidine), with alternative chlorohexidine salt form derivatives chlorohexidine gluconate and chlorohexidine acetate inactivating HIV and HSV-1.

Synergistic or cumulative virucidal activity of BAK and CD within the context and concentration found in Dermol 500 lotion has not previously been reported. The purpose of this study was to assess the virucidal activity of Dermol 500 and its antimicrobial components BAK and CD against influenza A virus (IAV) and SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the virus responsible for COVID19 disease.
METHODS

Cell culture

Madin-Darby Canine Kidney (MDCK) cells and VeroE6 cells were routinely cultured at 37°C with 5% CO2 in Dulbecco’s modified Eagle’s Medium (DMEM; Gibco-Life Technologies) supplemented with 10% FCS, 1% penicillin/streptomycin and either Glutamax (MDCK) or NEAA (Vero E6)(Gibco-Life Technologies).

Influenza infectivity assay

The influenza A virus used in this study was strain A/PR8/8/34 (H1N1), henceforth referred to as IAV. The virus was propagated in confluent MDCK flasks in the presence of TPCK-treated trypsin at 1 µg/ml (Worthingtons Bioscience) and serum-free DMEM containing 1% penicillin/streptomycin and 1% Glutamax (Gibco Life-Technologies)(SFM). MDCK cells were seeded in 6 well plates 24 to 72h prior to influenza infectivity assays.

Due to their viscosity, Dermol 500 lotion and commercially available alcohol-based sanitisers were diluted 1:1 to 50% concentration in SFM to allow for accurate pipetting. Virus was incubated with Dermol 500/alcohol-based sanitisers at the final concentrations described, or with SFM alone as a control. The alcohol-based hand sanitisers assessed were: 1) Cuticura Original Hand Sanitiser, 2) Lifebuoy Hand Hygiene Sanitiser 3) Hygiene Vision Europe Ltd Hand Hygiene Sanitiser. Alternatively, virus was incubated with BAK and CD at the concentrations described (Sigma Aldrich; CD suspended in DMSO), culture medium alone or DMSO vehicle control (Supplementary Figure 1).

Virus was incubated with the treatment for the stated times at either room temperature (RT) or 32°C (average skin temperature). Following incubation, SFM was added to the virus/treatment samples to a 10-fold serial dilutions. The limit of detection was therefore 10^3 virus particles/mL. Due to adverse effects of BAK and CD on cultured in vitro cell lines the limit of detection for BAK and CD treatments between 0.05 - 0.1% was 10^2 virus particles/mL without filtration. Where noted, IAV was filtered to remove BAK/CD post-incubation using 15 mLAmicon Ultra-15 centrifugal filter with a 50,000 molecular weight cut off (UF905008, Merck) and centrifugation (4000 x g, 10 min). Filtered virus was resuspended in SFM and serially diluted as above.

Infectious virus was titred via standard plaque assay. Briefly, confluent MDCK cells were incubated with 1ml of virus dilutions for 1 hour at 37°C. Virus dilutions were aspirated and cells overlaid with 3ml SFM containing 0.8% Avicel® (FMC BioPolymer), 0.14% BSA and TPCK-treated trypsin at 1 µg/ml (Worthingtons Bioscience). After 3 days, infected cells were fixed in PBS with 8-10% formalin, stained with 0.1% toluidine blue and viral plaque forming units (PFU) assessed.

SARS-CoV-2 TCID50 infectivity assay

The SARS-CoV-2 strain used in this study was SARS-CoV-2/England/IC19 and is henceforth referred to as ‘SARS-CoV-2’22. Vero E6 cells were seeded into 96-well plates in supplemented DMEM for confluenence the next day. SARS-CoV-2 was incubated with either Dermol 500 or alcohol-based sanitiser diluted as for IAV above. Alternatively, BAK and CD diluted to 0.2% in assay diluent (DMEM, 0.3% BSA, 1X NEAA, 1X penicillin/streptomycin) were mixed with an equal volume of SARS-CoV-2 to a final concentration of 0.1% BAK and 0.1% CD. Virus was also mixed with assay diluent in the absence of Dermol 500, alcohol-based sanitisers or CD/BAK. After stated incubation period, neat sample was added to the first column of confluent Vero E6 cells and Log_{10}/half-Log_{10} dilution series immediately performed across the plate in assay diluent. Four technical replicates were performed for each sample. Plates were incubated for 5 days at 37°C before adding crystal violet stain (0.1% w/v) to live cells. Wells were scored for either an intact, stained cell sheet or the absence of cells due to virus-induced cytopathic effect. For each condition, the Spearman-Karber method was used to calculate the 50% tissue culture infectious dose (TCID50) of the virus.

Statistical analysis

All data was analysed using GraphPad Prism and presented as mean ± standard deviation (mean±SD). For each treatment condition, at least 2 independent biological replicates were performed.
RESULTS

Dermol 500 exhibits virucidal activity against IAV and SARS-CoV-2 comparable to alcohol-based hand sanitisers.

To assess whether Dermol 500 emollient exhibits virucidal activity, we examined the capacity of IAV and SARS-CoV-2 to infect cells following incubation with Dermol 500 (Figure 2). Dermol 500 lotion was diluted in cell culture medium to allow for accurate pipetting, therefore could only be assessed at maximum 25% of its original concentration. Even at this dilution, we observed a significant reduction in the amount of infectious IAV after 30 min incubation at skin temperature 32°C (~100-fold reduction in virus particles; Figure 2A), and a similar decrease in SARS-CoV-2 infectivity after only 5 min (Figure 2B). In parallel, we assessed the virucidal activity of 3 commercially available alcohol-based hand sanitisers diluted equivalently. Importantly, Dermol 500 performed as well or better than these alcohol-based sanitisers at decreasing viral infectivity. The virucidal effect of Dermol 500 was concentration-dependent, performing less well at a 12.5% dilution (Supplementary Figure 2), indicating increased efficacy against viruses when Dermol 500 is used at its intended concentration. In addition, increased incubation time correlated with enhanced reduction in infectious virus.

Figure 2. Dermol 500 lotion exhibits virucidal activity against IAV and SARS-CoV-2.

(A) IAV was incubated with Dermol 500 or alcohol-based hand sanitisers at 25% final concentration, or medium-only control, for 5–120 min at 32°C. Virus infectivity was assessed by plaque assay (n=2; mean±SD). 2-way ANOVA [treatment x time]: treatment ****P<0.0001, time P>0.05; multiple comparisons versus control: *P<0.05, **P<0.01, ***P<0.001. (B) SARS-CoV-2 was incubated with Dermol 500 or alcohol-based hand sanitisers at 25% final concentration for 5–60 min, or assay diluent control for 60 min, at 32°C. Virus infectivity was assessed by TCID50 assay (n=2; mean±SD). 2-way ANOVA [treatment x time]: treatment ****P<0.0001, time **P<0.0032; multiple comparisons versus control: *P<0.05, **P<0.01.
The antimicrobial agents benzalkonium chloride (BAK) and chlorhexidine dihydrochloride (CD) rapidly inactivate IAV and SARS-CoV-2 at the concentrations found in Dermol 500 lotion.

BAK and CD are considered the active antimicrobial agents in Dermol 500, and alone have been reported to exhibit some virucidal activity. We tested their ability to inactivate IAV and SARS-CoV-2 in combination, to determine whether they contribute to the virucidal activity of Dermol 500 lotion at their intended concentration (Figure 3). Within 30 seconds of incubation with 0.1% BAK/0.1% CD the level of infectious IAV decreased 100,000-fold, and by 3 minutes infectious virus had reached undetectable levels (Figure 3A). For SARS-CoV-2, no virus-induced cytopathic effect was observed for samples incubated with 0.1% BAK/0.1% CD across all incubation time frames (10^5 TCID50/mL detection limit) indicating a >10,000-fold reduction in virus infectivity within 0.5 min of contact with BAK/CD, below the limit of detection. We conclude that BAK and CD together are extremely potent virucidal agents against influenza and coronaviruses at the concentrations found in Dermol 500 lotion.

Figure 3. Benzalkonium chloride (BAK) and chlorhexidine dihydrochloride (CD) exhibit rapid virucidal activity against IAV and SARS-CoV-2 at the concentration in Dermol 500.

(A) IAV was incubated at 32°C with 0.1% BAK + 0.1% CD, or medium-only control, for 1-5 min. IAV infectivity was assessed by plaque assay directly (unfiltered; 10^2 PFU/mL detection limit; n=2; mean±SD), or parallel samples were subject to filtration to remove BAK/CD prior to plaque assay (filtered; 10^1 PFU/mL detection limit; n=2; mean±SD). 2-way ANOVA [treatment x time]: unfiltered treatment **P=0.0031, time P>0.05; filtered treatment ***P=0.0005, time P<0.05. (B) SARS-CoV-2 was incubated at RT with 0.1% BAK + 0.1% CD for either 0.5 min (n=2), 10 min (n=2) or 30 min (n=4), or assay diluent control for 30 min (n=4)(mean±SD). Virus infectivity was assessed by TCID50 assay. No virus-induced cytopathic effect was observed for samples incubated with 0.1% BAK/0.1% CD across all incubation time frames (10^2 TCID50/mL detection limit). 2-tailed Mann-Whitney test: **P=0.002.

The antimicrobial agents BAK and CD independently inactivate IAV with different efficiencies, and act synergistically to disrupt viral infectivity.

We next investigated the virucidal activity of decreasing concentrations of BAK and CD, both in combination and independently to further characterise their efficacy (Figure 4). Within a 30 second time frame, we observed a significant decrease in IAV infectivity with the lowest concentration of BAK tested (0.0125%), indicating that amounts could be reduced in future virucidal formulations. CD alone showed no significant decrease in infectious virus over this time frame, but showed synergistic interaction with BAK by enhancing its efficacy against IAV in a time- and temperature-dependent manner (Figure 4; Supplementary Figures 3 and 4). At skin temperature, CD starts to exert an independent virucidal effect at higher concentrations by 5 minutes, and by 30 minutes the lowest CD concentration has reduced IAV infectivity by 100-1000 fold. 0.0125% BAK/0.1% CD was the most efficient combination we tested, with IAV infectivity below detectable levels within 30 seconds (Supplementary Figure 4).
DISCUSSION AND CONCLUSIONS

Any employment that requires hand hygiene, exposure to irritants and PPE such as masks and gloves poses a risk of work-related skin disease, with irritant contact dermatitis the most common occupational inflammatory skin disease in Europe. With the prominent worldwide focus on hand hygiene and PPE during the COVID19 pandemic, increased occurrence of work-related contact dermatitis will likely extend beyond clinical settings into commercial employment industries, particularly other key workers. Occupational dermatitis is a reportable disease under UK health and safety legislation, and employers are legally obliged to minimise exposure to harmful substances and avoid health problems including skin conditions. The provision of emollients and soap substitutes, such as Dermol 500 lotion, are advised for treatment and prevention of dermatitis, but not recommended currently due to a lack of evidence regarding their virucidal efficacy.

This study clearly demonstrates Dermol 500, and its antimicrobial components BAK and CD, exhibit robust virucidal activity against IAV and SARS-CoV-2, enabling its use against work-related contact dermatitis during the COVID19 pandemic. Synonymous with the cumulative activity of BAK and CD against bacteria, these compounds act synergistically to inactivate two different enveloped viruses, IAV and SARS-CoV-2. Extrapolating these results, we predict that Dermol 500 will be effective against other enveloped viruses, especially as both BAK and CD have been shown to independently inactivate the enveloped viruses HSV-1 and HIV. Indeed, BAK has been shown to inactivate a broad range of enveloped viruses including CCV, CMV, RSV and SARS-CoV-1. Interestingly, 0.1% BAK is a component of many commercial nasal sprays, although listed as a preservative rather than an active ingredient.

The mechanisms underpinning BAK and CD viral inactivation are poorly understood, and beyond the scope of this paper, but both have been commonly used antimicrobials since the 1950’s. They are known to disrupt the physical integrity and biochemical functions of the lipid membranes of both gram-negative and gram-positive bacteria. The synergistic activity of BAK and CD indicates they may inactivate viruses via
complementary mechanisms. Beyond disrupting lipid viral envelopes, BAK alone has been shown to inactivate various non-enveloped viruses including human coxsackie virus19, human adenoviruses28 and enteroviruses14. However, BAK virucidal activity is less potent against non-enveloped viruses and requires longer incubation times to achieve viral inactivation14. BAK and CD virucidal activity could also encompass denaturation of viral glycoproteins required for attachment and entry. Indeed, chlorhexidine antimicrobial activity has been associated with inhibition of membrane bound proteins as well as coagulation and denaturation of cytoplasmic components, and may therefore access and denature viral proteins, especially in the presence of BAK12,29. The virucidal activity of these compounds and Dermol 500 lotion against non-enveloped viruses requires further study, but we predict they will be at least as efficacious as alcohol-based sanitisers, which inefficiently inactivate the majority of non-enveloped viruses1,30.

To conclude, this study confirms Dermol 500 lotion and its constituents inactivate SARS-CoV-2 and the common respiratory virus influenza A. This broad virucidal and antimicrobial activity of Dermol 500 emollient makes it a safe and efficacious soap substitute in healthcare settings to combat the adverse effects of frequent hand washing and PPE. Its use can prevent and treat work-related irritant contact dermatitis, helping curb the large increases in this skin condition seen during this pandemic. In turn, this will decrease instances of staff sickness absence, or restriction from clinical work due to skin disease, enhance the safe and timely delivery of clinical care, and benefit staff wellbeing.

Contributors

CTS designed the study, performed laboratory experiments, analysed the data, wrote and edited the manuscript. MVO and JB performed laboratory experiments and analysed the data. SR and SW provided clinical data and edited the manuscript. FMR proposed the research question, provided clinical data and edited the manuscript. WSB edited the manuscript and acquired funding. RSE designed the study, analysed the data, wrote and edited the manuscript, and acquired funding. All authors reviewed and approved the final manuscript.

Funding

This research was supported by a Wellcome Trust Sir Henry Dale Fellowship (208790/Z/17/Z) awarded to Rachel S. Edgar, funding awarded to Wendy Barclay by the Oak Foundation, and conducted as part of the G2P consortium funded by UKRI.

Competing interests

None declared.

Patient consent for publication

Not required.

Ethics approval

Not required.

Provenance and peer review

Not commissioned; pending external peer review.

Data availability statement

Data is available on request.

Acknowledgments

We’d like to thank Dr Lucia Batty, Dr Lisa Curran and Mr James Kesson (King’s College Hospital NHS Foundation Trust, London) for their assistance during the preparation of this manuscript, and Dr John O’Neill (MRC Laboratory of Molecular Biology, Cambridge) for helpful discussion.
REFERENCES

