Vaccination strategies for minimizing loss of life in Covid-19

in a Europe lacking vaccines

Patrick Hunziker

University Hospital Basel; University of Basel, Switzerland; CLINAM Foundation

Brief title: “Covid-19 vaccination strategies”

Contact:

Patrick Hunziker, MD
Intensive Care Unit
University Hospital Basel
Petersgraben 5
4031 Basel
email: hunzikerp@swisssnano.org
direct phone: +41 79 463 64 34
fax: +41 61 265 53 00

Author’s contributions: PH performed all aspects of study design, performance and writeup

Funding: Self-funded

Conflicts of interest: None

Ethics committee approval: Does not apply

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background: We aimed at identifying vaccination strategies that minimize loss of life in the Covid-19 pandemic. Covid-19 mainly kills the elderly, but the pandemic is driven by social contacts that are more frequent in the young. Vaccines elicit stronger immune responses per dose in younger persons. As vaccine production is a bottleneck, many countries have adopted a strategy of first vaccinating the elderly and vulnerable, while postponing vaccination of the young.

Methods: Based on published age-stratified immunogenicity data of the Moderna mRNA-1273 vaccine, we compared the established “one dose fits all” approach with tailored strategies: The known differential immunogenicity of vaccine doses in different age groups is exploited to vaccinate the elderly at full dose, while the young receive a reduced dose, amplifying the number of individuals receiving the vaccine early. A modeling approach at European Union scale with population structure, Covid-19 case and death rates similar to Europe in late January 2021 is used.

Results: When the elderly were vaccinated preferentially, the pandemic initially continued essentially unchecked, as it was dominantly driven by social contacts in other age groups. Tailored strategies, including regular dosing in the elderly but reduced dose vaccination in the young, multiplied early vaccination counts, and even with some loss in protection degree for the individual person, the protective effect towards stopping the pandemic and protecting lives was enhanced, even for the elderly.

Conclusion: Protecting the vulnerable, minimizing overall deaths and stopping the pandemic is best achieved by an adaptive vaccination strategy using an age-tailored vaccine dose.
Introduction

Faced with the Covid-19 pandemic, vaccines against SARS-CoV2 have been developed in unprecedented speed, and mRNA vaccines like the Pfizer BNT162b2 vaccine\(^1\) (Tozinameran) and the Moderna mRNA-1273 vaccine\(^2\) have shown excellent immunogenicity, safety and protection against disease, and data indicating that they protect against virus transmission are accumulating. While vaccines development was rapid, vaccine production capacities are now the key bottleneck for national and global deployment. During development, dose optimization of the Moderna vaccine has been performed towards optimal protection of the elderly, exploring doses of 25, 50, 100 and 250ug. Laboratory-assessed immunity levels typically exceeded those seen in the plasma of convalescent patients who have a protection of 83% for at least 5 months\(^3\). Immunogenicity in the young is even higher than in the elderly. Vaccination study populations are protected against infection at least four months despite some decline of the measured immunity parameter in the elderly. We noted that in the young, a 25µg dose of the Moderna vaccine elicited an immune response level at day 57 that was comparable to the immune response seen in patients older than 71 years at day 119 (Table), a group in which the vaccine achieves >86% protection. The interpretation that good immunogenicity translates into good protection is very plausible,\(^4\), implying that in the young having a stronger immune response, a lower vaccine dose may suffice to achieve sufficient protection. We therefore hypothesized that exploiting age-tailored vaccination dosing may allow multiplying the proportion of persons early and thereby may lead to improved pandemic control.
Methods

Data reported by Moderna on phase I, II, and III studies were analyzed. Population size and age structure was modeled according to the European Union with a population of 447,706,200, split into a cohort > 64 years “old” of 90,436,652 and 357,269,547 “young” persons ≤64, as reported in the EU Eurostat repository. European Covid-19 case numbers were from the Johns Hopkins University CSSE dataset and were used to initialize the model to 195,000 per day as per mid January 2021. The infectious window after Covid-19 infection was assumed to be day one to day 7 days after infection. The interval from vaccination to protection was 10 days. Protective efficacy for the 100µg vaccine dose was 95.6% in the young and 86.2% in the elderly as reported; the vaccine efficacy of a 25µg dose in the young was set to 86.2% based on the levels of immunogenicity achieved in the young compared to the immune response in the elderly vaccinated with 100µg. Young persons were assumed to have 80% of their social contacts with the “young” and 20% with the “old”, while for the old, contacts to other elderly and the young were each assumed to be 50%. Daily transmissions for each age group were derived from the daily proportion of “risk contacts”, i.e. encounters of non-immune persons with infectious persons of either age group, plus, weighted by vaccine protection level, of “semi-risk contacts”, i.e. encounters of a vaccinated person with an infectious person. Deaths were based on the case fatality rate in the Europe in December 2020/January 2021, approximately 2.5% during a quasi-steady state in case numbers. The age distribution of Covid-19 deaths was computed from age-dependent mortality taken from the European Center for Disease Prevention and Control situation dashboard.

Results

Results are summarized in the Figure. A “one dose fits all” vaccination strategy starting with the elderly allows an initially unchecked propagation of the virus in younger population segments with high “risk contact” numbers, as shown in figure, panel A; a large number of infections in the young inevitably spreads to some degree to the elderly (who are not 100% protected by the vaccine), with case numbers above 100,000 per day up to day 53, 199,000 cumulative deaths over 100 days and death rates of >1000 deaths per day until day 80. In contrast, a strategy initially vaccinating the young only, at full vaccine dose, shown in panel D, stops the pandemic earlier with case numbers falling below 100,000 on day 36, but
lacking protection for the vulnerable leads to 226'000 deaths, with death rates falling below 1000 on day 84.

Remarkably, an adaptive strategy using half the available vaccine stock for vaccinating the elderly at full vaccine dose and using the other half at a reduced dose (figure, panel B) to immunize a much larger number of younger people, even at the price of a somewhat reduced vaccine efficacy per individual person, is much more effective in reducing case numbers and deaths in each age group. Using a quarter dose for the young (25µg), assuming 86.4% protection, allows shortening the time to <100'000 cases to 24 days and reducing deaths to 165'000 at 100 days. This scenario also reaches the milestone of <1000 deaths per day significantly faster, in 61 days.

Distributing a quarter dose (25µg) only to the young (i.e., not vaccinating the elderly; figure, panel C), also assuming 86.4% protection, reduced deaths to 148'000, protecting the elderly indirectly by shortening the pandemic, with <100'000 cases per day reached on day 18 and <1000 deaths per day reached on day 52.

Results proved to be robust against varying input parameters. Decreasing vaccine efficacy, in particular below 80%, required more intense social contact reduction to make each strategy perform to the same degree.

Discussion

Combining demographic and recent epidemiologic data from Europe with published immunity responses of vaccinated persons from different age groups, we find that vaccination strategies tailored to the characteristics of the existing vaccines have a large potential for saving more lives and shortening the duration of the pandemic, compared to the current “one dose fits all” approach and the current strategy of prioritizing the elderly.

The different pattern of social contacts in the young, the strong immunogenicity of the Moderna vaccine in the young and its excellent protective effect at full dose in the elderly inspire an adaptive strategy that uses the established dose in the elderly, but in parallel, applies a reduced vaccine dose to a much larger number of younger people, exploiting its extremely good efficacy in this population segment. In this
model, this approach allows an acceleration of the vaccination campaigns, resulting in fewer deaths and shorter duration of the pandemic emergency.

The significant effectiveness of the Moderna vaccine already at moderate immune response level, evident by its effectiveness in preventing disease already at 10 days after vaccination with a single standard dose, before the full immune response is reached, supports these findings. Experiences with “fractional” dose vaccination in other viral diseases further lend credibility to the results.

Notably, “protecting the vulnerable” is achieved best, when not only the vulnerable, but all population segments are immunized, in particular those that contribute more to drive the pandemic than the elderly. A large number of infected young people combined with the imperfect protection achievable by vaccination in the elderly still represents a relevant threat to the vulnerable, rendering the strategy focusing on the elderly-first inferior to stopping the pandemic through a comprehensive approach.

More effective vaccination strategies may also have profound repercussions on preserving functionality of healthcare systems and on economies. Hopefully, they will also accelerate access to vaccination in poorer countries in a time when nations risk to quarrel over this precious resource, although Covid-19 can only be overcome by global collaboration.

While the Moderna vaccine appears to retain full activity for the mutant of concern B.1.1.7 that currently spreads rapidly, thereby rendering the proposed strategy rational also with this new threat, other coronavirus mutations that might evade the immune response imparted by prior infection or by the current vaccines are feared to arise soon and may require additional shots with modified vaccines, and thereby will put further strain on production lines, adding considerable urgency to optimizing vaccine strategies now.

The study is limited because it is based on reinterpretation and extrapolation of existing data and includes the assumption of a degree of clinical efficacy of a reduced vaccine dose based on laboratory surrogate parameters, while safety has already been documented for these doses. The proof of benefit of such an approach for society is amenable to straight-forward study designs that are immediately implementable:
Allocate entire cities or countries to this approach, and count the cases, death rates and outbreak duration. The reported analyses are currently limited to the Moderna vaccine and cannot simply be extrapolated for other vaccine brands and types without more detailed study on their dose-immune response relations. Other vaccines that show high efficacy, e.g. the Pfizer Tozinameran vaccine, are potential candidates for such an approach if the gain in doses exceeds the relative loss in individual protection; for the Pfizer vaccine, such in-depth analyses may be performed if detailed immunogenicity data at multiple doses becomes available.

As this approach is an “off-label” use of a registered drug, applying it in patients will require specific permits from relevant ethics committees and regulatory bodies.

Conclusion

Adaptive vaccination strategies, namely fully dosing a vaccine in the elderly, vulnerable, and concomitantly applying the Moderna vaccine at quarter dose in the remainder of the population, or even a reduced dose strategy focused on the young only, will multiply the number of persons receiving the vaccine early, may contribute to stopping the pandemic faster and have the potential to save many lives.

Evidently, the vulnerable are best protected by protecting society as a whole.
Table. Reported immune responses elicited by the Moderna vaccine.

Note that the 25µg dose in the <55 year old elicits a similar or stronger immune response compared to the >71 years old at 119 days, and compares favorably with the immune levels found in convalescent plasma.

S-2P is the antigen encoded by the vaccine. RBD ELISA measures receptor-binding domain binding antibodies. PsVNA\textsubscript{50} is the pseudovirus neutralization assay’s 50% inhibitory dilution. PRNT\textsubscript{80} is the live-virus plaque-reduction neutralization testing assay’s 80% inhibitory dilution.

<table>
<thead>
<tr>
<th></th>
<th>>71y</th>
<th><55y</th>
<th>Convalescent plasma</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[Widge, NEJM 2021]</td>
<td>[Jackson, NEJM 2020]</td>
<td></td>
</tr>
<tr>
<td>2x 100µg, day 119</td>
<td>2x25µg, day 57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-2P ELISA</td>
<td>299’751</td>
<td>142’140</td>
<td></td>
</tr>
<tr>
<td>RBD ELISA</td>
<td>157’964</td>
<td>183’652</td>
<td>37’857</td>
</tr>
<tr>
<td>PsVNA\textsubscript{50}</td>
<td>109</td>
<td>80·7</td>
<td>109·2</td>
</tr>
<tr>
<td>PRNT\textsubscript{80}</td>
<td>165</td>
<td>339·7 (d43)</td>
<td>158·3</td>
</tr>
</tbody>
</table>
Figure legend:

Impact of different vaccination strategies on Covid-19 cases, deaths and the propensity of “risk contacts”.

Panel A) vaccinating the elderly first leaves large population segments unprotected. Note that the prolonged spread of infection in the non-vaccinated young spills over to frequent infections and deaths in the elderly that are not yet vaccinated or only partly protected by the vaccine.

Panel B) using half of the vaccine supply to vaccinate the elderly at full dose, and using the other half of the supply to vaccinate the young with a quarter dose, leads to a faster decline in infection and fewer deaths, even in the elderly.

Panel C) Using all vaccines for vaccinating the young with a quarter dose leads to faster reduction of overall case numbers, and thereby, indirectly, also protect the elderly after a sufficient overall vaccination rate is achieved, yielding low overall deaths.

Panel D) Compared to the best scenarios, using the full vaccine dose for vaccinating only the young (“the frequent transmitters”) is slower compared to the quarter dose strategies in stopping the pandemic despite being more protective for the individual person, and is associated with substantial death counts in the elderly.

“Risk contact” designates an encounter of a non-immune with an infectious person, and “semi-risk contact” designates an encounter of a vaccinated person with an infectious person, taking into account that vaccine protection is less than 100%. X-axes are days. Blue labels show the day when case numbers fall below 100’000. Black labels show the day death numbers fall below 1000.
Figure

A) "Vaccinate the old >64 years first, using full vaccine dose"

B) "Half of vaccine to the old >64 years at full dose, half to the young ≤64 years at quarter dose"

C) "All vaccines to the young ≤64 years used at quarter dose"

D) "All vaccines to the young ≤64 years used at full dose"
18 Wu K, Werner AP, Moliva JJ, et al. mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants. *medRxiv* 2020; DOI:10.1101/2021.01.25.427948
Research in Context

Evidence before this study

As source of demographics of Europe, we used the official EU Eurostat repository. For epidemiology of the Covid-19 pandemic, the Johns Hopkins University CSSE dataset and the European Center for Disease Prevention and Control situation dashboard were used. For immunogenicity of the Moderna vaccine, PubMed was used to identify the published data related to “mRNA-1273”; a Bing search retrieved an additional presentation slide set from Moderna about its testing pipeline. Vaccine supply limitations are amply referred to in official statements published by the media outlets. Efficacy for the Moderna vaccine at regular dose is 95.6% (95% CI, 90.6-97.9) for those up to 64 years and 86.4% (95% CI, 61.4-95.2%) for those above, as reported in the pivotal phase 3 publication. Immunogenicity data are given in the table.

Added value of this study

Using an epidemic model initialized with EU-wide population, Covid-19 case and death data from mid-January 2021, alternative, up to now unexplored vaccination strategies were defined and compared to the currently preferred approach that consists of initially focussing vaccination on the elderly because vaccine supplies are insufficient for a broader initial use. The study addressed several alternative vaccination strategy scenarios, in particular the use of a reduced vaccine dose in the group that showed the strongest immune response to vaccination, namely those < 65 years.

Implications of all the available evidence

Vaccination, combined with societal measures up to lock down, will be the mainstay of mastering the SARS-CoV2 pandemic. The available evidence, including the findings reported here, imply that tailored vaccination schemes adapted to the specific characteristics of the vaccine, the demographics and the immune response of population subgroups have a large potential for reducing case numbers and deaths in Europe.
Supplementary material

Model construction
The model has discrete structure with daily assessment for 100 consecutive days.
It is initialized with the population size of the U.S.A split in two age segments, ≤ 64 years (“young”) and >64 years (“old”), using the daily infection rate and the cumulative number of infections documented in mid-January 2021, based on the Johns Hopkins data repository.

Contact modelling between persons assumes that a “young” person has 80% of its social encounters with the “young” and 20% with the “old”, while “old” persons have 50% of its social encounters with the “old”. “Risk contacts” are defined as the proportion of encounters (relative to day 1) of noninfected persons with persons newly infected within the past 7 days, and “Semi-Risk contacts” are defined as the proportion of encounters of immune (natural or post vaccination) persons with newly infected persons, using separate computation for each age group. Daily contact frequency is conservatively chosen as equal in both groups. Selecting a larger numbers in the young would further underline the key findings of the study.

The number of new infections for is computed as proportional to the risk contacts, plus the semi-risk contacts scaled by the degree of immunity (i.e., effectiveness of the vaccination for this group, or natural immunity). The infectious window is on day 1 to 7 after infection.

The number of deaths was modeled as proportional to the number of new infections, with a time lag of 14 days.

1 million vaccine full vaccine sets (2*100 µg) per day are used. In the different scenarios, they are either applied as 1 million full vaccinations of the >64 year old person per day in the standard vaccination strategy until day 65% of the elderly population is vaccinated, followed by 1 million full vaccination doses in the young. In the other scenarios, 500’000 vaccinations are performed in the elderly and 2 million vaccinations at quarter dose in the young in the adaptive scheme, or 4 million vaccinations at quarter dose limited to the young, or 1 million vaccinations at full dose limited to the young, respectively. Vaccinated persons became protected against infection on day 10, to a degree corresponding to the level of immunity conferred by the given vaccine dose and age group as described in the methods paragraph.

Counts of population, newly infected, infectious, immune, susceptible, vaccinated persons and deaths were updated daily.