Assessment of Vaccination and Underreporting on COVID-19 Infections in Turkey Based On Effective Reproduction Number

Tuğba Akman Yıldız∗
Department of Computer Engineering, Faculty of Engineering
University of Turkish Aeronautical Association
06790 Ankara, Turkey

Emek Köse
Department of Mathematics and Computer Science
St. Mary’s College of Maryland
St. Mary’s City, MD 20619, USA.

Necibe Tuncer
Department of Mathematical Sciences
Charles E. Schmidt College of Science
Florida Atlantic University
Boca Raton, FL, USA.

Abstract

In this paper, we introduce a SEIR type COVID-19 model where the infected class is further divided into individuals in intensive care (ICUs) and ventilation units. The model is validated with the COVID-19 cases, deaths, and the number of patients in ICUs and ventilation units as reported by Turkey Department of Health for the period March 11 through May 30 when the nationwide lockdown is in order. COVID-19 interventions in Turkey are incorporated into the model to detect the future trend of the outbreak accurately. The lockdown is lifted on June 1, and the model is modified to include a time dependent transmission rate which is linked to the effective reproduction number $R_t$ through basic reproduction number $R_0$. The modified model captures the changing dynamics

∗Corresponding author

Email addresses: takman@thk.edu.tr (Tuğba Akman Yıldız), ekose@smcm.edu (Emek Köse), ntuncer@fau.edu (Necibe Tuncer)
and peaks of the outbreak successfully. With the onset of vaccination on 13 January 2021, we augment the model with the vaccination class to investigate the impact of vaccination rate and efficacy. We observe that vaccination rate is a more critical parameter than the vaccine efficacy to eliminate the disease successfully.

**Keywords:** Turkey, COVID-19, SARS-Cov-2, vaccination, underreporting, effective reproduction number.

### 1. Introduction

The novel coronavirus SARS-CoV-2 was firstly identified in Wuhan, China in December 2019 [1] and World Health Organization (WHO) characterised the situation as a pandemic in March, 2020 [2]. More than 92 million cases and 2 million deaths were reported worldwide (as of 17 January, 2020).

To assess the outbreak in Turkey in terms of precautions and interventions, first “COVID-19 Risk Assessment” was made public by Scientific Advisory Board for COVID-19 on January 22, 2020 in Turkey and the first version of the booklet for guidelines was published on January 24, 2020 [3]. The first COVID-19 case was diagnosed on March 9, 2020 in Turkey, and the first fatality was reported on March 17, 2020 [4]. People showing symptoms of novel coronavirus infection have been monitored and contact tracing has been done. In addition, schools and universities moved to distance learning on March 16, 2020, some travel and other restrictions have been put into action to prevent the spread of the disease in public places and large cities of Turkey [4].

SARS-CoV-2 infection is quite different from previously known infectious diseases due to the asymptomatic cases reported in different parts of the world. For example, of all passengers and crew tested on Diamond Princess cruise ship, 58% of infected people did not show any symptoms [5], more strikingly of 408 people living in shelters in Boston, PCR-testing confirmed that 88.5% showed no symptoms [6]. For a review of asymptomatic case studies, we refer the reader to the study [7].
Unknown characteristics of SARS-CoV-2 infection led scientists to construct mathematical models incorporating the data so that long-term dynamics of the outbreak could be understood and efficient intervention strategies could be implemented by government authorities. There are numerous promising papers modeling COVID-19 pandemic in the literature; but, we here just mention some of them. For example, a SEIR (susceptible-exposed-infected-recovered) model including symptomatic and presymptomatic compartments has been used with both COVID-19 case and mortality data to predict the evolution of the disease and decide possible intervention strategies in the USA. The authors find that 95% compliance with mask use is vital to slow down the deaths caused by SARV-CoV-2 infection [8]. Ibio et al. explain the spread of the disease in Nigeria in terms of a SEIR-type model where the infectious compartment is divided into three subclasses as symptomatically-infectious, asymptotically-infectious and hospitalized [9]. Garba et al. propose a generalized SEIR type model for the outbreak in South Africa by including the contaminated environment [10]. A SIDARTHE (susceptible, infected, diagnosed, ailing, recognized, threatened, healed and extinct) model is proposed by Giordano et al. where the difference between diagnosed and undiagnosed infectious individuals is included in the model and importance of social-distancing together with contact tracing and testing is underlined [11]. An age-dependent model is presented to determine the epidemic peak by using data of South Africa, Turkey and Brazil via data-fitting [12]. On the other hand, a SEIR type model is constructed for Turkey and a simulator called TURKSAS has been developed where authors predict the number of infected individuals to be approximately 123,000 in March 21, 2020 [13]. With the use of Turkey data, a SEIR type model with quarantined compartment is developed to predict the peak with different intervention strategies [14].

Mathematical models can be used to discuss the influence of different intervention strategies so that appropriate precautions can be implemented before any epidemic peaks. For example, Iboi et al. show that use of face mask is very effective to control spread; but, it may not be possible due to economic limita-
tions; so, other intervention strategies such as social-distancing and lockdown have to be implemented. On the other hand, a novel $\theta$-SEIHRD (with susceptible, exposed, infectious, undetected infectious, hospitalized, hospitalized that will die, dead, recovered, undetected recovered compartments) model is introduced for data of China and undetected infectious compartment is included to investigate the effect of this class to spread of the disease. Ngonghala et al. propose a model including the isolated and quarantined compartments together with patients staying in intensive care unit (ICU) with US and New-York data. They find that quarantine is the most effective intervention strategy among quarantine, tracing and face masks, to slow down the spread. Moreover, Eikenberry et al. compare different face masks efficacy and they find out that face mask use must be applied nation-wide even if a low quality mask is used, whereas Ngonghala et al. study the post-lockdown interventions in some states of the USA and find timing of lockdown and detection of pre-symptomatic and asymptotically-infectious individuals is quite critical, together with face mask use. Kennedy et al. develop a generalized SEIR model including a compartment for critical patients and they discuss the contribution of personal protection measures and social distancing to the number of patients in ICU. They deduce that “a stepping-down approach every 80 days” can be applied to eliminate the second peak and to reduce the number of patients at ICU.

There is no special medicine or vaccination that is known to treat SARS-CoV-2 infected people; but, new promising vaccines are still being developed to prevent people from infection. In terms of vaccination models for COVID-19 pandemic, the number of studies is quite limited compared to modeling of non-pharmacologic interventions. For example, Gumel et al. present a model by decomposing susceptible compartment as vaccinated and unvaccinated subclasses by discussing stability and threshold for herd immunity. In another study, a heterogeneous model based on the face mask use is presented and success of vaccination together with social-distancing is discussed. Another recent work takes 16 age groups into consideration and use of vaccination is optimized with four different objective functions. On the other hand, a hy-
A hypothetical case study for South Africa has been published and Mukandavire et al. suggest that social distancing is a key intervention strategy until an efficient vaccine is applied in the community [24].

Spread of a disease could be different from country to country and parameter estimation enables us to mimic real world phenomenon with the available data. As underlined in the study [25], it is crucial to determine the values of key parameters correctly, to update the model appropriately when new evidence becomes available and to understand the heterogeneity of the population in terms of the spread of the disease. Even though we can determine the contact rate via data-fitting, its constant value may cause simulation results to deteriorate, since transmission of the disease might change due to the update of government policies. Thus, time-dependent contact rate is preferable in some studies. For example, authors use the transmission rate as a slow-decaying continuous function inversely correlated with the parameter denoting the effects of the interventions [10]. In other studies [17, 26], time dependent transmission rate depending on minimum contact rate and the rate at which contact decreases is used. It is known that the reproduction number \( R_0 \) is a measure for the average number of secondary infections per infective [27]. However, it would be more flexible and accurate to use a time dependent measure computed from the daily reported cases, namely effective reproduction number \( R_t \) or \( R(t) \), to catch the dynamics of the disease [28, 29, 30]. Indeed, the transmission rate can be written in terms of the effective reproduction number as a time dependent function in some SIR models [31, 32, 33].

In this study, we consider the COVID-19 outbreak in Turkey and develop a model using the data reported by Republic of Turkey, Ministry of Health [34] and incorporating the interventions implemented in Turkey [4]. We divide this study into some parts depending on the interventions put in place in Turkey to model the outbreak accurately. Therefore, we first construct a model with the compartments of individuals who are susceptible, exposed, mildly infected, staying in ICUs and ventilated and we apply data-fitting from March 11, 2020 to May 31 2020 with the data of symptomatic daily incidences, deaths, ICU
prevalence and ventilator unit prevalence. Fitted results agree well with the reported data and we can explicitly calculate the basic reproduction number for the period of March 11 - May 31, which is approximately 3.477. Global sensitivity analysis via PRCC shows that the most influential parameters to an increase in ICUs and ventilation units are transmission rate, inverse of incubation period and quarantine rate. In addition, it is revealed that the patients in one of the compartments in our model must be treated without letting the patient’s health deteriorate so that ICU and ventilation capacities will not be exceeded. After re-opening of public places with other updated interventions in Turkey on June 1, 2020 [35], we modify the model by computing a time dependent contact rate associated with the effective reproduction number from June 1, 2020 to January 3, 2021 in order to express the changing dynamics of the outbreak until January 3, 2021. On the other hand, we investigate the effect of underreporting which is a main concern in outbreaks due to unknown characteristics of the novel virus and prevalence of asymptomatic cases. Then, we compute the incidence rate under different underreporting scenarios. Until the beginning of the vaccination program, we perform model simulations with the constant contact rate associated with the basic reproduction number on January 3, 2021 (which is quite small due to interventions). Vaccination began on January 13, 2021 in Turkey [36], so we add a vaccinated compartment into our model to investigate the role of the rate of vaccination and efficacy of vaccines to eliminate the disease in Turkey. Our model successfully expresses the outbreak from March 11, 2020 to January 3, 2021 in Turkey and it can provide guidance to decide efficient intervention strategies before occurrence of future peak(s). The rest of the paper is organized as follows. Sec. 2 is devoted to the development of the first model, parameter identification, derivation of basic and effective reproduction numbers. In Sec. 3, simulation results are presented with the fitted data and the global sensitivity analysis is discussed, and the effect of underreporting to incidence rate is investigated. Then, we present the model with vaccination compartment. The paper ends with summary and conclusion.
2. Mathematical model

Turkey’s population at time $t$ is split into mutually exclusive six compartments of individuals who are susceptible $S := S(t)$, exposed $E := E(t)$, mildly infectious (mildly infected symptomatic individuals including the ones staying in a health care facility but not in ICU) $I_1 := I_1(t)$, patients staying in the ICU, $I_2 := I_2(t)$, ventilated $I_3 := I_3(t)$ and recovered (now immune) $R := R(t)$. Total population $N := N(t)$ is written as

$$N = S + E + I_1 + I_2 + I_3 + R.$$

Assumptions:

- Some of the individuals in the class $I_1$ can recover without staying at a health care facility.
- Only deaths due to SARS-CoV-2 are taken into account. We neglect deaths due to other diseases.
- Recovered individuals are not infectious.

The population of susceptible individuals decreases in size due to the interaction with the infected individuals at the rate of $\beta_1$. Some intervention strategies such as quarantine of people older than 65 years as of March 21, 2020, people younger than 20 years old as of April 3, 2020, closing of schools and universities as of 16 March 2020 have been incorporated into the model [4]. Therefore, some portion of susceptible individuals have been isolated and they left the susceptible class at a rate of $c$ due to the intervention strategies applied in Turkey.

Interaction between susceptible and infectious individuals is reflected to the exposed class positively and the exposed class decreases in size at the rate of $p_0$. Mildly infected individuals in class $I_1$ increases at the rate of $p_0$ and this compartment decreases in size due to death, recovery or progression to the ICU (namely the class $I_2$) at the rates of $\mu_1, \gamma_1, p_1$, respectively.
The number of patients in ICU increases as a result of the life-threatening symptoms of the disease at the rate $p_1$ and this sub-population decreases due to death, recovery or the need of ventilation at the rates of $\mu_2, \gamma_2, p_2$, respectively.

The compartment $I_3$ increases due to the transfer of the patients in ICU to ventilated class at the rate $p_2$, while this class decreases in size due to death or recovery at the rates of $\mu_1, \gamma_1$, respectively.

The compartment $R$ increases as a result of the successful treatment of the patients in the classes $I_1, I_2$ and $I_3$ at the rates of $\gamma_1, \gamma_2, \gamma_3$, respectively.

Then, we propose the following deterministic nonlinear system of ODEs to model the SARS-CoV-2 transmission in Turkey:

\[
\begin{align*}
\frac{dS}{dt} &= -\beta_1 \frac{SI_1}{N} - cS, \quad (1a) \\
\frac{dE}{dt} &= \beta_1 \frac{SI_1}{N} - p_0 E, \quad (1b) \\
\frac{dI_1}{dt} &= p_0 E - (\mu_1 + \gamma_1 + p_1)I_1, \quad (1c) \\
\frac{dI_2}{dt} &= p_1 I_1 - (\mu_2 + \gamma_2 + p_2)I_2, \quad (1d) \\
\frac{dI_3}{dt} &= p_2 I_2 - (\mu_3 + \gamma_3)I_3, \quad (1e) \\
\frac{dR}{dt} &= \gamma_1 I_1 + \gamma_2 I_2 + \gamma_3 I_3, \quad (1f) \\
S(0) &= S_0, E(0) = E_0, I_1(0) = I_{1,0}, I_2(0) = I_{2,0}, I_3(0) = I_{3,0}, R(0) = R_0. \quad (1g)
\end{align*}
\]

2.1. Parameter identification

In this study, the data were taken from the Pandemic Monitoring Screen TURCOVID19 [34] where the authors explain the details of the platform in the letter to the editor [37]. Authors of this platform note that they collect up to date data from the daily announcements of Republic of Turkey Ministry of Health [38], World Health Organization [39] and European Centre for Disease Prevention and Control [40].

Republic of Turkey Minister of Health reported on March 19, 2020 that there were 25,466 ICU beds for adults (i.e. $I_{2,max} = 25,000$) [41]. Due to new regulations in health system and opening of new hospitals [42], this number
has been expected to increase. On the other hand, the approximate number of ventilators was 17,000 on March 2020 (i.e. \( I_{3,\text{max}} = 17,000 \)) \[43\]; but, domestic production of ventilators by different companies has led to an increase in the number of these devices since then \[44\].

We estimate the parameters of the model \([1]\) from the daily reported symptomatic COVID-19 cases, deaths, ICU and ventilated patient prevalence in Turkey. For simplicity, let’s represent the model \([1]\) in the following compact form:

\[
x'(t) = f(x, p), \quad x(0) = x_0,
\]

where \(x\) denotes the state variables and \(p\) denotes the parameters of the model of \([1]\). What we observe, such as COVID-19 cases or deaths in Turkey, is a function of the state variables and parameters. To be specific, let \(y(t)\) denote the observations, then

\[
y(t) = g(x, p).
\]

Here, we use daily COVID-19 incidences and deaths in Turkey together with the daily number of patients in ICU and ventilation units at hospitals in Turkey.

Parameters in the model cannot be determined from the literature due to ongoing discoveries of coronavirus and daily reported data for COVID-19 pandemic, but instead, obtained by data-fitting. However, before doing so, the structural identifiability must be established, so that we can determine the parameters from the daily reported data uniquely. For a well-posed inverse problem (i.e. parameter estimation problem), the data points must be generated by a unique set of parameters values. In order for the model to be structurally identifiable, unique parameter values must be computed from the observations generating these data points. In the case of a non-identifiable model, it is not possible to determine the unique values of the parameters. On the other hand, the model is said to be locally-identifiable if there is a finitely many parameter sets leading to the same observations \[45\].

The identifiability of the model \([1]\) is studied for the daily reported COVID-
19 cases, deaths, ICU and ventilation patient prevalence in Turkey. We investigate the structural identifiability based on the differential algebra approach and we use a software package “Differential Algebra for Identifiability of SYstems (DAISY)” [46]. We find out that the model (1) is globally identifiable, meaning there exists a unique set of parameters values which generates the data points.

Let’s denote the symptomatic daily incidences as $y_1(t)$, deaths as $y_2(t)$, ICU prevalence as $y_3(t)$ and ventilator unit prevalence as $y_4(t)$, then in terms of state variables they have the following forms:

$$y_1(t) = p_0 E, \quad y_2(t) = \mu_1 I_1 + \mu_2 I_2 + \mu_3 I_3, \quad y_3(t) = I_2(t) \quad \text{and} \quad y_4(t) = I_3(t).$$

(3)

Similarly, let $\{t_i\}_{i=1}^{n_1}$, $\{t_i\}_{i=1}^{n_2}$, $\{t_i\}_{i=1}^{n_3}$, $\{t_i\}_{i=1}^{n_4}$ denote the discrete time when the number of symptomatic Corona cases, deaths, ICU and ventilation prevalence are measured, respectively. The measurement are contaminated with noise and thus,

$$Y_1^i = y_1(t_i) + \epsilon_i, \quad i = 1, 2, \ldots, n_1,$$

$$Y_2^i = y_2(t_i) + \epsilon_i, \quad i = 1, 2, \ldots, n_2,$$

$$Y_3^i = y_3(t_i) + \epsilon_i, \quad i = 1, 2, \ldots, n_3,$$

$$Y_4^i = y_4(t_i) + \epsilon_i, \quad i = 1, 2, \ldots, n_4.$$  

(4)

We estimated the parameters of the model (1) by solving the following optimization problem.

$$\min_p \left( \frac{1}{n_1} \sum_{i=1}^{n_1} \frac{|y_1(t_i) - Y_1^i|^2}{Y_1^2} + \frac{1}{n_2} \sum_{i=1}^{n_2} \frac{|y_2(t_i) - Y_2^i|^2}{Y_2^2} + \frac{1}{n_3} \sum_{i=1}^{n_3} \frac{|y_3(t_i) - Y_3^i|^2}{Y_3^2} + \frac{1}{n_4} \sum_{i=1}^{n_4} \frac{|y_4(t_i) - Y_4^i|^2}{Y_4^2} \right)$$

w.r.t the constraint $p > 0$,

(5)

where $\gamma_{1,2,3} \in (1/23, 1/4)$ [47], Table 3], $\mu_{1,2,3} \in (0, 1)$ [48] and $p_0 \in (1/14, 1/3)$ [49]. Here, $\hat{Y}_1$, $\hat{Y}_2$, $\hat{Y}_3$ and $\hat{Y}_4$ are the average daily symptomatic COVID-19 cases, deaths, ICU and ventilation unit prevalence, respectively, as shown below:

$$\hat{Y}_1 = \frac{1}{n_1} \sum_{i=1}^{n_1} Y_1^i, \quad \hat{Y}_2 = \frac{1}{n_2} \sum_{i=1}^{n_2} Y_2^i, \quad \hat{Y}_3 = \frac{1}{n_3} \sum_{i=1}^{n_3} Y_3^i, \quad \hat{Y}_4 = \frac{1}{n_4} \sum_{i=1}^{n_4} Y_4^i.$$  

(6)
2.2. Basic reproduction number $R_0$

The model [1] has a disease-free equilibrium (DFE) point $\mathbf{e}_0 = (S_0, 0, 0, 0, 0, 0)$ where $S_0 = N_0$ is the total population in the case of no disease. Stability of the DFE point is analyzed in terms of the next generation matrix [50, 51] and the matrices associated with the new infections $\mathcal{F}$ and the transfer terms $\mathcal{V}$ are found as

$$
\mathcal{F} = \begin{pmatrix}
0 & \beta_1 \frac{S_1 I_1}{N} \\
\beta_1 \frac{S_1 I_1}{N} & p_0 E \\
p_0 E & 0 \\
0 & 0 \\
0 & 0
\end{pmatrix}, \quad \mathcal{V} = \begin{pmatrix}
\beta_1 \frac{S_1 I_1}{N} + cS \\
p_0 E \\
(\mu_1 + \gamma_1 + p_1)I_1 \\
-p_1 I_1 + (\mu_2 + \gamma_2 + p_2)I_2 \\
-p_2 I_2 + (\mu_3 + \gamma_3)I_3 \\
-(\gamma_1 I_1 + \gamma_2 I_2 + \gamma_3 I_3)
\end{pmatrix}.
$$

Their Jacobian matrices evaluated at the DFE point are obtained as

$$
\mathcal{F} = \begin{pmatrix}
0 & \beta_1 \\
p_0 & 0
\end{pmatrix}, \quad \mathcal{V} = \begin{pmatrix}
p_0 & 0 \\
0 & \mu_1 + \gamma_1 + p_1
\end{pmatrix},
$$

and the basic reproduction number $R_0$ is calculated to be

$$
R_0 = \rho(\mathcal{FV}^{-1}) = \sqrt[\rho(\cdot)]{\frac{\beta_1}{\mu_1 + \gamma_1 + p_1}}, \quad (7)
$$

where $\rho(\cdot)$ is the spectral radius of the matrix $\mathcal{FV}^{-1}$.

2.3. Effective reproduction number $R_t$

Characterizing the infectivity of a pathogen through a population during an epidemic is important in terms of developing interventions. The basic reproduction number, $R_0$, which is the average number of secondary infections per infective, is used for this purpose. While $R_0$ is time and situation specific, $R_0 > 1$ implies an epidemic and the magnitude of $R_0$ is an indication of the transmissivity of the disease [27]. In the initial stages of an epidemic such as the COVID-19, however, the information that can be gleaned from $R_0$ decreases in time as its time-dependent version, the effective reproduction number, $R_t$, is more effective.
in reflecting the compliance with the non-pharmaceutical interventions and takes the changing number of susceptibles into account. Monitoring the $R_t$, therefore is more informative for managing an epidemic and for developing strategies for intervention. Estimating $R_t$ is a complicated statistical process and there are several commonly used methods to do so \cite{28, 52, 53, 31, 27}. The two most popular methods are those of Cori et al. and Bettencourt and Ribiero \cite{27, 28}. In \cite{29}, Gostic et al. caution against Bettencourt and Ribiero’s method as it requires structural assumptions about the epidemic and tends to underestimate the $R_t$ values and recommend Cori et al.’s method \cite{27}.

In our model, we incorporated the daily $R_t$ values in order to account for the crowd behavior, such as using face coverings, social distancing or sheltering in place. Although this is not very common in mathematical models of epidemiology, Buckman et al \cite{31}, Kiamari et al \cite{32} and Linka et al \cite{33} utilize the effective reproduction number $R_t$ in their compartmental SIR models as

$$\beta(t) = R_t \gamma,$$  \hspace{1cm} (8)

where $\beta$ is the contact rate and $1/\gamma$ is the infectious period. \cite{31, 33}.

Our calculation for the basic reproduction number $R_0$ reveals a relationship between $R_0$ and $\beta_1, \mu_1, p_1, \gamma_1$ as given in Eq. \cite{7}, which allows us to write the transmission rate $\beta_1$ in a time-dependent manner as $\beta_1(t)$, in terms of $R_t$ and the other parameters. We have experimentally found a linear relationship between the transmission rate $\beta_1(t)$ and $R_t^2 (\mu_1 + \gamma_1 + p_1)$, which we obtain from Eq. \cite{7}, with the best fitting scalar being 1.29.

$$\beta_1 = R_t^2 (\mu_1 + \gamma_1 + p_1) 1.29.$$  \hspace{1cm} (9)

Because quarantine ceased to exist in Turkey on May 31, 2020 \cite{35}, we let $\beta_1(t)$ be updated daily henceforth based on our estimate of $R_t$ values. In other words, between June 1, 2020 and January 3, 2021 our model has a time-dependent transmission parameter. Note that, even though parameters were fit only using the data before June 1, 2020, simulation results agree very well with the data until January 2, 2021, end of the simulation (see Fig. \cite{2}).
We use the R package EpiEstim, written by Cori et al. [27] to estimate the daily $R_t$ values, based on a mean serial interval of 7 and standard deviation of 3.5 days. The estimate takes daily new case numbers as inputs, in addition to the mean and standard deviation of serial interval. The plot of $R_t$ values and the time-dependent $\beta_1(t)$ can be seen in Fig. 1.

Figure 1: Contact rate $\beta_1(t)$ and effective reproduction number $R_t$ computed from the data on June 1st - January 3rd.

After solving the model (1) from March 11th to May 31st, we continue to simulate the model (10) from June 1st to January 13th with time-dependent
Contact rate $\beta_1$ as

\[
\frac{dS}{dt} = -\beta_1(t) \frac{SI_1}{N}, \tag{10a}
\]
\[
\frac{dE}{dt} = \beta_1(t) \frac{SI_1}{N} - p_0 E, \tag{10b}
\]
\[
\frac{dI_1}{dt} = p_0 E - (\mu_1 + \gamma_1 + p_1) I_1, \tag{10c}
\]
\[
\frac{dI_2}{dt} = p_1 I_1 - (\mu_2 + \gamma_2 + p_2) I_2, \tag{10d}
\]
\[
\frac{dI_3}{dt} = p_2 I_2 - (\mu_3 + \gamma_3) I_3, \tag{10e}
\]
\[
\frac{dR}{dt} = \gamma_1 I_1 + \gamma_2 I_2 + \gamma_3 I_3, \tag{10f}
\]
\[
S(0) = S_0^*, E(0) = E_0^*, I_1(0) = I_{1,0}, I_2(0) = I_{2,0}, I_3(0) = I_{3,0}, R(0) = R_0^*, \tag{10g}
\]

where the initial conditions $E_0^*, I_{1,0}^*, I_{2,0}^*, I_{3,0}^*, R_0^*$ are the values of those variables on May 31st, 2020 obtained from the model \(^1\). In addition, we fix the quarantine rate as $c = 0$ and the initial number of susceptible individuals on June 1st, 2020 approximately as $S_0^* = 60.000.000$, since quarantine restrictions were reorganized and public places were reopened on June 1st, 2020 \(^{35}\).

Allowing the transmission rate depend on $R_t$ makes the model able to capture the change in regulations and social behaviors, which standard SEIR models would not be able to. The daily incidence, simulated by the model with time-dependent $\beta_1(t)$ is presented in Fig. 2.

We have shown that when the transmission rate depends on the effective reproduction number, the model fits to observed data better than if constant transmission rate is used. In order to predict the future of the epidemic, we consider three scenarios for how $R_t$ could perform, namely: 1) $R_t$ has an exponential increase of 0.5%, daily; 2) $R_t$ acts a sawtooth function where it increases at a daily rate of 0.5% for 60 days and decreases at the same rate for 30 days; 3) $R_t$ behaves like a sine function, accounting for seasonal changes. Each of the three scenarios are run for 6 months after January 3rd, 2021 which marks the end of our $R_t$ calculations from data. The comparison of three $R_t$ time series and the simulations for the 3 scenarios for $R_t$ are presented below in Fig. 3.
Figure 2: The incidence as simulated by the model with time-dependent transmission rate.

Figure 3: The 3 $R_t$ scenarios.
Figure 4: The daily incidence predictions under the three $R_t$ scenarios.

Although there are sizeable differences in the daily incidence numbers under the three $R_t$ scenarios (see Fig. 4), we have found comparable behavior for all $R_t$ scenarios in terms of the final wave of infections and their severity on the ICU and ventilator capacity. It is certain that as long as $R_t$ is allowed to remain mostly above 1, the healthcare system will be overwhelmed in the next wave of infections as shown in Fig. 5.

3. Simulation results

In this section, we begin with the results obtained from data fitting and global sensitivity analysis, then proceed with the effects of underreporting of cases, vaccination strategies. We numerically solve the model (1) from March 11, 2020 to May 31, 2020 and fit the data [34]. The first symptomatic Corona case was tested positive on March 11, 2020; while the first death was recorded in March 17, 2020. The patients at ICU and ventilated individuals were reported first on March 27, 2020 [34]. While applying data fitting for the parameters in the model together with the initial conditions $E_0, I_{1,0}, I_{2,0}$ and $I_{3,0}$, we set $S_0 = 80.000.000$ as Turkey’s population is about 83.000.000 [54] and we find the following fitted initial conditions, which are strikingly different than the
Figure 5: Simulation results for daily incidence, ICU and entubation under sawtooth function for $R_t$, after January 3rd, 2021.

reported data.

\[ E_0 = 690, \quad I_{1,0} = 500, \quad I_{2,0} = 10, \quad I_{3,0} = 8. \]

After inserting these initial conditions into the model, we find the values given in the Table 1 by data-fitting using `fminsearchbnd` function in MATLAB [55].

**Remark 1.** With the parameter values in Table 1, the basic reproduction number in the Eq. (7) is calculated as $R_0 = 3.477$.

We present the simulation results for Corona cases, deaths and patients in ICUs and ventilated patients in Fig. 6 together with the reported data. We can see that data-fitting with four different classes gives good results and our model is capable of capturing the evolution of the disease in Turkey.
Table 1: Values of the parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value (day$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma_1$</td>
<td>Recovery rate for $I_1$</td>
<td>0.0577075</td>
</tr>
<tr>
<td>$\gamma_2$</td>
<td>Recovery rate for $I_2$</td>
<td>0.161953</td>
</tr>
<tr>
<td>$\gamma_3$</td>
<td>Recovery rate for $I_3$</td>
<td>0.235026</td>
</tr>
<tr>
<td>$p_1$</td>
<td>Rate of progression from $I_1$ to $I_2$</td>
<td>0.0167814</td>
</tr>
<tr>
<td>$p_2$</td>
<td>Rate of progression from $I_2$ to $I_3$</td>
<td>0.152005</td>
</tr>
<tr>
<td>$\mu_1$</td>
<td>Death rate for $I_1$</td>
<td>0.00204243</td>
</tr>
<tr>
<td>$\mu_2$</td>
<td>Death rate for $I_2$</td>
<td>0.000221077</td>
</tr>
<tr>
<td>$\mu_3$</td>
<td>Death rate for $I_3$</td>
<td>0.0372249</td>
</tr>
<tr>
<td>$\beta_1$</td>
<td>Contact rate</td>
<td>0.925267</td>
</tr>
<tr>
<td>$p_0$</td>
<td>Rate of progression from $E$ to $I_1$</td>
<td>0.0745585</td>
</tr>
<tr>
<td>$c$</td>
<td>Quarantine rate for $S$</td>
<td>0.295307</td>
</tr>
</tbody>
</table>

Figure 6: Model prediction versus data with fitted results.

(a) Cases.

(b) Deaths.

(c) $I_2(t)$.

(d) $I_3(t)$. 
3.1. Global sensitivity analysis via PRCC

We investigate the sensitivities of the compartments $I_2(t)$ and $I_3(t)$ to changes in the values of the parameters in the model (1) at days around the peak of the first wave (i.e. days 23, 33, 35 and 40). In order to do that, we perform global sensitivity analysis via the partial rank correlation coefficient (PRCC) \([56]\) where it measures the influence of each parameter to a prespecified model variable. We choose those time points to catch the sensitivity around the peak. Indeed, PRCC assigns a value between -1 and +1 to each relationship and the magnitude of this quantity determines the strength whereas the sign reveals the trend of the relationship between the parameter and the variable.

To perform global sensitivity analysis, we construct a uniformly distributed sample space for each parameter with 1000 sample values. The intervals for each parameter are chosen starting from half to twice the baseline parameter. For each time point, we depict the results in Fig. 7 where the sensitivities for the compartments $I_2(t)$ and $I_3(t)$ are given. Both of the compartments $I_2(t)$ and $I_3(t)$ are sensitive to the contact rate $\beta_1$ and the inverse incubation period $p_0$ positively, while there is an inverse relation between the sizes of these compartments and the quarantine rate $c$. In other words, as both $\beta_1$ and $p_0$ increase, the number of patients staying at ICU and ventilated patients will increase. However, increasing the quarantine rate leads the compartments of ICU and ventilated patients to decrease in size. Thus, $\beta_1$ and $p_0$ are the most influential parameters to ICU capacity and ventilated patients. Indeed, we can deduce that if the number of severe cases increases, then it will eventually lead to an increase in the number of ICU patients and ventilated patients. Moreover, if health condition of patients staying in ICU does not decline, then the number of ventilated patients will not increase, since sensitivities of $I_2$ and $I_3$ with respect to $p_1$ and $p_2$ are negative and positive, respectively. Therefore, we can deduce from the sensitivity analysis that it is very critical to cure the patients before their health conditions deteriorate.
3.2. Influence of underreporting

Due to the significant portion of all infections being asymptomatic and the insufficient testing capacity early in the pandemic, the number of cases of COVID-19 are severely underreported. CDC states that 6.7 in 7.7 symptomatic cases are unreported [57]. This number is expected to be higher for asymptomatic cases. Thus, underreporting is a concern from a public health perspective and it is important to understand its impact on the effective reproduction number, as well as the peaks of each wave in the epidemic. We have tested the effects of different underreporting rates on the incidences and have found that the peaks of the disease differ significantly depending on the rate of underreporting, as presented in Fig. 8 however, the timing of the peaks remains constant with or without underreporting. The effective reproduction numbers between the case counts with varying rates of underreporting do not
differ significantly, also, as shown in Fig. 9. Since the number of people infected by a single infective is not influenced by the number of underreported cases, the difference in $R_t$ values calculated with and without underreporting is negligible.

![Incidence rate graphs](a) 10% reporting.  
(b) 20% reporting.  
(c) 50% reporting.

Figure 8: Effect of under-reporting to incidence rate.

3.3. Influence of vaccination

We incorporate the effective reproduction number $R_t$ to compute the time-dependent contact rate $\beta_1(t)$ between June 1, 2020 - January 3, 2021, as mentioned before. We continue to simulate the model with the constant transmission rate $\beta_1^*$ from January 4, 2021 to January 13, 2021 where $\beta_1^* = 0.0502$ is the value of $\beta_1(t)$ computed from $R_t$ associated with the data on January 3, 2021. With the start of the vaccination program with Sinovac’s vaccine on
January 13, 2021 in Turkey \cite{36}, we construct the extended model \cite{[11]} with the vaccinated compartment as follows:

\begin{align}
\frac{dS}{dt} &= -\beta_1^* \frac{SI_1}{N} - \omega S, \\
\frac{dV}{dt} &= \omega S - q\beta_1^* \frac{VI_1}{N}, \\
\frac{dE}{dt} &= q\beta_1^* \frac{VI_1}{N} + \beta_1^* \frac{SI_1}{N} - p_0 E, \\
\frac{dI_1}{dt} &= p_0 E - (\mu_1 + \gamma_1 + p_1) I_1, \\
\frac{dI_2}{dt} &= p_1 I_1 - (\mu_2 + \gamma_2 + p_2) I_2, \\
\frac{dI_3}{dt} &= p_2 I_2 - (\mu_3 + \gamma_3) I_3, \\
\frac{dR}{dt} &= \gamma_1 I_1 + \gamma_2 I_2 + \gamma_3 I_3, \\
S(0) &= S_0^*, V(0) = V_0, E(0) = E_0^*, I_1(0) = I_{1,0}^*, I_2(0) = I_{2,0}^*, I_3(0) = I_{3,0}^*, R(0) = R_0^*,
\end{align}

Figure 9: Comparison of $R_t$ estimates with and without underreporting.

where $\omega$ is the rate at which susceptible individuals are vaccinated and $q$ is the reduction of infectiousness computed from efficacy of the vaccine. Initial conditions are the values of variables obtained from the solutions of the model \cite{[11]} on January 13, 2021 with the contact rate of $\beta_1^*$ and $c = 0$. Values of the other
parameters are the same as in Table 1, where $\omega$ and $q$ are changed to represent different vaccination rates and vaccine types.

We present the simulation results for deaths, daily cases and cumulative number of cases with and without vaccination from March 11, 2020 to September 13th, 2021 in Fig. 10. We fix the vaccination rate as $\omega = 0.001$, which means that approximately 0.1% of the susceptible compartment is vaccinated per day, that is, approximately 60,000 individuals are vaccinated per day. Moreover, we observe the contribution of vaccination for eight months. In Fig. 10 on the left panel, the results are presented for vaccines which are 95% effective against SARS-CoV-2 such as BNT162b2 (produced by Pfizer and BioNTech [58]) and mRNA-1273 (produced by Moderna [59]). On the right panel, results are presented for a vaccine showing an average 70% efficacy such as AZD1222 vaccine (produced by Astrazeneca and researchers from University of Oxford) [60]. We note that Sinovac’s vaccine was reported as approximately 91.25% effective in Turkey whereas it is 78% effective to mild to severe cases in Brazil; but its efficacy is calculated about 50% when applied to health workers in Brazil [61]. We present the results for $q = 0.3$ and $q = 0.05$ which correspond to 70% and 95% efficacies, respectively, since this range includes that of Sinovac’s vaccine.

We immediately observe from Fig. 10 that vaccination leads to a decrease in the number of deaths, daily cases and the cumulative number of cases. When we compare the left and right panels, we can see the contribution of vaccine. Even though the difference between the curves associated with vaccinated and unvaccinated cases is quite small, our model predicts that a vaccine with 95% efficacy is more successful than a vaccine with 30% efficacy, as expected. Therefore, we can say that vaccine’s efficacy is neglectable if vaccination rate and transmission rate are quite small.

We depict the results for Corona deaths, daily cases and cumulative number of cases with and without vaccination by fixing the efficacy as $q = 0.05$ and using three different vaccination rates of $\omega$ as 0.01 (the left panel), 0.1 (the middle panel) and 0.9 (the right panel) in Fig. 11. As we increase the vaccination rate,
curves associated with the number of deaths and Corona cases decrease faster whereas cumulative number of cases reaches to a smaller steady-state value. We conclude that vaccination rate is quite critical to eliminate the disease fast.

4. Summary and conclusion

Compartmental models are widely used in modeling epidemics and although they are very informative about the general behavior of the disease, they fail to capture the effects of non-pharmaceutical interventions or changes in crowd behavior. One way to mitigate this problem is to use time-dependent parameters. In this paper, we propose incorporating the effective reproduction number as a proxy for crowd behavior in terms of adhering to the changing interventions. The most natural way to include the effective reproduction number is by describing the transmission parameter $\beta$ as a function of $R_t$. Even though the parameters are estimated using 82 days of data, the model is capable of adjusting to the changes in the outbreak. In other words, our model provides an accurate and consistent fit to the observed case counts, including the multiple waves of infection and thus, enables us to experiment with the effects of vaccination in a reliable way. We have found that underreporting, which is a salient property of COVID-19 specifically, does not change the time of the peaks of each wave, but only the maximum incidence. On the other hand, we observe that rate of vaccination of susceptible individuals is a critical parameter to eliminate the disease even if a vaccine with a small efficacy like 70% is used.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Figure 10: Simulation results w/o vaccination with $\omega = 0.001$ and different values of $q$. 

(a) Deaths with $q = 0.05$. 
(b) Deaths with $q = 0.3$. 
(c) Cases with $q = 0.05$. 
(d) Cases with $q = 0.3$. 
(e) Total cases with $q = 0.05$. 
(f) Total cases with $q = 0.3$. 

All rights reserved. No reuse allowed without permission.
(a) Deaths with $\omega = 0.01$.

(b) Deaths with $\omega = 0.1$.

(c) Deaths with $\omega = 0.9$.

(d) Cases with $\omega = 0.01$.

(e) Cases with $\omega = 0.1$.

(f) Cases with $\omega = 0.9$.

(g) Total cases with $\omega = 0.01$.

(h) Total cases with $\omega = 0.1$.

(i) Total cases with $\omega = 0.9$.

Figure 11: Simulation results w/wo vaccination with $q = 0.05$ and different values of $\omega$. 
References


into account the undetected infections, the case of China, Communications in nonlinear science and numerical simulation 88 (2020) 105303. doi:10.1016/j.cnsns.2020.105303


[43] İrem Köker, Koronavirüs: Solumum cihazı nedir, Türkiye’de kaç


[57] Centers for Disease Control, Estimated COVID-19 infections, symptomatic illnesses, and hospitalizations—United States,

[59] E. Mahase, Covid-19: Moderna vaccine is nearly 95% effective, trial involving high risk and elderly people shows, BMJ: British Medical Journal (Online) 371 (2020). doi:10.1136/bmj.m4471
