Can a COVID-19 vaccination program guarantee the return to a pre-pandemic lifestyle?

Juan Yang1,*, Valentina Marziano2,*, Xiaowei Deng1, Giorgio Guzzetta2, Juanjuan Zhang1, Filippo Trentini2, Jun Cai1, Piero Poletti2, Wen Zheng1, Wei Wang1, Qianhui Wu1, Zeyao Zhao1, Kaige Dong1, Guangjie Zhong1, Cécile Viboud3, Stefano Merler2,†, Marco Ajelli4,5,†, Hongjie Yu1,6,7,†

1. School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
2. Bruno Kessler Foundation, Trento, Italy
3. Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
4. Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA
5. Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston, MA, USA
6. Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
7. Department of infectious diseases, Huashan Hospital, Fudan University Shanghai, China

*These authors contributed equally to this work.
†These authors are joint senior authors contributed equally to this work.

Corresponding authors: Marco Ajelli, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, 47405 Bloomington, IN, USA; E-mail: marco.ajelli@gmail.com, and Hongjie Yu, Fudan University, School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China; E-mail: yhj@fudan.edu.cn

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

COVID-19 vaccination has been initiated in several countries to control SARS-CoV-2 transmission. Whether and when non-pharmaceutical interventions (NPIs) can be lifted as vaccination builds up remains key questions. To address them, we built a data-driven SARS-CoV-2 transmission model for China. We estimated that, to prevent local outbreaks to escalate to major widespread epidemics, stringent NPIs need to remain in place at least one year after the start of vaccination. Should NPIs be capable to keep the reproduction number (Rt) around 1.3, vaccination could reduce up to 99% of COVID-19 burden and bring Rt below the epidemic threshold in 9 months.

Maintaining strict NPIs throughout 2021 is of paramount importance to reduce COVID-19 burden while vaccines are distributed, especially in large populations with little natural immunity.
The novel coronavirus disease 2019 (COVID-19) pandemic is far from over with cases still surging in many countries across the globe (1). In 2020, epidemic suppression and/or mitigation have relied on non-pharmaceutical interventions (NPIs), including social distancing, school closure, masking, and case isolation. Although effective and widely adopted to limit SARS-CoV-2 transmission and reduce COVID-19 burden, these interventions entail enormous economic costs and negatively affect quality of life (2). Additionally, in many countries, relaxation of NPIs has led to a resurgence of the epidemic as no location has reached herd immunity thus far (3) – even in Manaus, Brazil where it is estimated that over >70% of the population has been naturally infected, the epidemic is seemingly not over (4).

Effective vaccines against COVID-19 remain the only foreseeable means of both containing the infection and returning to pre-pandemic social and economic activity patterns. Globally, several vaccines have been licensed, and vaccination programs have been initiated in several countries including China (5). However, in the near future, the projected global production and delivery capacities are likely to be inadequate to provide COVID-19 vaccines to all individuals who are still susceptible to SARS-CoV-2 infection (3). The effectiveness of COVID-19 vaccination campaigns will depend on several factors, including vaccine supply, willingness to receive the vaccine, and strategies for vaccine allocation and deployment (6). In particular, estimating whether and when NPIs can be lifted while vaccination campaigns are ongoing is a top priority for policy making. Moreover, optimal strategies for vaccine allocation in a shifting landscape of infections are urgently needed as well.

In this study, we aim to address these questions by using China as a case study. To do so, we build an age-structured stochastic model to simulate SARS-CoV-2 transmission in mainland China, based on a susceptible-infectious-removed (SIR) scheme (Fig. S1). We account for heterogeneous mixing patterns by age (7) and progressive vaccine deployment among different population segments based on a broadly accepted priority scheme (essential workers, older adults and individuals with...
underlying conditions, etc.). Further, we overlay a disease burden model on the transmission model to estimate the number of symptomatic cases, hospitalizations, ICU admissions, and deaths under different vaccination scenarios and based on empirical data (8-13). The resulting model is informed by data on COVID-19 natural history, age-mixing patterns specific to China in the pandemic period, and the size of the different vaccination targets in the Chinese population (e.g., individuals with pre-existing conditions). We also leverage data on the Chinese healthcare system to estimate vaccine administration capacity. A summary of model parameters and data sources is presented in Table 1. Model details are described in Supplementary Materials 1.

We considered a baseline reactive vaccination scenario where: 1) vaccination starts 15 days after an outbreak triggered by 40 breakthrough imported COVID-19 infections; 2) vaccine efficacy (VE) against SARS-CoV-2 infections for a two-dose schedule is set at 80%; 3) vaccination coverage is capped at 70%; 4) 6 million doses are administered daily (4 per 1,000 individuals; twice the capacity estimated for the 2009 H1N1 influenza pandemic vaccination campaign); 5) the first priority target consists of older adults and individuals with underlying conditions (descriptions in details shown in Table S1); 6) there is no prior population immunity from natural infection, which aligns with the situation in most of China where there has been little circulation of SARS-CoV-2 in 2020 (3); 7) we assume an initial effective reproductive number \(R_t \) =2.5 homogeneous across age groups at the start of the outbreak, in the absence of NPI and vaccination; and 8) we let the model run for two years.

In the absence of NPIs, the vaccination program is too slow to lower and delay the epidemic (Fig. 1A) and does not effectively reduce COVID-19 burden. \(R_t \) falls below the epidemic threshold (<1) 69 days after the epidemic start (Fig. 1B), but this is primarily attributable to immunity gained through natural infection rather than vaccination. Indeed, in this time frame, 52.2% of population gets infected, while only 6.7% of population has been vaccinated (Fig. 1C). The cumulative disease burden of
COVID-19 over a 2-year period only decreases by 3.3%-6.7% compared to a reference scenario where there is no vaccination and no NPIs, leading to 306.73 million (95%CI, 282.68-320.60) symptomatic cases, 99.25 million (92.55-104.51) hospitalizations, 7.19 million (6.00-7.83) ICU admissions, and 9.38 million (7.70-10.26) deaths (Fig. 2).

Provided that NPIs are in place and can keep Rt at 1.3 in the absence of vaccination (moderate NPIs scenario), initiating a vaccination program could reduce the COVID-19 burden by about 99% compared to the reference no-vaccination scenario, with 5.46 million (2.47-13.36) symptomatic cases, 1.77 million (0.83-4.40) hospitalizations, 73,500 (7,300-152,100) ICU admissions, and 76,700 (8,200-165,700) deaths (Fig. 2). In this context, vaccination decreases the COVID-19 burden by about 40% (Fig. 2) compared to a situation with moderate NPI alone, and Rt falls below the epidemic threshold about 9 months after the epidemic start (Fig. 1). At the time that Rt falls below 1, we estimate that 50.8% of the total population would have been vaccinated, while 0.8% would have been naturally infected (Fig. 1G-I). This scenario also suggests that NPI should be maintained for one year after the onset of vaccination. For instance, if NPIs are relaxed 9 months into the vaccination program, allowing a 25% increase in SARS-CoV-2 transmissibility, the cumulative death toll could increase by three folds from 76,700 to 318,300. In contrast, there is a small increase in cumulative deaths to 93,500 if NPIs are relaxed one year after vaccination (Fig. S2-S3). Earlier or more drastic relaxations of NPIs lead to substantial increases in deaths (Fig S2-S3).

A combination of more stringent NPIs (i.e., capable of keeping Rt =1.1) and vaccination (vax + high NPIs scenario) could suppress the epidemic, with <2,300 symptomatic cases, and <50 deaths on average. Although the majority of the reduction of COVID-19 burden is ascribable to NPIs in this case (over 85%), the deaths averted due to vaccination are about 1.2 million (Fig. 1J-L, and Fig. 2).

If we consider a set of mild NPIs (vax + mild NPIs scenario), even a relatively low
initial reproduction number under NPIs of \(R_t = 1.5 \) could still lead to a disastrous epidemic, with nearly two million deaths. Despite the high death toll of the resulting epidemic, NPIs and vaccination would jointly reduce around 80% of the disease burden compared to a non-NPI non-vaccination scenario (namely, 239 million symptomatic cases and 8.2 million deaths averted) (Fig. 1D-F, and Fig. 2).

Impact of vaccine distribution capacity

Should the daily vaccination rollout be limited to 1.3 million doses (1 per 1,000 individuals, a slower rate than during the 2009 pandemic), vaccination would not effectively reduce COVID-19 related deaths unless there was adoption of stringent NPIs. In an optimistic scenario where vaccination capacity reaches 10 million doses administered per day (7 per 1,000 individuals), vaccination would reduce COVID-19 related deaths to <5,000 for moderate NPIs and <30 for high NPIs. Should the daily vaccination capacity be increased to 15 million doses (10 per 1,000 individuals – nearly five times the capacity estimated in 2009 H1N1 influenza pandemic vaccination), vaccination could effectively reduce deaths to <100,000 (similar to the annual influenza-related death toll in China \((14)\)) even in the presence of mild NPIs. However, even if the daily vaccination capacity could be increased to 30 million doses (20 per 1,000 individuals), in the absence of NPIs, we estimate that over 7.7 million deaths would still occur, with about 40% of population naturally infected in the considered time horizon (Fig. 3 and Fig. S4-S7). Similar patterns are estimated for the number of symptomatic cases, hospitalizations and ICU admissions (Fig. S8-S10).

Increasing daily vaccination capacity could largely shorten the time needed to control SARS-CoV-2 transmission. For instance, when considering a daily capacity of 10 million and 15 million doses and moderate NPIs, \(R_t \) would drop below 1 about 8 and 6 months respectively after epidemic onset (to be compared to the 9.3 months estimated with the baseline capacity of 6 million doses). At that time, over 60% of the population would be vaccinated and \(\leq 0.1\% \) would be naturally infected. (Fig. S6).
Vaccination prioritization

We consider alternative vaccination scenarios that prioritize essential workers (staff in the healthcare, law enforcement, security, community services, and individuals employed in cold chain, etc.) to maintain essential services and then explore different prioritization strategies for the rest of the population. Our results suggest that the relative timing of the epidemic and of the vaccination rollout play a key role in determining the most effective strategy. In particular if we consider vaccination to start at about the same time as an outbreak (ie, two weeks after 40 cases are detected – as in the other analyses presented in the main text), there is no clear prioritization strategy that minimize deaths, as the outcome of the vaccination campaign heavily depends on the timing at which the epidemic unfolds (Fig. 4 and Fig. S11-S12).

Instead, if the epidemic is already underway when the vaccination campaign starts (>5,000 cases), prioritizing working-age groups minimizes the number of deaths when R ≤ 1.3. In contrast, prioritizing older adults and individuals with underlying conditions is more effective when R ≥ 1.5 (direct benefits are higher, Fig. 4 and Fig. S11-S12). Two results are independent of the adopted prioritization strategy: i) if R ≥ 1.5, then an epidemic cannot be avoided; and ii) when R = 1.1, over 99% of deaths can be averted (Fig. S11-S12).

Alternative vaccination parameters and scenarios

To evaluate the impact of baseline assumptions on our results, we conduct comprehensive sensitivity analyses (SE) for Rₜ fixed to 1.3 (moderate NPIs). Provided that vaccination can only protect against illness (SE18) but not SARS-CoV-2 infections, COVID-19 related deaths increase by 33 folds with respect to the baseline: from 76,700 to 2.66 million. Assuming a shorter duration of vaccine-induced protection of 6 months (SE16) instead of a lifelong protection (i.e., longer than the 2-year time horizon considered, Fig. 5 and Fig. S13) has a similarly large effect on projections (S13).

Other factors such as vaccine coverage (SE8 and SE9), excluding detected
symptomatic cases from vaccination (SE10 and SE11), the time interval between two doses (SE12), and assuming an all-or-nothing vaccine (SE19), do not substantially affect estimates of deaths (Fig. 5) and symptomatic infections (Fig. S14-S15). A similar trend is observed for hospitalized cases and ICU admissions (Fig. S16-S19).

Discussion

Using a stochastic dynamic model of SARS-CoV-2 transmission in combination with a COVID-19 burden model, we estimate the impact of a COVID-19 vaccination program in the absence or presence of NPIs on SARS-CoV-2 infections, symptomatic cases, hospitalizations, ICU admissions, and deaths in China. We find that in the absence of NPIs, and independently of the vaccine prioritization strategy and capacity of the vaccination campaign, timely rollout of an effective vaccine (VE =80%) would not be enough to prevent a local outbreak to escalate to a major widespread epidemic. Provided that NPIs are in place and capable to bring R_t to 1.3, a daily vaccine rollout of 4 doses per 1,000 individuals could reduce around 99% of COVID-19 burden, and bring R_t below the epidemic threshold about 9 months after the start of the vaccination campaign. A relaxation of NPIs that bring the value of R_t to 1.5 could not prevent sustained epidemic growth which would cause 1.8 million deaths. A net reproduction number of 1.5 could only be sustained when accompanied by an improvement of the vaccine administration capacity up to 10 doses per 1,000 individuals per day. Relaxation of NPIs in the first 6-9 months of vaccine roll out could lead to substantial increases of COVID-19 burden.

A previous study has qualitatively discussed the segments of the population to be prioritized in a COVID-19 vaccination program in China on the basis of ethics as well as utilitarian and egalitarian principles (15). Our study quantitatively compares the health impacts of potential alternative vaccination strategies by varying priority ranking for target populations. Should mild/no NPIs be in place ($R_c\geq 1.3$), we estimate that a strategy that maintains essential workers and then prioritizes older adults and individuals with underlying conditions could be most effective at preventing deaths if
the epidemic was well underway at the time the vaccination campaign started. In contrast, strategies aimed at targeting the segment of the population mostly contributing to transmission (e.g., working-age individuals) are estimated to prevent a larger number of deaths when moderate/high NPIs are sustained ($R_t \leq 1.3$). If the epidemic is left fully uncontrolled ($R_t = 2.5$), no vaccination strategy can reduce the COVID-19 burden (reduction <7%), independently of prioritization choices.

Bubar K, et al. evaluated COVID-19 vaccine prioritization strategies and found that prioritizing older adults is a robust strategy to minimize deaths across countries (including China) when $R_t = 1.5$, while prioritization shifted to 20-49 years group when $R_t = 1.15$ in China (16). The broad scope of this multi-country analysis does not account for features of COVID-19 epidemiology and vaccination program that are unique to China. In particular, differently from most countries where SARS-CoV-2 is widespread, several rounds of lockdowns have already been required, and natural immunity is building up, China has been able to suppress SARS-CoV-2 transmission for most of 2020. As a result, prior immunity is very low, thus calling for specifically tailored analysis.

We rely on the integration of more realistic data specific for China. We account for enhanced vaccine administration capacity (increase from 1.4 million doses/day in routine vaccination to 6 million doses in COVID-19 vaccination campaigns). Our analysis is informed by the ongoing COVID-19 vaccination program in Beijing (17), estimates of vaccine supply till 2021(18), vaccination schedule, vaccine efficacy, and key segments of the population. Our finding confirms that if NPIs can maintain transmission rates at low levels during the vaccination campaign, strategies that target indirect benefits do better. If transmission rates remain high, strategies maximizing direct benefits will perform best. Given that China is doing so well in clamping down transmission by enforcing strict NPIs, vaccinating working age adults may generally be a better option. In most other countries, however, vaccinating older adults would be expected to save more lives (16). Moreover, our study sheds light on the extent to
which NPIs can be relaxed while the vaccination campaign is underway, and on the timing when it becomes safe to do so.

Our study shows that in the absence of NPIs to slow down the epidemic, an outbreak triggered by 40 breakthrough COVID-19 cases in China could grow up rapidly to an epidemic with half of all populations infected within less than 3 months, even if a vaccination program could administer 6 million doses each day. Provided that R_t is kept at 1.3 by NPIs, a vaccination program with ≥ 6 million daily doses administered could have substantial benefits, lowering the cumulative death toll of a COVID-19 epidemic over a 2 year period below that of an annual seasonal influenza epidemic (88,100) (I4). This highlights that, although in the long-term vaccination can ultimately lead to the suppression of COVID-19, it is necessary to maintain the NPIs currently in place, such as social distancing, contact tracing and quarantine measures, for at least the duration of the vaccine rollout in 2021.

As highlighted in vaccination studies in the UK and Australia (I9-21), in the race between the vaccination campaign to build population herd-immunity and the progress of the epidemic, the speed of vaccine deployment is critical. In the routine National Immunization Program, an average of 1.4 million doses are administered in China per day (22, 23), while during the 2009 influenza pandemic a maximum of 3 million daily doses were administered (24). Considering that the willingness to be vaccinated against COVID-19 is higher than that for the 2009 influenza pandemic (25), and that the vaccine distribution capacity is likely to be improved as well (e.g., 3-5 folds increase in current COVID-19 vaccination campaign in Beijing (17)), we consider the capacity of COVID-19 vaccination services could be scaled up to 6 million doses administered per day in the baseline analysis. Several manufacturers state that a total of 2.1 billion doses of COVID-19 vaccine could be produced in 2021, equivalent to about 6 million doses per day, which could be enough to cover 75% of the Chinese population (I8). Even if these candidate vaccines could be licensed and manufactured smoothly, it would take about one year to vaccinate 70% of the general
population, based on an optimistic vaccine delivery rate that is two-folds the maximum rate at which H1N1pdm vaccines were delivered in 2009 (24).

In addition, limited vaccine production capacity, particularly at the initial stage, could slow the speed of vaccine rollout. In December 2020, Chinese media reported that the government planned to administer 100 million doses for emergency use by February 15, 2021 (26), with an average of less than 2 million doses per day. Slower rates of vaccine production and administration may result in a longer period of COVID-19 transmission. It is thus crucial to keep monitoring local outbreaks and invest resources in outbreak management in order to keep R_t close to the epidemic threshold (or, at most, not to exceed 1.3) at least for the next 1-2 year. Moreover, the development of detailed logistical plans and tools to support an increased vaccination capacity as well as effective logistic (vaccine transport, storage, and continuous cold-chain monitoring) are key factors for a successful mass vaccination campaign.

We performed extensive sensitivity analyses for many of our parameters and found that the outcome of a prioritized vaccination campaign is rather stable to alternative values of vaccine effectiveness, vaccine schedule, and coverage. However, should the vaccine be protective only against symptomatic illness (instead of reducing the susceptibility to SARS-CoV-2 infection), maintaining stringent NPIs measures in place for a prolonged time horizon would be necessary as such vaccine would not be effective to suppress transmission (as reported in previous studies (27)).

In our main analysis, we assume that only susceptible individuals are eligible for vaccination in order to estimate the maximum benefit of vaccination. We acknowledge that identifying susceptible individuals could be challenging and resource consuming. The results of a sensitivity analysis on the impact of vaccination when only detected (PCR positive) cases are excluded are consistent with those of the main analysis, providing support to the proposed prioritized vaccination strategy. The net benefits deriving from the implementation of serological tests to identify
susceptible individuals should be explored through further cost-effectiveness studies.

Our study has a number of limitations. First, we integrated the impact of NPIs through a simple reduction in the value of R_t at the beginning of the outbreak, homogeneously across age groups. However, our analysis does not suggest which combination of NPIs should be adopted to lower R_t to a certain level, and how this would affect transmission rates in different age groups. Li, et al, estimated that individual NPIs, including school closure, workplace closure, and public events bans, were associated with reductions in R_t of 13–24% on day 28 after their introduction (28). Further studies are needed to pinpoint the specific NPIs to be adopted in parallel with the vaccination campaign. Second, our study uses a static allocation strategy, which means a constant coverage is assumed for all subgroups, and vaccination starts from one group and remains in the group until target coverage achieved, and then moves to the next group in sequence. Such allocation process may not generate the maximum health benefit for a vaccination program (29). Further studies could be designed to identify the optimal dynamic allocation strategy (e.g., different coverage required in subgroups, where vaccination could start from one group, move to the next and then return) to minimize COVID-19 burden, especially in the context of limited doses.

Third, in China, vaccines have not been licensed for older adults and children, so we assume a 50% lower or equivalent VE for them compared to other adults. Although we show that variations in these rates do not substantially affect the overall effect of the vaccination campaign, further data on age-specific vaccine efficacy could help refine priority groups. Fourth, we assumed that immunity after natural infections lasts more than the time horizon considered (two years). If this is not the case, waning of immunity would inflate the rate of susceptible individuals and thus require booster vaccinations. This could become an issue with the emergence of immune-escape variants, as reported in South Africa (30). Given limited information at this stage, we did not consider this scenario in our analyses, but this is an important area of future research.
Our study proposes a general framework to evaluate the impact of COVID-19 vaccination programs in the absence/presence of NPIs and to explore priority target populations to minimize multiple disease outcomes. The proposed modeling framework is easily adaptable to other country-specific contexts, including the susceptibility of the local population (3), local risk of transmission and implemented NPIs (31), efficacy of different vaccines (32-35), vaccine supply and capacity of immunization services (6), and the objectives of the pandemic responses.

Vaccination alone could substantially reduce COVID-19 burden, but in the foreseeable future may not be enough to prevent local outbreaks to escalate to major widespread epidemics due to limitation in the vaccine production and supply (particularly at the initial stage of the vaccination), as well as the capacity of vaccination system. This is especially relevant in contexts where most of the population is still susceptible to SARS-CoV-2 infection, as it is the case in most of China. Maintaining NPIs such as social distancing, case isolation, and careful contact tracing, wearing masks, increased teleworking and limitation on large gatherings, is necessary to prevent the resurgence of COVID-19 epidemics until a sufficiently high vaccine coverage is reached.
References and Notes

22. J. Cui, Reported coverage of vaccines in the National Immunization Program of China.
24. The Central People's Government of the People's Republic of China,
27. M. T. Meehan et al.,
28. H. C. You Li et al.,
29. X. Chen et al.,
30. C. K. Wibmer et al.,
36. S. Hu et al.,
Acknowledgments

Funding The study was supported by grants from the National Science Fund for Distinguished Young Scholars (No. 81525023), Key Emergency Project of Shanghai Science and Technology Committee (No 20411950100), National Science Fund for Distinguished Young Scholars (No. 81903373), European Union Grant 874850 MOOD (MOOD 000). **Author Contributions** H.Y. conceived the study. H.Y., S.M., and M.A. designed and supervised the study. J.Y., J. Z., J.C., W.W., Q.W., W.Z., Z.Z, K.D., and G.Z. participated in data collection. V.M., G.G., P.P., and F.T. developed the model. V.M., J.Y., and X.D. analyzed the model outputs and prepared the tables and figures. J.Y. prepared the first draft of the manuscript. H.Y., V.M., and M.A. commented on the data and its interpretation, revised the content critically. All authors contributed to review and revision and approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

Competing interests H.Y. has received research funding from Sanofi Pasteur, GlaxoSmithKline, Yichang HEC Changjiang Pharmaceutical Company, and Shanghai Roche Pharmaceutical Company. M.A. has received research funding from Seqirus. None of those research funding is related to COVID-19. All other authors report no competing interests. **Disclaimer** This article does not necessarily represent the views of the NIH or the US government. **Ethics approval** All these data were in the public domain. Ethical review for the re-use of these secondary data is not required.
Table 1. Description of key parameters used in the model.

<table>
<thead>
<tr>
<th>Description of parameter</th>
<th>Values in the baseline analysis</th>
<th>Sensitivity analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epidemiology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generation time (1/(\gamma))</td>
<td>5.5 days (95%CI 1.7, 11.6) (36)</td>
<td></td>
</tr>
<tr>
<td>Relative susceptibility to infection at age (a) ((r_a))</td>
<td>(r_a = 0.58) (95%CI 0.34-0.98) when (a < 15); (r_a = 1) for (15 \leq a < 65); (r_a = 1.65) (95%CI 1.03-2.65) when (a \geq 65) (37)</td>
<td>Homogenous susceptibility (SE1)</td>
</tr>
<tr>
<td>Age-group-specific contact matrix ((C_{a_{\alpha\beta}}))</td>
<td>Contact matrix for Shanghai (7)</td>
<td>/</td>
</tr>
<tr>
<td>Effective reproductive number ((R_t))</td>
<td>1.1, 1.3, 1.5, and 2.5 (11, 37, 38)</td>
<td>/</td>
</tr>
<tr>
<td>Vaccination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval between the administration of 1st dose and 2nd dose (1/(\omega_0))</td>
<td>21 days (39)</td>
<td>14 days (SE12) (39)</td>
</tr>
<tr>
<td>Delay between administration of the 2nd dose of vaccination and the achievement of the expected VE (1/(\omega_1))</td>
<td>14 days (39)</td>
<td>/</td>
</tr>
<tr>
<td>Expected vaccine efficacy for adults aged 20-59 years ((VE_{2,\alpha}))</td>
<td>80% (39, 40) for a vaccine with partial protections</td>
<td>60% (SE13) and 90% (SE14); and for an all-or-nothing vaccine (SE19)</td>
</tr>
<tr>
<td>Expected vaccine efficacy reduction for <20 and (\geq 60) years</td>
<td>50% (39, 40)</td>
<td>0%, indicating the same vaccine efficacy (SE15)</td>
</tr>
<tr>
<td>Vaccination capacity (daily doses administered)</td>
<td>6 million (Assumed based on 2009 influenza pandemic vaccination) (24)</td>
<td>1.3 (SE4), 10 (SE5), 15 (SE6) and 30 million (SE7)</td>
</tr>
<tr>
<td>Vaccine coverage</td>
<td>70% (15)</td>
<td>50% (SE8) or 90% (SE9) (15)</td>
</tr>
<tr>
<td>Duration of immunity (1/(\omega_2))</td>
<td>Lifelong (i.e., the immunity lasts more than the time horizon considered: 730 days) (Assumed)</td>
<td>6 months (SE16), or 1 year (SE17)</td>
</tr>
<tr>
<td>Delay between start of simulations and start of vaccination</td>
<td>15 days (Assumed)</td>
<td>30 days prior- (SE2) or post-start (SE3) of simulations</td>
</tr>
<tr>
<td>Disease burden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of infections that develop symptoms ((\pi))</td>
<td>18.1%, 22.4%, 30.5%, 35.5%, and 64.6% separately for 0-19, 20-39, 40-59, 60-79, and 80+ years (8)</td>
<td>/</td>
</tr>
<tr>
<td>Proportion of laboratory-confirmed symptomatic cases requiring hospitalization ((\sigma))</td>
<td>Overall: 40.0%, 29.2%, 33.3%, and 33.8% separately for 0-19, 20-39, 40-59, and 60+ years (9); estimates for individuals with/without underlying conditions shown in Supplementary Materials 1</td>
<td>/</td>
</tr>
<tr>
<td>Proportion of hospitalized cases requiring ICU ((\rho))</td>
<td>0, 2.2%, 7.2%, 20.9% separately for 0-14, 15-49, 50-64, and 65+ years (13)</td>
<td>/</td>
</tr>
<tr>
<td>Fatality ratio among laboratory-confirmed symptomatic cases ((\mu))</td>
<td>Overall: 0.51%, 0.65%, 2.38%, and 10.52% separately for 0-19, 20-39, 40-59, and 60+ years (9); estimates for individuals</td>
<td>/</td>
</tr>
</tbody>
</table>
with/without underlying conditions shown in
Supplementary Materials 1
Figure legend

Figure 1. Time series of symptomatic cases, effective reproductive number R_t, and population infected and vaccinated.
A) Number of symptomatic cases over time as estimated in the no-NPIs scenario (initial $R_t=2.5$) in the absence/presence of vaccination; B) Net reproduction number R_t over time, as estimated from symptomatic cases in the no-NPIs scenario in the presence of vaccination; C) Absolute numbers and proportion of the Chinese population infected and vaccinated over time in the no-NPIs scenario in the presence of vaccination; D)-F): as A-C but for the mild NPIs scenario (initial $R_t=1.5$); G)-I): as A-C but for the moderate NPIs scenario (initial $R_t=1.3$); J)-L): As A-C but for the high NPIs scenario (initial $R_t=1.1$). Line denotes median, and shadow denotes quantiles 0.025 and 0.975.

Figure 2. Burden of COVID-19 in the main analysis.
A) Cumulative number of symptomatic cases as estimated under the different scenarios in the absence/presence of vaccination over the simulated 2-year period. No vaccination + no NPIs with $R_t=2.5$ at the beginning of transmission is called reference scenario, described using dark brown bars. Light yellow bars indicate scenarios including vaccination and/or different levels of NPIs. B) Reduction in the cumulative number of symptomatic cases with respect to the reference scenario. Orange bars and black values indicate the contribution of NPIs, blue bars and black values indicate the overall contribution of vaccination and NPIs, while the white values indicate net contribution of vaccination; C)-D) As A-B but for hospitalized cases; E)-F) As A-B but for cases admitted to ICU; G)-H) As A-B but for deaths. Number denotes median, and error bars denote quantiles 0.025 and 0.975.

Figure 3. Impact of daily vaccine administration capacity on COVID-19 deaths.
A) Cumulative number of COVID-19 deaths (millions) as estimated in the different scenarios under progressively increasing values of the daily vaccination capacity; B) Proportion of deaths averted compared to the reference scenario, i.e., no vaccination
+ no NPIs with $R_t=2.5$ at the beginning of transmission. Number denotes median, and error bars denote quantiles 0.025 and 0.975.

Figure 4. Best prioritization strategy to achieve the minimal COVID-19 deaths.

Initial cases denote breakthrough COVID-19 cases, which initiates the epidemic. We consider the impact of uncertainty in contact patterns and relative susceptibility on prioritization, and use their mean values as well. Baseline denotes first prioritizing older adults and individuals with underlying conditions. Number in the box denotes the death toll (median), with t representing thousand and m representing million. Minimum denotes the lowest deaths in each scenario on the basis of median value. We compare other strategies to that with minimum deaths using rank sum test. E.g., in the context of initial cases=5,000, $R_t=1.5$ and using mean values of contact patterns and relative susceptibility, the baseline is the optimal strategy to minimize deaths.

Figure 5. Changes of the cumulative number of COVID-19 deaths estimated in the different sensitivity analyses, compared to the main analysis in the presence of moderate NPIs ($R_t=1.3$).

Number denotes median, and error bars denote quantiles 0.025 and 0.975.
Uncertainty in contact pattern and relative susceptibility

<table>
<thead>
<tr>
<th>Initial seed = 40</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Minimum</td>
<td>No difference compared to minimum</td>
<td>Higher than minimum</td>
<td>No NPIs (Rt = 2.5)</td>
</tr>
<tr>
<td>38</td>
<td>54</td>
<td>42</td>
<td>38</td>
<td>High NPIs (Rt = 1.1)</td>
</tr>
<tr>
<td>76.7t</td>
<td>90.7t</td>
<td>59.7t</td>
<td>15.5t</td>
<td>Moderate NPIs (Rt = 1.3)</td>
</tr>
<tr>
<td>1.8m</td>
<td>1.9m</td>
<td>1.5m</td>
<td>2.9m</td>
<td>Mild NPIs (Rt = 1.5)</td>
</tr>
<tr>
<td>9.4m</td>
<td>9.5m</td>
<td>9.8m</td>
<td>10m</td>
<td>No NPIs (Rt = 2.5)</td>
</tr>
<tr>
<td>Initial seed = 5,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>Minimum</td>
<td>No difference compared to minimum</td>
<td>Higher than minimum</td>
<td>No NPIs (Rt = 2.5)</td>
</tr>
<tr>
<td>6.5t</td>
<td>7.8t</td>
<td>5.6t</td>
<td>6t</td>
<td>High NPIs (Rt = 1.1)</td>
</tr>
<tr>
<td>698.4t</td>
<td>732.9t</td>
<td>520.9t</td>
<td>1000.5t</td>
<td>Moderate NPIs (Rt = 1.3)</td>
</tr>
<tr>
<td>3.4m</td>
<td>3.5m</td>
<td>3.7m</td>
<td>4.9m</td>
<td>Mild NPIs (Rt = 1.5)</td>
</tr>
<tr>
<td>9.7m</td>
<td>9.8m</td>
<td>9.9m</td>
<td>10m</td>
<td>No NPIs (Rt = 2.5)</td>
</tr>
<tr>
<td>First prioritization to older adults</td>
<td>Minimum</td>
<td>No difference compared to minimum</td>
<td>Higher than minimum</td>
<td>No NPIs (Rt = 2.5)</td>
</tr>
<tr>
<td>6.5t</td>
<td>7.5t</td>
<td>5.5t</td>
<td>7.2t</td>
<td>High NPIs (Rt = 1.1)</td>
</tr>
<tr>
<td>610.5t</td>
<td>855.3t</td>
<td>659.7t</td>
<td>1326.6t</td>
<td>Moderate NPIs (Rt = 1.3)</td>
</tr>
<tr>
<td>3.8m</td>
<td>3.9m</td>
<td>4.1m</td>
<td>5.4m</td>
<td>Mild NPIs (Rt = 1.5)</td>
</tr>
<tr>
<td>10m</td>
<td>10.1m</td>
<td>10.2m</td>
<td>10.3m</td>
<td>No NPIs (Rt = 2.5)</td>
</tr>
<tr>
<td>First prioritization to working-age groups</td>
<td>Minimum</td>
<td>No difference compared to minimum</td>
<td>Higher than minimum</td>
<td>No NPIs (Rt = 2.5)</td>
</tr>
<tr>
<td>6.5t</td>
<td>7.5t</td>
<td>5.5t</td>
<td>7.2t</td>
<td>High NPIs (Rt = 1.1)</td>
</tr>
<tr>
<td>810.5t</td>
<td>855.3t</td>
<td>659.7t</td>
<td>1326.6t</td>
<td>Moderate NPIs (Rt = 1.3)</td>
</tr>
<tr>
<td>3.8m</td>
<td>3.9m</td>
<td>4.1m</td>
<td>5.4m</td>
<td>Mild NPIs (Rt = 1.5)</td>
</tr>
<tr>
<td>10m</td>
<td>10.1m</td>
<td>10.2m</td>
<td>10.3m</td>
<td>No NPIs (Rt = 2.5)</td>
</tr>
<tr>
<td>First prioritization to school-age groups</td>
<td>Minimum</td>
<td>No difference compared to minimum</td>
<td>Higher than minimum</td>
<td>No NPIs (Rt = 2.5)</td>
</tr>
<tr>
<td>6.5t</td>
<td>7.5t</td>
<td>5.5t</td>
<td>7.2t</td>
<td>High NPIs (Rt = 1.1)</td>
</tr>
<tr>
<td>810.5t</td>
<td>855.3t</td>
<td>659.7t</td>
<td>1326.6t</td>
<td>Moderate NPIs (Rt = 1.3)</td>
</tr>
<tr>
<td>3.8m</td>
<td>3.9m</td>
<td>4.1m</td>
<td>5.4m</td>
<td>Mild NPIs (Rt = 1.5)</td>
</tr>
<tr>
<td>10m</td>
<td>10.1m</td>
<td>10.2m</td>
<td>10.3m</td>
<td>No NPIs (Rt = 2.5)</td>
</tr>
</tbody>
</table>