One Year of Evidence on Mental Health in the COVID-19 Crisis - A Systematic Review and Meta-Analysis

Xi Chen 1, Jiyao Chen 2, Meimei Zhang 3, Richard Z. Chen 4, Rebecca Kechen Dong 5, Zhe Dong 6, Yingying Ye 7, Lingyao Tong 8, Bryan Z. Chen 4, Ruiyiing Zhao 8, Wenrui Cao 9, Peikai Li 9, Stephen X. Zhang 10*

Author affiliations

1 Daodao Network Technology Co, Ltd., Shenzhen, China
2 College of Business, Oregon State University, Corvallis, OR 97330, USA
3 Department of Speech-Language-Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
4 Crescent Valley High School, Corvallis, OR 97330, USA
5 School of Management, University of South Australia, Adelaide, Australia
6 College of Psychology, Capital Normal University, Beijing, China
7 Department of Psychology, Zhejiang University of Technology, Hangzhou, China
8 Department of Clinical, Neuro- and Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
9 Department of Social, Health and Organizational Psychology, Utrecht University, Utrecht, the Netherlands
10 Faculty of Professions, University of Adelaide, Adelaide, Australia

*Correspondence to: Stephen X. Zhang, Associate Professor, University of Adelaide; 9-28 Nexus10 Tower, 10 Pulteney St, Adelaide SA 5000, Australia, stephen.x.zhang@gmail.com

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Objective: This paper provides a systematic review and meta-analysis on the prevalence rate of mental health issues of the major population, including general population, general healthcare workers (HCWs), and frontline healthcare workers (HCWs), in China over one year of the COVID-19 crisis.

Design: A systematic review and meta-analysis.

Data sources: articles in PubMed, Embase, Web of Science, and medRxiv up to November 16, 2020, one year after the first publicly known confirmed COVID-19 case.

Eligibility criteria and data analysis: any COVID-19 and mental disorders relevant English studies with frontline/general healthcare workers, general adult population sample, using validated scales. We pooled data using random-effects meta-analyses to estimate the prevalence rates of anxiety, depression, distress, general psychological symptoms (GPS), insomnia, and PTSD and ran meta-regression to tease out the heterogeneity.

Results: The meta-analysis includes 131 studies and 171 independent samples. The overall prevalence of anxiety, depression, distress, GPS, insomnia, and PTSD are 11%, 13%, 20%, 13%, 19%, and 20%, respectively. The meta-regression results uncovered several predictors of the prevalence rates, including severity (e.g., above severe vs. above moderate, p<0.01; above moderate vs. above mild, p<0.01) and type of mental issues (e.g., depression vs. anxiety, p=0.04; insomnia vs. anxiety p=0.04), population (frontline HCWs vs. general HCWs, p<0.01), sampling location (Wuhan vs. non-Wuhan, p=0.04), and study quality (p=0.04).

Limitations: First, we only focus on China population, which may limit the generalizability of the results. Second, 96.2% studies included in this meta-analysis were cross-sectional. Last, since we only included studies published in English, we expect to have a language bias.

Conclusion: Our pooled prevalence rates are significantly different from, yet largely between, the findings of previous meta-analyses, suggesting the results of our larger study are consistent with,
yet fine-tune, the findings of the smaller, previous meta-analyses. Hence, this meta-analysis not only provides a significant update on the mental health prevalence rates in COVID-19 but also suggests the need to update meta-analyses continuously to provide more accurate estimates of the prevalence of mental illness during this ongoing health crisis. While prior meta-analyses focused on the prevalence rates of mental health disorders based on one level of severity (i.e., above mild), our findings also suggest a need to examine the prevalence rates at varying levels of severity. The one-year cumulative evidence on sampling locations (Wuhan vs. non-Wuhan) corroborates the typhoon eye effect theory. Our finding that the prevalence rates of distress and insomnia and those of frontline healthcare workers are higher suggest future research and interventions should pay more attention to those mental outcomes and populations.

**Keywords:** systematic review; meta-analysis; COVID-19; mental health; epidemic; general population; healthcare workers; frontline healthcare workers

**Trial registration:** CRD42020220592
1. INTRODUCTION

Since its first publicly known cases in Wuhan, China, on November 17, 2019, the COVID-19 (coronavirus disease 2019) crisis has become one of the worst epidemics in human record. The sudden outburst of this highly infectious disease and the containment measures such as quarantine and social distancing have posed an unprecedented disruption on the life and work of the general population and healthcare workers (HCWs). Their mental health conditions under the COVID-19 epidemic have been documented first and most extensively to date in China. The accumulating number of such studies has triggered several rapid meta-analyses, which have provided important initial evidence on the prevalence of mental issues at the onset of the COVID-19 crisis. One year into the COVID-19 crisis, from November 17, 2019, to November 16, 2020, we see the values of a systematic review and meta-analysis to contribute above and beyond these meta-analyses in four major directions.

First, rapid meta-analyses generally include a dozen studies, most from the onset of the COVID-19 crisis; hence new systematic reviews and meta-analyses are needed to update the evidence that quickly accumulates. Our pooled prevalence rates are significantly different from, yet largely between, the findings of previous meta-analyses, suggesting our larger meta-analysis is consistent with yet revises the findings of the much smaller, previous meta-analyses. The significance of the difference between our much larger meta-analysis and the previous studies suggests a need to update meta-analyses continuously to provide more accurate estimates of the prevalence rates of mental illness during this ongoing COVID-19 epidemic.

Second, early rapid meta-analysis papers often pooled different mental disorders or distinct populations together due to the smaller numbers of studies included. However, such practices inadvertently contribute to the differences in their prevalence rates. Despite the fact
that individual papers often use and report varying levels of cutoff values, most meta-
analyses report the prevalence rates of mental health only by mild symptoms’ severity e.g., 5 12.

We are able to identify the major populations in the published studies (the general population,
HCWs, and frontline HCWs who deal with COVID-19 patients), the major mental health
outcomes (anxiety, depression, insomnia, distress, and PTSD), and the severity of outcomes
(above mild, above moderate, and above severe). Moreover, we run subgroup analysis and
meta-regression to reveal important differences between the mental disorders.

Third, given the large heterogeneity in terms of not only the COVID cases and deaths
but also the containment strategies and hospital capacities and readiness to handle COVID-19
cases across countries13 14, there are some benefits to focusing on a single country. China
seems to be the first country that experienced the COVID crisis and has had a sufficient
number of empirical studies to conduct such a meta-analysis.

Fourth, given our scope of the systematic review over a year of the COVID-19 crisis,
our work provides a more comprehensive assessment of evidence, which is urgently needed
to guide future mental health papers in the continued global pandemic. Furthermore, based on
a year of mental health papers under COVID-19, we observe and provide a list of concrete
issues in individual mental health papers to guide this important and proliferating stream of
research.

2. METHODOLOGY

This systematic review and meta-analysis was conducted in accordance with the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement 2019 and
registered in the International Prospective Register of Systematic Reviews (PROSPERO:
CRD42020220592).

2.1 Data Sources and Search Strategy
We conducted a comprehensive literature search in the databases of PubMed, Embase, and Web of Science. Our search query, shown in Table S1, was entered with Boolean operators to search the titles, abstracts, keywords, and subject headings (for example, Mesh terms) in each database. To account for preprints, we searched medRxiv (medrxiv.org). We started our search on November 10, 2020, and finalized it on November 16, 2020, one year after the first publicly known COVID-19 case \(^{15}\), in order to cover the first year of the COVID-19 epidemic. In addition, we checked the references of earlier rapid meta-analyses to identify other studies that may fit this review. Figure 1 details the flow chart of our search process.

### 2.2 Selection Criteria

The studies are included in our meta-analysis based on the following criteria:

- **a.** Context: COVID-19 epidemic in China
- **b.** Population: frontline HCWs, general HCWs, and general adult population
- **c.** Outcome: at least one mental disorder outcomes, e.g., anxiety, depression, distress, general psychological symptoms (GPS), insomnia, and PTSD
- **d.** Instrument: validated scales with cutoff points for the mental health outcomes
- **e.** Language: English.

According, we excluded studies that meet the following criteria:

- **a.** Population: children, adolescents, or specific niche adult populations such as COVID-19 patients, inpatients or other patients, adults under quarantine, pregnant/postpartum women
- **b.** Methodological approaches: non-primary studies such as reviews or meta-analyses, qualitative or case studies without a validated instrument, interventional studies, interviews, or news reports
c. Measurements: non-validated mental health instruments (i.e., self-made questionnaire) or instruments without a validated cutoff score to calculate a prevalence rate (i.e., STAI, SCL-90 for anxiety and depression).

We contacted the authors of papers that missed some critical information if the articles:

a. Contain primary data on mental health of relevant population using established instruments under COVID-19 period but do not report the prevalence rates. For example, a study may report the mean and SD of our outcomes but not their prevalence rates.

b. Surveyed a sample that combined our targeted population and other populations, such as children, in a manner such that we could not extract the prevalence rate(s) for our interested population.

c. Miss some critical information, such as the data collection time or location.

d. Are unclear on critical information. For example, some articles are unclear whether they used the cutoff for mild or moderate symptoms to calculate the overall prevalence rates of mental issues.

2.3 Selection Process and Data Extraction

The articles that passed the inclusion criteria were exported into an EndNote library where we identified duplications and then imported to Rayyan for screening. Two researchers (L.T. and Y.Y.) independently screened the articles based on their titles and abstracts. If both coders excluded an article independently, it was excluded.

Six researchers (X.C, M.Z., R.C., Z.D., R.D., B.C.) were paired to assess the eligibility of each paper based on reading its full text and extracting the relevant data into a coding book based on a coding protocol. The coding book records information such as the authors and year of the paper, title, publication status, sample locations, date of data collection, sample size, response rate, population, age (mean, SD, min and max), gender
proportion, instruments, cutoff scores used, the prevalence/mean/SD of the mental health outcome, and other notes or comments. Pairs of researchers first double-coded and crosschecked each paper independently. The remaining discrepancies after the crosscheck were discussed between the pair of coders. In cases where a pair of coders continued to disagree, a lead coder (X.C.) checked the paper independently and discussed it with the two original coders to determine its coding. The lead coder also integrated and reviewed all the coding information. Particularly, the lead coder checked the mental outcomes, instruments, outcome levels, and cutoff scores reported given the multitude of reporting practices in individual papers. We were able to identify papers that used unusual cutoff scores later for sensitivity analysis.

2.4 Assessment of Bias Risk

Following other meta-analyses, we used the Mixed Methods Appraisal Tool (MMAT), including seven questions to conduct the quality assessment of the studies. Pairs of coders independently evaluated the risk of bias and quality of the studies and rated them based on the MMAT. Most discrepancies were resolved through a discussion between the pair of researchers, and any disagreement after discussions was resolved by a lead researcher. Papers were classed into high (6 - 7) or medium quality (lower than 6).

2.5 Statistical Analysis

To analyze the data in a consistent manner, we ensure the independence of mental health disorders and samples. For instance, for studies that examine a mental health outcome with more than one instrument, we report the results based on the most popular instrument. If a study reported several prevalence rates by several cutoffs, we use one of them, in the following order of preference: above the severe cutoff, above the moderate cutoff, and above the mild cutoff. Thus, only one prevalence rate for a mental health outcome in a population is entered into the meta-analysis to ensure the samples remain independent.
The overall prevalence and 95% confidence intervals of psychological outcomes were pooled using Stata 16.1. Similar to prior studies on the prevalence of mental issues, the random-effects model was used to extract the pooled estimates. We reported the heterogeneity by the I² statistic, which measures the percentage of variance resulting from true differences in the effect sizes rather than the sampling error. We performed subgroup analyses by the key potential sources of heterogeneity of outcomes (six types of mental health disorders), severity of outcome (above mild/above moderate/above severe), and three major population groups (frontline HCWs, general HCWs, general population). Furthermore, given the high degree of heterogeneity of the true differences in the effect sizes, we ran a meta-regression to regress the prevalence upon not only these three category variables (outcome, severity, and population) but also female proportion, data collection time, data collection location (Wuhan vs. non-Wuhan), sample size, and study quality. We included data collection time to examine whether the mental issues change over time dynamically. While the COVID-19 crisis continues to evolve, there is a lack of dynamic analysis on the mental disorders of any population over time. Sensitivity analysis was conducted, and Funnel plots were used to assess publication bias. Significance level was set as two-sided and p<0.05.

3. RESULTS

3.1 Study Screening

Our systematic search (Figure 1) across all the databases yielded 5431 potentially relevant papers, out of which 2365 were duplications and removed. Of the remaining 3066 papers, we screened their titles and abstracts in the first stage and the full text of the 445 articles in the second stage. We also emailed the authors of 43 articles that missed critical
information and were able to get the information to include 10 additional studies. Altogether, the process generated 131 articles for this meta-analysis 21-151.

3.2 Study Characteristics

The 131 papers included contains 171 samples (Table S2) with a total of 630,244 individual participants. Table 1 summarizes their key characteristics. Among the 171 independent samples, about a quarter of them studied frontline HCWs and general HCWs (27.5% and 26.9%, respectively), and almost half studied the general population (45.6%). More than one-third of samples covered anxiety and depression. Another one-third investigated other mental issues including insomnia, PTSD, distress, and general psychological symptoms (GPS) (15.0%, 8.4%, 2.5%, and 2.0%, respectively). Respectively, 23.7%, 46.4%, and 29.9% of samples reported prevalence rates at the mild above, moderate above, and severe above level by the severity of the symptoms.

Almost all the studies, 126 out of 131, employed cross-sectional surveys; specifically, 9 (6.9%) conducted the survey in January 2020, 85 (64.9%) in February, 23 (17.6%) in March, and 14 (10.6%) in April or later. Almost one-quarter of them (22.2%) contained a sample targeting populations in Wuhan. Most studies were published in journals, and 10 (7.6%) studies remained as preprints. The assessment based on the Mixed Methods Appraisal Tool (MMAT) indicated 100 (73.3%) studies were of good quality (score no less than 6 out of 7) and 31 studies were of medium quality (score less than 6 but greater than 4). The median number of individuals per sample was 709 (range: 30 to 123,768) with a median female proportion of 69% (range: 12% to 100%) and a median response rate of 5% (range: 14% to 100%).

The 131 papers employed a wide arrange of instruments to assess mental health (Table S3). For both anxiety and depression, PHQ (60.6%, 63.3%) and SAS (23.6%, 13.3%) are the first and second most popular measures; distress is measured the most by K6 (44.4%),
followed by IES-R (22.2%); insomnia is measured by ISI (63.2%) and PSQI (29.8%); PTSD by IES-R (40.0%), PCL-C (26.7%), and PCL-5 (26.7%); and general psychological symptoms by SRQ-20 (100.0%). Please see the details in Table S3.

3.3 Major Issues from Findings of the Key Study Characteristics

Our systematic review reveals several widespread issues in mental health research during COVID-19: a wide array of instruments, inconsistent reporting of prevalence rates, inconsistent use and reporting of cutoff points, different cutoff values to determine the overall prevalence as well as the severity, and other issues on reporting standards and terminologies.

A myriad of instruments. The individual papers on mental health research during COVID-19 employed a wide variety of instruments with varying degrees of popularity and validity (summarized in Table S3). The wide array of instruments, especially the use of less frequently used instruments (i.e., AIS, BAI/BDI), certainly has some benefit but makes it hard to make comparisons or accumulate evidence.

Admixed outcome severity level. The individual papers reported the prevalence rates at a range of severity of the symptoms. First, the articles differ in their terminology when reporting the overall prevalence rates. Some papers used the overall prevalence rate to indicate the percentage with moderate symptoms or above, other papers used it to indicate the percentage with mild symptoms or above e.g., 23-40. Even worse, a large number of papers did not specify the definition of the overall prevalence rate, rendering it impossible to know whether it refers to above mild or moderate levels. Second, some papers use other terminologies, such as “extremely severe” 152, “very severe” 153, or “very high” 154, “moderate-severe” e.g., 155, “moderate to severe” 58, “moderately severe” e.g., 118, and “poor” 111, which often is not clear in terms of the cutoff points used to categorize those symptoms.

We opted to recode all the papers that indicate their cutoff scores manually 22, 50, 157-187.
however, these terminologies may contribute to the heterogeneity and confusion in accumulating evidence.

*Clarity on the cutoff points used to determine severity.* Some papers employed nonstandard or unusual cutoff scores e.g., 63, at times without referencing validation studies that supported the use of those special cutoff scores e.g., 103 146. Some papers did not report the cutoff score used or provide any references e.g., 21 106, making the assessment difficult. Such issues seem to occur particularly in studies that used PSQI, IES-R and DASS-21, and CES-D.

### 3.4. Pooled Prevalence Rates of Mental Health Disorders

The prevalence rates of the 171 samples were pooled by the subgroups (Table 2). First, the overall prevalence rates of mental health disorders that surpassed the cutoff values of mild, moderate, and severe symptoms were 27%, 18%, and 3%, respectively. The overall prevalence of mental health disorder frontline HCWs, general HCWs, and the general population in China are 17%, 14%, and 12%, respectively. The overall prevalence of anxiety, depression, distress, GPS, insomnia, and PTSD are 11%, 13%, 20%, 13%, 19%, and 20%. Figure 2 graphically depicts such findings of the pooled analysis by subgroups using forest plots.

### 3.5 Meta-regression on the Prevalence of Mental Health Disorders

To better explain the heterogeneity of the prevalence of mental health disorders, Table 3 reports the results of a meta-regression analysis. The meta-analytical model explained over 40% of the variance of mental health disorders among these studies (R-squared = 41.0%, I² = 100%, tau² = 0.11). The prevalence of severe mental health disorders is significantly lower than that of moderate mental illness (p<0.01), which is in turn significantly lower than those of mild mental illness (p<0.01). The prevalence of mental health disorders of frontline HCWs is significantly higher than that of general HCWs (p<0.004). General HCWs and the general population do not differ in their mental health prevalence rates. The prevalence rates of
depression (p=0.04) and insomnia (p=0.04) are significantly higher than that of anxiety, and the rates of general psychological symptoms (p=0.20) and PTSD (p=0.20) do not differ significantly from that of anxiety. Interestingly, the prevalence of mental health disorders of participants in Wuhan, the epicenter of the COVID-19 crisis, was significantly lower than that in non-Wuhan samples in China (p=0.04). The prevalence rates of mental health disorders were lower in studies of papers with a higher quality rating. The female proportion (p=0.54), date of data collection (p=0.64), sample size of studies (p=0.16), or publication status (p= 0.80) did not predict the prevalence rates significantly.

The meta-analytical results enable the prediction of prevalence rates while taking account of the influence of multiple factors and hence offer a superior model over the earlier pooled analyses. In other words, the meta-regression model considers multiple predictors of mental health disorders in a single model at the same time instead of the approach of considering one predictor at a time by pooled prevalence, the typical method to estimate the prevalence of mental health disorder in prior meta-analytical papers in COVID-19 literature. Hence, based on the results of the meta-regression, we report the predicted prevalence rates of varying severity levels of the symptoms of different mental health disorders of frontline HCWs, general HCWs, and the general population. Table 4 and Figure 3 show the predicted prevalence rates of mental health disorders by populations, outcomes, and severity by the meta-analytical regression model. As illustrated in Figure 3, the prevalence rates vary greatly by the mental health outcomes and severity. The prevalence rates are lower when using a higher level of severity, which drives the heterogeneity of prevalence rate to a large degree. Among the different types of mental health outcomes, distress seems to be the most prevalent among all three populations.

3.6 Sensitivity Analysis
Our meta-analytical model was able to take account of the impact of several factors, such as publication status (insignificant), sample size (insignificant), and article quality score (significant). Furthermore, we conducted our analysis with the exclusion of each study one-by-one from the meta-analytic model and found it did not significantly alter the findings. The visual inspection of the funnel plot further confirmed that sensitivity bias is unlikely to bias our findings significantly.

4. DISCUSSION

4.1 Comparison with Prior Meta-analyses

The meta-analysis of mental health one year into the COVID-19 epidemic in China revealed several findings that are worth comparing with prior meta-analyses on the same topic. See Table 5 for a summary of the comparison.

Unlike prior meta-analyses, most of which searched the literature before May 2020, our meta-analysis covered a whole year of COVID-19 to yield stronger evidence. Our meta-analysis from a systematic review comprises 171 independent samples with 630,244 participants from 131 studies, much larger than the prior meta-analyses on China’s population that included 7–50 studies with 2123 to 62,382 participants 4-8. The comparison reveals that our pooled prevalence rates largely fall between the findings of previous meta-analyses, suggesting our larger data is consistent yet fine-tunes them. For example, we reported a higher prevalence of anxiety for the general population and HCWs (24%) than Bareeqa et al. (2020) (22%) and Pappa et al. (2020) (23%), but lower than Krishnamoorthy et al. 2020 (26%) and Ren et al. 2020 (25%). Similarly, we reported a higher prevalence of anxiety for frontline HCWs (28%) than Bareeqa et al. (2020) (24%) and a lower prevalence of depression (25%) for the general population and HCWs than the prevalent rates of 26% - 28% in Ren et al. 2020, Krishnamoorthy et al. 2020, and Bareeqa et al. 2020. All these
differences between our prevalence rates and the prior reports are statistically significant due to the large sample size involved, and hence we significantly update the cumulative evidence on mental health prevalence rates in COVID-19. Our findings also suggest a need to update meta-analyses continuously to provide more accurate estimates of the prevalence of mental illness while COVID-19 is ongoing.

Our systematic review over a year of the COVID-19 crisis allows us to identify all the major mental health outcomes studied (anxiety, depression, insomnia, GPS, distress, and PTSD). In particular, GPS has never been included in any prior meta-analysis. Moreover, prior meta-analyses examined the prevalence rates of mental health disorders based on one level of the severity of symptoms (i.e., above mild), and we included articles that reported the prevalence at varying levels of severity of symptoms.

4.2 Meta-regression Findings

Thanks to the large number of samples in China over a year of the COVID-19 crisis, we were able to conduct meta-regression to account for the influence of multiple predictors at the same time to enable better prediction on the prevalence of each mental health disorder. The accumulative evidence shows that several predictors are significantly associated with prevalence rates of mental issues in China during COVID-19, including the severity and type of mental issues, population, sampling location, and study quality.

The severity of mental symptoms, which has been unaccounted for in prior meta-analyses, was found to contribute greatly to the heterogeneity of prevalence rates, hence individual mental health papers need to pay special attention to the severity with clarity. Otherwise, researchers and practitioners might mix the severity of severe, moderate, and mild mental illness. Since prior meta-analyses largely examined the prevalence rates of mild mental health disorders, yet psychiatrists care not only the mild symptoms, and the significant
differences revealed by this study call for more meta-analyses on varying levels of severity to provide evidence for practitioners relevant to their concerns.

Among the six types of mental health issues examined, distress and insomnia had the highest prevalence rates among all three populations. Our findings suggest that practitioners need to be aware and pay more attention to distress and insomnia under the COVID-19 pandemic. Moreover, given that more than two-thirds of existing empirical studies focused on anxiety and depression, we call out for future research to focus on mental distress and insomnia.

Frontline HCWs suffered more than general HCWs and the general population across all six types of mental issues. It is also worth noting the general HCWs did not significantly differ from general populations across any mental issues. Hence, our evidence suggests that policymakers and healthcare organizations need to further prioritize frontline HCWs the most in this ongoing pandemic.

Past mental health research has reported inconsistent results on the relationship between individuals’ mental issues and their locations. Some studies reported that mental issues increase along with the distance to the epicenter in the COVID-19 pandemic, known as “typhoon eye effect” 188-190. However, other findings have demonstrated an opposite effect, where mental issues decrease as the distance to the epicenter increases, known as the “ripple effect” 191 192. Our accumulative evidence shows that people in the epicenter of China in Wuhan suffered less mental issues than those outside of Wuhan, lending support to the typhoon eye effect. This finding suggests future research to differentiate, report, and possibly model sampling locations based on the epicenter of a pandemic to enable better geographical identification of mental issues 193-195.

Our findings that the samples in papers with higher quality tend to find higher prevalent rates of mental issues suggest study quality may matter. Particularly, future meta-analysis
may pay attention to the representativeness of sampling, the response rate, etc., to better account for the heterogeneity in the pooled prevalence rates.

As the COVID-19 epidemic evolves, we expected the mental issues may change over time. However, the evidence of meta-regression using time as a predictor failed to reveal significant effect, even though the COVID crisis has evolved to varying degrees for more than a year in countries such as China. A potential reason might be the development of COVID-19 in various parts of China happened at varying paces, and more refined studies are needed to uncover the change of prevalence rates effect over time.

4.3 A Mental Health Research Agenda during Covid-19

Our systemic review and meta-analysis allowed us to observe several widespread problems in the individual papers that impede the accumulation of evidence. We offer a few concrete suggestions on research focus and reporting for future mental health studies for authors, editors, and reviewers in a table for easy reference (Table 6) to improve the quality of such studies and to facilitate evidence accumulation in future meta-analyses.

4.4 Study Limitations

This meta-analysis has a few limitations. First, the validity of our findings rests upon the quality and reporting of the original studies. As discussed before, individual mental health papers varied in their usage of instruments, cutoff scores, the use of cutoff scores to define mental issues, and the reporting standards. For example, the overall prevalence refers to “above the cutoff of mild” in some papers yet “above the cutoff of moderate” in other papers. Worse, many papers report the overall prevalence without specifying which/how cutoff scores are used. While we paid extra attention to the severity, the cutoff points, and the ways in which individual articles used this information, the multitude of varying practices contributes to additional noise and variance in the analysis. Second, since we included studies in English, which may result in some biases. Third, 96.2% of studies included in this meta-
analysis were cross-sectional surveys, and we call for more cohort studies to examine the
effect of time. Finally, we only focus on studies that collected data in China, and we call for
future meta-analyses in other countries or regions as the COVID-19 crisis continues in most
parts of the world.

4.5 Conclusion

Since the COVID-19 epidemic started in November 2019, hundreds of studies have
documented the mental health of major populations by the key mental outcomes and varying
levels of severity. This systematic review and meta-analysis synthesized the evidence on the
prevalence rates of mental health disorders in China over one year of the COVID-19
epidemic. The meta-regression results provide evidence that future research should pay
attention to mental distress and insomnia, especially given the popularity of anxiety and
depression in the literature to date. Moreover, we revealed a number of issues in the
individual papers published on mental health during the COVID-19 crisis, and the high
heterogeneity among studies calls for more standard reporting of future research not only
during COVID-19 but also generally to better facilitate the synthesis of evidence to enable
evidence-based research and practice.

References

dashboard. 2020
distress and life satisfaction of working adults in China one month into the COVID-19
outbreak. 2020;288:112958.
pandemic response. 2020;369
among healthcare workers during the COVID-19 pandemic: A systematic review and
meta-analysis. 2020


110. Wang S, Zhang Y, Ding W, et al. Psychological distress and sleep problems when people are under interpersonal isolation during an epidemic: a nationwide multicenter cross-sectional study. 2020;63(1)


159. Zung WW. A rating instrument for anxiety disorders. Psychosomatics: Journal of Consultation and Liaison Psychiatry 1971


Statement for exclusive licenses

I, the Submitting Author, has the right to grant and does grant on behalf of all authors of the Work (as defined in the author license), an exclusive license and/or a non-exclusive license for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY license shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd (“BMJ”) its licensees.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge (“APC”) for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licenses and which license will apply to this Work are set out in our license referred to above.

Competing interest statement

All authors have completed the Unified Competing Interest form and declare: no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years, no other relationships or activities that could appear to have influenced the submitted work.
Credit author statement

XC: Investigation, Data curation, Visualization, Writing – original draft, Writing – review & editing, Project administration. JC: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Resources, Data curation, Visualization, Writing – original draft, Writing – review & editing, Supervision. MZ, RC, RD, ZD, YY, BC, LT: Investigation (Data). RZ, WC, PL: Investigation. SZ: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Data curation, Writing – original draft, Writing – review & editing, Supervision. XC, JC, and SZ co-lead this project. All authors were involved in approving the manuscript. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

Transparency declaration

The lead author* affirms that this manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

Ethical approval

Not applicable

Funding sources/sponsors

Not applicable

Patient and public involvement

No patient or public was involved in a systematic review and meta-analysis
Acknowledgements

We thank Haixing Zheng, Shaokun Xu, Fei Liang & Zhehong Xu for their help.

Data sharing statement

All data generated or analyzed during this study are included in this published article.
Table 1. Characteristics of the studies on mental health in China in a year of COVID-19 epidemic

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Total number of studies/samples</th>
<th>Percent</th>
<th>Level of analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Overall</strong></td>
<td>131</td>
<td>100</td>
<td>Sample</td>
</tr>
<tr>
<td><strong>Population</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frontline HCWs</td>
<td>47</td>
<td>27.5</td>
<td></td>
</tr>
<tr>
<td>General HCWs</td>
<td>46</td>
<td>26.9</td>
<td></td>
</tr>
<tr>
<td>General population</td>
<td>78</td>
<td>45.6</td>
<td></td>
</tr>
<tr>
<td><strong>Outcome</strong></td>
<td></td>
<td></td>
<td>Sample</td>
</tr>
<tr>
<td>Anxiety</td>
<td>127</td>
<td>35.5</td>
<td></td>
</tr>
<tr>
<td>Depression</td>
<td>128</td>
<td>35.8</td>
<td></td>
</tr>
<tr>
<td>Distress</td>
<td>9</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>General psychological symptoms</td>
<td>7</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Insomnia</td>
<td>57</td>
<td>15.9</td>
<td></td>
</tr>
<tr>
<td>PTSD</td>
<td>30</td>
<td>8.4</td>
<td></td>
</tr>
<tr>
<td><strong>Severity</strong></td>
<td></td>
<td></td>
<td>Sample</td>
</tr>
<tr>
<td>Above mild</td>
<td>85</td>
<td>23.7</td>
<td></td>
</tr>
<tr>
<td>Above moderate</td>
<td>166</td>
<td>46.4</td>
<td></td>
</tr>
<tr>
<td>Above severe</td>
<td>107</td>
<td>29.9</td>
<td></td>
</tr>
<tr>
<td><strong>Sampling location</strong></td>
<td></td>
<td></td>
<td>Article</td>
</tr>
<tr>
<td>Wuhan</td>
<td>38</td>
<td>22.2</td>
<td></td>
</tr>
<tr>
<td>Non-Wuhan</td>
<td>123</td>
<td>77.8</td>
<td></td>
</tr>
<tr>
<td><strong>Sampling date</strong></td>
<td></td>
<td></td>
<td>Article</td>
</tr>
<tr>
<td>January 2020</td>
<td>9</td>
<td>6.9</td>
<td></td>
</tr>
<tr>
<td>February 2020</td>
<td>85</td>
<td>64.9</td>
<td></td>
</tr>
<tr>
<td>March 2020</td>
<td>23</td>
<td>17.6</td>
<td></td>
</tr>
<tr>
<td>April 2020</td>
<td>8</td>
<td>6.1</td>
<td></td>
</tr>
<tr>
<td>May 2020</td>
<td>2</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>June 2020</td>
<td>2</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>July 2020</td>
<td>2</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td><strong>Design</strong></td>
<td></td>
<td></td>
<td>Article</td>
</tr>
<tr>
<td>Cross-sectional</td>
<td>126</td>
<td>96.2</td>
<td></td>
</tr>
<tr>
<td>Cohort</td>
<td>5</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td><strong>Publication status</strong></td>
<td></td>
<td></td>
<td>Article</td>
</tr>
<tr>
<td>Preprint</td>
<td>10</td>
<td>7.6</td>
<td></td>
</tr>
<tr>
<td>Accepted</td>
<td>1</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Published</td>
<td>120</td>
<td>91.6</td>
<td></td>
</tr>
<tr>
<td><strong>Quality</strong></td>
<td></td>
<td></td>
<td>Article</td>
</tr>
<tr>
<td>Good</td>
<td>100</td>
<td>73.3</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>31</td>
<td>23.7</td>
<td></td>
</tr>
<tr>
<td><strong>Median</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Range</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Number of participants</strong></td>
<td>709</td>
<td>30 - 123,768</td>
<td>Article</td>
</tr>
<tr>
<td><strong>Female portion</strong></td>
<td>69%</td>
<td>12% - 100%</td>
<td>Article</td>
</tr>
<tr>
<td><strong>Response rate</strong></td>
<td>85%</td>
<td>14% - 100%</td>
<td>Article</td>
</tr>
</tbody>
</table>
Table 2. The pooled prevalence rates of mental health disorders by subgroups of population, outcome, and severity

<table>
<thead>
<tr>
<th>First-level subgroup</th>
<th>Second-level subgroup</th>
<th>Number of samples (K)</th>
<th>Percent</th>
<th>Sample size (N)</th>
<th>Prevalence (%)</th>
<th>95%CI</th>
<th>I2 (%)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td></td>
<td>171*</td>
<td></td>
<td>630,244</td>
<td>14</td>
<td>13 - 15</td>
<td>99.9</td>
<td>0.00</td>
</tr>
<tr>
<td>Population</td>
<td>Frontline HCWs</td>
<td>47</td>
<td>27.5</td>
<td>65,477</td>
<td>17</td>
<td>14 - 20</td>
<td>99.6</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>General HCWs</td>
<td>46</td>
<td>26.9</td>
<td>71,341</td>
<td>14</td>
<td>11 - 17</td>
<td>99.7</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>General population</td>
<td>78</td>
<td>45.6</td>
<td>493,426</td>
<td>12</td>
<td>10 - 14</td>
<td>99.9</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Anxiety</td>
<td>127</td>
<td>60.7</td>
<td>517,417</td>
<td>11</td>
<td>9 - 13</td>
<td>99.8</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Depression</td>
<td>128</td>
<td>61.1</td>
<td>444,008</td>
<td>13</td>
<td>11 - 16</td>
<td>99.8</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Distress</td>
<td>9</td>
<td>4.3</td>
<td>68,820</td>
<td>20</td>
<td>8 - 36</td>
<td>99.9</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>GPS</td>
<td>7</td>
<td>3.3</td>
<td>35,966</td>
<td>13</td>
<td>3 - 27</td>
<td>99.9</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Insomnia</td>
<td>57</td>
<td>27.2</td>
<td>141,337</td>
<td>19</td>
<td>15 - 24</td>
<td>99.7</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>PTSD</td>
<td>30</td>
<td>14.3</td>
<td>31,850</td>
<td>20</td>
<td>12 - 29</td>
<td>99.7</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Above mild</td>
<td>85</td>
<td>40.6</td>
<td>100,287</td>
<td>27</td>
<td>24 - 30</td>
<td>99.3</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Above moderate</td>
<td>166</td>
<td>79.3</td>
<td>515,676</td>
<td>18</td>
<td>16 - 20</td>
<td>99.6</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Above severe</td>
<td>107</td>
<td>51.1</td>
<td>622,526</td>
<td>3</td>
<td>2 - 3</td>
<td>99.4</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Note: CI = Confidence Interval; I² statistic indicates the heterogeneity. GPS = general psychological symptoms.
* The total independent samples are larger than the number of studies because some studies included multiple samples.
# The total sample sizes are larger than the total sample of the 171 independent samples because one sample can assess multiple mental health outcomes.
Table 3. The results of meta-regression of mental health disorders during COVID-19

<table>
<thead>
<tr>
<th>Variables</th>
<th>Coefficient (CI, 95%)</th>
<th>Std. Err.</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Outcome</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anxiety (reference)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depression</td>
<td>0.03 (-0.06 to 0.11)</td>
<td>0.04</td>
<td>0.55</td>
</tr>
<tr>
<td>Distress</td>
<td>0.24* (0.01 to 0.47)</td>
<td>0.12</td>
<td>0.04</td>
</tr>
<tr>
<td>General psychological symptoms</td>
<td>-0.01 (-0.27 to 0.26)</td>
<td>0.14</td>
<td>0.97</td>
</tr>
<tr>
<td>Insomnia</td>
<td>0.12* (0.01 to 0.23)</td>
<td>0.06</td>
<td>0.04</td>
</tr>
<tr>
<td>PTSD</td>
<td>0.10 (-0.05 to 0.24)</td>
<td>0.07</td>
<td>0.20</td>
</tr>
<tr>
<td><strong>Severity</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Above mild</td>
<td>0.20*** (0.11 to 0.30)</td>
<td>0.05</td>
<td>0.00</td>
</tr>
<tr>
<td>Above moderate (reference)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Above severe</td>
<td>-0.49*** (-0.58 to 0.40)</td>
<td>0.05</td>
<td>0.00</td>
</tr>
<tr>
<td><strong>Population</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frontline HCWs (reference)</td>
<td>0.14*** (0.05 to 0.23)</td>
<td>0.05</td>
<td>0.00</td>
</tr>
<tr>
<td>General HCWs (reference)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General population</td>
<td>0.03 (-0.07 to 0.13)</td>
<td>0.05</td>
<td>0.51</td>
</tr>
<tr>
<td><strong>Publication Status</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preprint (reference)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accepted</td>
<td>-0.34 (-0.84 to 0.17)</td>
<td>0.26</td>
<td>0.19</td>
</tr>
<tr>
<td>Published</td>
<td>-0.02 (-0.17 to 0.13)</td>
<td>0.08</td>
<td>0.80</td>
</tr>
<tr>
<td><strong>Female proportion</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date of data collection</td>
<td>0.00 (0.00 to 0.00)</td>
<td>0.00</td>
<td>0.64</td>
</tr>
<tr>
<td>Wuhan vs. Non-Wuhan sample</td>
<td>-0.10*(-0.20 to 0.00)</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>Sample size</td>
<td>0.00 (0.00 to 0.00)</td>
<td>0.00</td>
<td>0.16</td>
</tr>
<tr>
<td>Quality</td>
<td>0.08* (0.01 to 0.15)</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>Constant</td>
<td>5.99</td>
<td>12.36</td>
<td>0.63</td>
</tr>
</tbody>
</table>
Table 4. The predicted prevalence rates of mental health disorders by populations, outcomes, and severity by the meta-analytical regression model

<table>
<thead>
<tr>
<th>Mental health disorders above certain severity</th>
<th>Prevalence rate (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frontline HCWs</td>
</tr>
<tr>
<td>Sample</td>
<td>K=47, N=65,477</td>
</tr>
<tr>
<td>Mild anxiety</td>
<td>28% (23% - 33%)</td>
</tr>
<tr>
<td>Moderate anxiety</td>
<td>19% (15% - 23%)</td>
</tr>
<tr>
<td>Severe anxiety</td>
<td>4% (2% - 6%)</td>
</tr>
<tr>
<td>Mild depression</td>
<td>29% (24% - 34%)</td>
</tr>
<tr>
<td>Moderate depression</td>
<td>20% (17% - 24%)</td>
</tr>
<tr>
<td>Severe depression</td>
<td>5% (3% - 7%)</td>
</tr>
<tr>
<td>Mild distress</td>
<td>39% (27% - 51%)</td>
</tr>
<tr>
<td>Moderate distress</td>
<td>29% (19% - 41%)</td>
</tr>
<tr>
<td>Severe distress</td>
<td>10% (4% - 19%)</td>
</tr>
<tr>
<td>Mild GPS</td>
<td>28% (16% - 41%)</td>
</tr>
<tr>
<td>Moderate GPS</td>
<td>19% (10% - 30%)</td>
</tr>
<tr>
<td>Severe GPS</td>
<td>4% (0% - 11%)</td>
</tr>
<tr>
<td>Mild insomnia</td>
<td>33% (27% - 39%)</td>
</tr>
<tr>
<td>Moderate insomnia</td>
<td>24% (19% - 29%)</td>
</tr>
<tr>
<td>Severe insomnia</td>
<td>7% (4% - 10%)</td>
</tr>
<tr>
<td>Mild PTSD</td>
<td>32% (25% - 40%)</td>
</tr>
<tr>
<td>Moderate PTSD</td>
<td>23% (17% - 29%)</td>
</tr>
<tr>
<td>Severe PTSD</td>
<td>6% (3% - 11%)</td>
</tr>
</tbody>
</table>

Note: CI = Confidence Interval; GPS = general psychological symptoms.
<table>
<thead>
<tr>
<th>Author &amp; year</th>
<th>Last search date</th>
<th>Number of articles (K*)</th>
<th>Total sample size (N*)</th>
<th>Population</th>
<th>Prevalence rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Anxiety</td>
<td>Depression</td>
</tr>
<tr>
<td>Pappa et al. 2020</td>
<td>April 17</td>
<td>13</td>
<td>33,062</td>
<td>General HCWs</td>
<td>23% (K=12)</td>
</tr>
<tr>
<td>Ren et al. 2020</td>
<td>April 20</td>
<td>12</td>
<td>27,475</td>
<td>General population &amp; HCWs</td>
<td>25%</td>
</tr>
<tr>
<td>Krishnamoorthy et al. 2020</td>
<td>April 21</td>
<td>50</td>
<td>171,571</td>
<td>General population &amp; HCWs</td>
<td>26% (K=31)</td>
</tr>
<tr>
<td>Bareeqa et al. 2020</td>
<td>April 30</td>
<td>19</td>
<td>62,382</td>
<td>General population &amp; HCWs</td>
<td>22% (K=17, N=57311)</td>
</tr>
<tr>
<td>Salari et al. 2020</td>
<td>June 24</td>
<td>7</td>
<td>2,123</td>
<td>Frontline HCWs - Doctor</td>
<td>24% (K=8, N=10267)</td>
</tr>
<tr>
<td>Salari et al. 2020</td>
<td>June 24</td>
<td>7</td>
<td>3,745</td>
<td>Frontline HCWs - Nurse</td>
<td></td>
</tr>
<tr>
<td>This meta-analysis</td>
<td>Nov. 16</td>
<td>47</td>
<td>65,477</td>
<td>Frontline HCWs</td>
<td>28%</td>
</tr>
<tr>
<td>This meta-analysis</td>
<td>Nov. 16</td>
<td>47</td>
<td>71,341</td>
<td>General HCWs</td>
<td>22%</td>
</tr>
<tr>
<td>This meta-analysis</td>
<td>Nov. 16</td>
<td>78</td>
<td>493,426</td>
<td>General population</td>
<td>23%</td>
</tr>
<tr>
<td>This meta-analysis</td>
<td>Nov. 16</td>
<td>171</td>
<td>630,244</td>
<td>Total population</td>
<td>24%</td>
</tr>
</tbody>
</table>

Note: We include the existing meta-analyses that either target populations in China or whose included studies are mostly based in China (>90%). All prevalence rates in this table are reported by the cutoff of mild and above. HCWs = Healthcare workers.

* K = Total number of studies on one outcome, which is smaller than total number of studies in a meta-analysis.
N = Total sample size on one outcome, which is smaller than total sample size in a meta-analysis.
Table 6. A list of recommendations for mental health research papers

<table>
<thead>
<tr>
<th>Guides for future research and reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Outcome and instrument</strong></td>
</tr>
<tr>
<td>1) Study health outcomes that have higher prevalence rates, e.g., distress and insomnia</td>
</tr>
<tr>
<td>2) Use validated instruments</td>
</tr>
<tr>
<td><strong>Severity of the symptoms</strong></td>
</tr>
<tr>
<td>3) Use and report more levels of severity of symptoms and the cutoff points used</td>
</tr>
<tr>
<td>4) Specify the meaning of overall prevalence, whether above mild or above moderate</td>
</tr>
<tr>
<td>5) Specify the cutoff values used with the reasons/references</td>
</tr>
<tr>
<td><strong>Characteristics of the samples</strong></td>
</tr>
<tr>
<td>6) Report sampling locations more precisely – not just the country, but the region or the distance from epicenter if possible</td>
</tr>
<tr>
<td>7) Report the sampling dates</td>
</tr>
<tr>
<td>8) Report the age/gender of the participants</td>
</tr>
<tr>
<td><strong>Population</strong></td>
</tr>
<tr>
<td>9) Separate and focus on frontline line HCWs vs. HCWs</td>
</tr>
<tr>
<td><strong>Study design</strong></td>
</tr>
<tr>
<td>10) More future research using cohort designs</td>
</tr>
</tbody>
</table>
Figure 1. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) flow diagram
Figure 2a. A forest plot of the pooled prevalence by outcomes
Figure 2b. A forest plot of the pooled prevalence by outcome levels
Figure 2c. A forest plot of the pooled prevalence by population
Figure 3. The predicted prevalence rates of mental health disorders by populations, outcomes, and severity by the meta-analytical regression model.