Understanding soaring coronavirus cases and the effect of contagion policies in the UK

Miguel A. Durán-Olivencia\(^a,1\) and Serafim Kalliadasis\(^a,1\)

\(^a\)Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK

This manuscript was compiled on January 30, 2021

The number of new daily SARS-CoV-2 infections is drastically rising in almost every country of the EU. The phenomenological explanation offered is a new mutation of the virus, first identified in the UK. We use publicly available data in combination with a controlled SIR model, which captures the effects of preventive measures on the active cases, to show that the current wave of infections is consistent with a single transmission rate. This suggests that the new SARS-CoV-2 variant is as transmissible as previous strains. Our findings indicate that the relaxation of preventive measures is closely related with the ongoing surge in cases. We simulate the effects of new restrictions and vaccination campaigns in 2021, demonstrating that lockdown policies are not fully effective to flatten the curve. For effective mitigation, it is critical that the public keeps on high alert until vaccination reaches a critical threshold.

The susceptible-infectious-recovered (SIR) model\(^1\) (Fig. 1.a), is a popular vanilla model for computational scrutiny used in numerous studies, often to estimate the characteristic transmission rate of SARS-CoV-2. However, despite its flexibility and mathematical elegance, the model introduces some important limitations. To determine whether new variants of the SARS-CoV-2 are more transmissible than their predecessors, data analysis must cover the entire pandemic outbreak and include the effects of preventive measures and contagion policies taken by populations and governments, respectively. The model also does not account for social preventive response which characterises the \textit{new normal}, e.g. social distancing, mask wearing, limited commuting, remote working, or local curfews and lockdowns, to name but a few examples. Fitting data to a model which does not capture how these important social changes affect the spreading of the virus is not a reliable method to discern the transmission (\(\beta\)), recovery (\(\alpha\)) and basic reproductive (\(R_0 = \frac{\beta}{\alpha}\)) rates. For instance, different values of \(R_0\) for the same virus with the same inherent properties under different social contexts, e.g. partial and full lockdown, are obtained. Data for the United Kingdom suggest much higher values for \(\beta\) and \(R_0\) during September-December 2020 if analysed under the SIR premises\(^2\). Despite the good fitting of data achieved over limited temporal windows\(^2,5\), there are two important limitations compromising the accuracy of the predictions: a) one cannot fit the whole temporal series, characterised by multiple infection waves, and indeed the fit would eventually diverge; and b) the SIR model, or the equivalent logistic growth model\(^2\), would never forecast a second or further upsurge in cases. Refined SIR models to include additional factors, such as “shield immunity”\(^6\), do not come to our rescue. Indeed, despite their increased flexibility they are still only capable of showing a single wave. Additionally, many studies fitted SIR-like models to data from the last stages of the first wave – even though the models suffer from the inherent limitation of a single-wave prediction – thus effectively assuming that the epidemic was coming to an end. Yet it was already known at the time that the number of cases was decreasing because of the preventive measures which in turn should have been sufficient to abandon the corresponding models. Thus, current studies are incomplete and an alternative approach is necessary.

The main results of the present work are as follows. Consideration of the full-history of the data with a controlled SIR model (Fig. 1.b) avoids the drawbacks of previous models, by capturing the essence of how the new normal affects the number of infected people. This unveils unique and constant \(\beta\) and \(R_0\) for the entire pandemic. Thousands of mutations have emerged in the SARS-CoV-2 genome since the first outbreak in 2019, and only the UK strain, known as B.1.1.7, is being reported as a more “aggressive” form of the virus, because of an alarming surge in new cases thought to be correlated with the new UK variant, and was one the reasons for the lockdown imposed in the UK at the beginning of 2021, e.g. Ref. \(^7\). According to the law of parsimony: chose the simplest explanation from those that fit. Indeed, our results show that the fierce increase in cases is captured without the need of a more transmissible variant, suggesting that genomic data during the pandemic might have been overinterpreted. Our approach includes characteristic parameters which could be pivotal in the decision-making process in the coming months. For instance, there seems to be an \textit{inertia of society} which plays a crucial role on the flattening of the curve. For preventive measures to be effective, these should be encouraged quite early in the surge of cases, taking into consideration the inherent social inertia, which typically leads up to three-week delay up until society gets to its maximum level of alert. We also include the effect of vaccination, and show that \textit{social relaxation} as of March 2021 without fulfilling a sufficient vaccination rate

All authors contributed equally to this work.
The authors declare no competing interest.

Fig. 1. Sketch of transitions in (a) free and (b) controlled SIR network model of disease transmission, and (c) preventive social response, \(\Delta(t)\).

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. It is made available under a CC-BY-NC 4.0 International license.
works even published estimates for these quantities via manual we know now and back in June 2020, this was not the reason for the decrease in cases back then; rather the reduction of socially susceptible people is due to preventive measures. Yet has been for the decrease in cases back then; rather the reduction of socially susceptible people is due to preventive measures. As we know now and back in June 2020, this was not the reason for the decrease in cases back then; rather the reduction of socially susceptible people is due to preventive measures.

Figure 2 reports curve fits and predictions of the free and controlled SIR models. The free version (Fig. 1a) fits well the data of the first wave of infections from March to June 2020, but completely fails to predict any second or further wave. This is because in a free SIR model the decay of the infected cases is only possible when the pandemic is already in recession. [As we know now and back in June 2020, this was not the reason for the decrease in cases back then; rather the reduction of socially susceptible people is due to preventive measures.] Yet has been a standard way of extracting estimates for β, α and R_0. Some works even published estimates for these quantities via manual fitting to data (5), effectively a trial-and-error approach. The authors justified this by asserting that a rigorous non-linear fitting did not follow the data as close as their approach. However, instead of imposing the SIR model and changing the fitting method to achieve agreement with the model, the disagreement with a nonlinear fit means that they should have abandoned the model.

Not only does the controlled SIR model fits better the first-wave data (inset plot, Fig. 2b), but also captures the reason for the decrease in cases from mid April to August 2020, namely a wave of social awareness (3) which effectively reduced the number of susceptible people. 3 embodies both contagion policies and the citizens efforts made to “flatten the curve”, e.g. wearing masks, reducing travelling or self-isolating. Moreover, the model predicts a sudden rise in cases when society relaxes, because the downtrend in new infections is not related with the end of the pandemic but with a temporary removal of susceptible candidates from the system. This is precisely what happened from July to September 2020, and what eventually led to the surge in cases in early September 2020. This sharp

![Figure 2](https://example.com/figure2.png)
increase immediately raised the alarm (8, 9), and \(\mathcal{S} \) started growing again, reaching a maximum effectiveness when the three-tier restrictions system was imposed (10). However, these measures were not enough to flatten the curve and a new increase appeared in December 2020 because of a gradual relaxation over the month of November. By incorporating new waves of preventive measures in \(\mathcal{S} \) the model is able to reproduce the above observations, as illustrated in Figs 2.b-e. This provides evidence of the predictive capabilities of the model.

Figures 2.c-e reveal the effects of the third lockdown imposed on January 4, 2021 and of the vaccination campaign with rates 0.1%\(\text{d}^{-1} \), 0.2%\(\text{d}^{-1} \), and 0.4%\(\text{d}^{-1} \), respectively. The trends illustrate that unless the campaign delivers \(\approx 200 \times 10^5 \) vaccines per day, a fourth wave is unavoidable. At the same time, if the vaccination rate is less than 100 \(\times 10^5 \) vaccines per day, the fourth wave will be as severe as previous ones.

Analysis of European countries’ data depicted in Fig.3, including countries severely hit by the pandemic, like Spain and Italy, reveals that virtually in all cases, the UK pattern persists and similar conclusions can be drawn. This means, social relaxation – typically two-to-three months – driving an abrupt increase of cases, followed by increased awareness and preventive measures leading to temporal stagnation, which is then followed by further growth, i.e. a third, more powerful, wave.

Methods

Population dynamics. The population is split into four groups: susceptible (\(S \)), infected (\(I \)), recovered (\(R \)) and vaccinated (\(V \)), as illustrated in Fig.1. The groups follow the delayed dynamical system:

\[
\begin{align*}
\frac{dS}{dt} &= \frac{SI}{N} \left(1 - \mathcal{A}(t) - \mathcal{T}(t - t_0)\right)\beta - \Theta(t - t_0)\nu N \\
\frac{dI}{dt} &= \frac{SI}{N} \left(1 - \mathcal{A}(t - \tau)\right)\alpha I - \mathcal{A}(t - \tau)\nu N \\
\frac{dR}{dt} &= \frac{SI}{N} \left(1 - \mathcal{A}(t - \tau)\right)\beta - \alpha I \\
\frac{dV}{dt} &= \frac{SI}{N} \left(1 - \mathcal{A}(t - \tau)\right)\alpha I - \mathcal{A}(t - \tau)\nu N
\end{align*}
\]

where \(\mathcal{A}(t) = \sum_k \eta_k \left\{ \left(1 + \text{erf}\left(-\frac{t-t_0}{\delta_k}\right)\right) - \left(1 + \text{erf}\left(-\frac{t-t_0+\tau}{\delta_k}\right)\right) \right\} \), and \(\eta_k \in [0,1] \) is the effectiveness of the preventive measures taken in the \(k \)-th wave, \(T_k \) is related to the time extension of these measures, and \(\delta_k \) are the social inertia (\(\tau \)) and relaxation (\(r \)) time scales, respectively. With \(\mathcal{A} = 0 \) and \(\nu = 0 \), Eq. (1) becomes the free SIR model. For \(\mathcal{A} \neq 0 \) we get a controlled SIR model. The initial condition used: \(I_0 = 1 \) (number of infective cases reported on January 11, 2020), \(S_0 = N - I_0 \) and \(R_0 = V_0 = 0 \). Thus fitting of five parameters is needed, and this is done at the first wave.

Training and testing the model. The full dataset, \(Y \), was re-normalised by using a linear fit, \(z = b + mx \), to the number of daily Covid-19 tests per thousand people given in Ref. (11), with \(b = 0 \) and \(m = 0.0191 \text{test}/10^5 \text{people}/\text{d} \) (from 0 to 7 test/10^5people in 366 days), so that \(Y = (1 - \frac{1}{2 + \sin x})x \). We then use non-linear least squares to fit the daily new cases \(\Delta = \frac{d(d(R) + d)}{dt} \) to the first-wave data (training dataset). This fitting yields for the free model: \(\beta = 0.211 \text{d}^{-1} \), \(\alpha = 0.102 \text{d}^{-1} \), \(\eta = 0.65 \), 1404, \(\delta_1 = 21 \text{d} \) and \(\delta_2 = 45 \text{d} \), which yields \(R_0 \approx 2.968 \). To test the models we numerically integrate Eq. (1) for both cases, i.e., \(\mathcal{A}(t) = 0 \) and \(\mathcal{A}(t) \neq 0 \). The controlled-model prediction for new infections grows exponentially as of September 2020 (testing dataset) when the first wave of preventive measures would vanish according to the summer trend. With \(\delta_1 \) fixed from the first wave, we fit the parameters \(\eta \) and \(T \) of a second social response to unveil the behavioural changes adopted against the apparent second wave. Training a maximum of social response by mid-October 2020. This is in perfect agreement with the declaration of the UK Prime Minister “seeing a second wave” on September 18, 2020 (9), and his statement on coronavirus where the three-tier restrictions system was imposed on October 12, 2020 (10).

For predictions as of January 2021, we introduce a third wave of measures aiming at 70% of effectiveness, i.e. \(\eta = 0.70 \), starting in January and ending in April 2021, \(T = 90 \text{d} \), which represents the current contagion policies being taken by the UK government. Finally, we adopt three potential values for \(\nu \):

\[
\nu_1 = 0.1 \% \text{d}^{-1} \left(\sim 7.2 \times 10^{-4} \text{d}^{-1}\right), \quad \nu_2 = 0.2 \% \text{d}^{-1} \left(\sim 1.4 \times 10^{-3} \text{d}^{-1}\right), \quad \nu_3 = 0.4 \% \text{d}^{-1} \left(\sim 2.0 \times 10^{-3} \text{d}^{-1}\right),
\]

with \(\nu_3 \) being the current vaccination target since January 2021 (13).

Data Availability. All data for the analysis was collected from https://www.worldometers.info

ACKNOWLEDGMENTS. We acknowledge financial support from the Engineering and Physical Sciences Research Council of the UK via grant No. EP/L020564/1.
