Resource Allocation for Different Types of Vaccines against COVID-19:

Tradeoffs and Synergies between Efficacy and Reach

Daniel Kim

H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, email: dkim608@gatech.edu

Pelin Pekgün

Moore School of Business, University of South Carolina, Columbia, SC 29208, email: pelin.pekgun@moore.sc.edu

İnci Yildirim

Department of Pediatrics, Section of Infectious Diseases and Global Health, Yale School of Medicine and Yale Institute of Global Health, 1 Church Street, New Haven, CT 06510, email: inci.yildirim@yale.edu

Pınar Keskinocak

H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, email: pinar@isye.gatech.edu

Corresponding Author:

Pınar Keskinocak

H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, email: pinar@isye.gatech.edu

Word Count (Abstract): 300 Word Count (Text): 4818

Figure/Table Count: 7 References Count: 22

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract:

Objective: During the COVID-19 pandemic, multiple vaccine candidates were developed in record time. The primary decision for a vaccine-ordering decision-maker then becomes how to allocate limited resources between different types of vaccines. One may expect that available resources should be favored towards a vaccine with high efficacy if it can be distributed as widely as any other vaccine. However, if a high efficacy vaccine consumes more resources than a vaccine with lower efficacy due to distributional challenges, the decision is no longer trivial as a widespread vaccination is necessary to reach herd immunity.

Methods: We adapt a Susceptible-Infected-Recovered-Deceased (SIR-D) model with vaccination and simulate the level of infection attack rate (IAR) under different resource consumption ratios between two vaccine types with different resource allocation decisions.

Results: We find that when there are limited resources, allocating resources entirely to a vaccine with high efficacy that becomes available earlier than a vaccine with lower efficacy that becomes available later does not always lead to a lower IAR, particularly if the former can immunize less than a range of 5.9% to 6.4% of the population (with the selected study parameters) before the latter becomes available. Sensitivity analyses show that this result stays robust under different efficacy levels for the higher efficacy vaccine.

Conclusions: Our results show that the reach of a vaccine to be distributed widely under limited resources is a key factor to achieve low IAR levels, even though the vaccine may be of higher efficacy and may become available earlier than others. Manufacturing a novel vaccine lacking a fully developed suitable infrastructure for its effective distribution and storage may impact the potential benefits of the immunization program. Understanding the tradeoffs between efficacy and reach is critical for resource allocation decisions between different vaccine types to maximize the improvement in health outcomes.
Declaration of interests

☐ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

☒ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Dr İnci Yildirim reported being a member of the mRNA-1273 Study Group. Dr. Yildirim has received funding to her institution to conduct clinical research from BioFire, MedImmune, Regeneron, PaxVax, Pfizer, GSK, Merck, Novavax, Sanofi-Pasteur, and Micron.

Dr Pinar Keskinocak received funding to her institution from Merck to conduct non-clinical research.

The funders played no role in the study design, data collection, analysis, interpretation, or in writing the manuscript.
Keywords: resource allocation; vaccination; disease modeling; COVID-19; vaccine efficacy

Preference for colors in Table 3, Figure 1, Figure 2, Figure 3 and Figure 4: Online Only

Introduction

In December 2019, the outbreak of the novel coronavirus (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), was first detected in Wuhan, China. As of mid-January 2021, approximately 96 million cases have been reported worldwide including resource limited populations [1]. An efficacious vaccine is considered essential in addition to mitigation techniques such as wearing a mask or physical distancing (keeping a 6-feet distance away from others).

Coalition for Epidemic Preparedness and Innovation (CEPI) reported in September 2020 that there were 321 COVID-19 vaccine candidates [2]. As of January 2021, 68 of those candidates are in Phase 1-3 clinical trials and seven have been approved and used throughout the world [3]. The U.S. government and Biomedical Advanced Research and Development Authority (BARDA) have funded and secured a large quantity of vaccine doses that were enough to vaccinate the entire U.S. population from major vaccine manufacturers, three of which have reported achievements from their Phase 3 clinical trials in developing vaccines against COVID-19 without serious side-effects [4, 5]. Pfizer & BioNTech and Moderna announced mRNA-based vaccines with average efficacies of 95% and 94.5%, respectively, while AstraZeneca announced its adenovirus-vectored vaccine with average efficacy of 70% [6, 7]. All of these efficacies meet the minimum efficacy threshold established by the U.S. Food and Drug Administration (FDA). Pfizer and Moderna received emergency use authorizations (EUA) from FDA on December 11, 2020 and December 18, 2020, respectively, and other manufacturers are still seeking for EUA as
of January 2021. The chief adviser to Operation Warp Speed (OWS) also stated that Johnson &
Johnson could have enough data to seek for EUA from FDA in January 2021 [8].

Despite the high efficacies, mRNA-based COVID-19 vaccine candidates may face
critical supply-chain challenges from distribution to storage since they require cold temperatures
to maintain their aptness. For instance, Pfizer & BioNTech and Moderna’s vaccines need to be
stored at about minus 70 Celsius degrees and minus 20 Celsius degrees, respectively [9].
Advanced cold-chain logistics and storage solutions are not available in many regions, which can
impede mass vaccine distribution efforts while maintaining quality. On the other hand,
adeno-virus-vector COVID-19 vaccine candidates, despite their lower efficacy than mRNA-based
vaccines, can be stored at 2-8 Celsius degrees, which is the temperature seasonal flu vaccine
requires, and therefore, their mass distribution is expected to be easier [9, 10]. The reach of a
vaccine, the ability to distribute it widely, which can be impeded by supply-chain challenges, can
impact vaccine coverage and the proportion of the population who have access to the vaccine
jeopardizing infection control and achievement of herd immunity through vaccination.

Having an efficacious vaccine approved for use will be of little use if not enough people
can have access to the vaccine. Both having the efficacious vaccine and having a high
vaccination coverage will be essential. With these insights, governments, vaccine manufacturers
and researchers have been working on developing effective COVID-19 vaccine ordering and
distribution strategies. Specifically, vaccine prioritization—which group of people should be
prioritized for vaccination—has gained notable attention [11]. However, there has not been
enough attention on which vaccine, among different candidates, should be prioritized for
ordering and administering, which would have an implication on the allocation of limited
available resources. Considering the high efficacy of mRNA-based vaccines and lower efficacy
of other types of vaccines, should a vaccine-ordering decision maker always favor an mRNA-based vaccine despite its potential logistics and storage challenges? Or should lower efficacy vaccines, which can be distributed widely using existing vaccine logistics and storage infrastructure, be favored?

The main goal of this study is to understand how to allocate limited resources between different types of vaccines considering the tradeoffs and synergies between efficacy vs. reach. Specifically, we seek to answer the following question: “Is it worth ordering a vaccine with low-efficacy that becomes available later if it can be distributed more widely than a vaccine with high-efficacy that becomes available sooner but consumes more resources for distribution or storage?” Using a modified Susceptible-Infected-Recovered-Deceased (SIR-D) model, we simulate the health outcomes, infection attack rate (IAR) and the peak of daily infections (i.e., the highest percentage of the population who get newly infected on a single day), under different resource consumption ratios between two types of vaccines with different resource allocation decisions. The results of this study are aimed to guide decision makers in vaccine ordering and distribution with their resource planning decisions during a pandemic when multiple types of vaccines become available.

Methods

We consider two types of vaccines that become available at different points of time. The vaccine with high efficacy (denoted vaccine-H, hereafter) becomes available sooner than the vaccine with lower efficacy (denoted vaccine-L, hereafter). We assume that both vaccine types require a single dose and an individual who receives an effective vaccine of either type becomes immunized immediately. In our model, there is a fixed and uniform number of resources (K) available each day. We consider the resource allocation decision for each vaccine type ($a_H, a_L \in$
[0,1], \(a_H + a_L = 1\), assuming that it cannot be modified once it is committed. Thus, the resource allocation decision directly defines the quantity of each vaccine type that could be administered each day. We normalize the resource consumption requirements of each type of vaccine such that for each unit of resource, while one person can receive one unit of vaccine-L, only a “fraction of one person (\(\lambda\))” can receive one unit of vaccine-H. We denote this ratio as the resource consumption ratio (\(\lambda < 1\)), which indicates how widely vaccine-H can be distributed relative to vaccine-L given limited available resources. We set a range of 0.1 to 0.7 for the resource consumption ratio in our simulations. We present the daily quantity of each vaccine type that can be administered as a function of the allocation decision and the resource consumption ratio in Table 1.

<table>
<thead>
<tr>
<th>Available Vaccine</th>
<th>Vaccine-H</th>
<th>Vaccine-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vaccine-H</td>
<td>(a_H K)</td>
<td>(a_H \lambda K)</td>
</tr>
<tr>
<td>Vaccine-H and L</td>
<td>(a_H K)</td>
<td>(a_H \lambda K)</td>
</tr>
<tr>
<td></td>
<td>(a_L K)</td>
<td>(a_L \lambda K)</td>
</tr>
</tbody>
</table>

\(a_H, a_L \in [0,1]\): Resource allocation to vaccine-H and vaccine-L, respectively
\(\lambda\): Resource consumption ratio
\(K\): Daily resources

In our main study, we set the efficacy of vaccine-H at 90% and vaccine-L at 70% and examine different efficacy levels of vaccine-H, keeping efficacy of vaccine-L at 70%, within the range of 85% to 95% in the sensitivity analyses reported in Supplemental Materials. These vaccine efficacies meet the minimum COVID-19 vaccine efficacy threshold (=50%) established by the FDA and are motivated from the currently projected efficacies of the COVID-19 vaccine candidates. Note that if we were to assume that both vaccine types became available at the same time, the decision would become trivial: choose the resource allocation such that the number of immunized individuals on each day is maximized. Thus, we choose a non-trivial setting where the high efficacy vaccine becomes available earlier; vaccine-H and vaccine-L become available
on days 209 and 239 from the start of the pandemic, respectively. We also examine different
days of availability for vaccine-L, keeping that of vaccine-H on day 209, within the range of 239
to 259 in the sensitivity analyses reported in Supplemental Materials. We assume that during the
period when only vaccine-H is available (from day 209 to 238), any unused daily resources are
lost.

In addition to these key parameters of interest, we choose epidemiological parameter values,
fixed throughout the simulations, based on the SARS-CoV-2 characteristics. You et al. (2020)
report that the infectious period of COVID-19 is estimated to be an average of 13.96 days with a
standard deviation of 5.20 days [12]. Hence, we set the recovery rate of the disease to be 0.0716.
According to Johns Hopkins Coronavirus Research Center, the case fatality ratio (CFR), which is
the ratio of reported deaths to reported cases, is approximately 2% in the United States [13].
Considering this, we set the death rate of the disease to be 0.0015, at which CFR is
approximately 2.04% in our simulations. Severity of a disease is often described by reproduction
number (R_t) by epidemiologists. The Centers for Disease and Prevention (CDC) has developed
COVID-19 Pandemic Planning Scenarios and suggested three different basic reproduction
numbers: 2.0, 2.5 and 4.0 [14]. We use the reproduction number of 2.0 due to a few reasons,
even though the reproduction number of 2.5 is recommended by the CDC as the best parameter
value. In particular, facing a pandemic with a highly infectious disease, such as in the case of
COVID-19, many non-pharmaceutical interventions, such as mask mandates and physical
distancing, are often implemented, which can contribute to a considerable decrease in the
reproduction number [15]. While we do not model such non-pharmaceutical interventions in our
simulations, we instead consider a lower reproduction number. In addition, we also compare the
number of daily infections and cumulative infections through day 208 (before the distribution of
vaccine-H) in our simulations to the COVID-19 datasets from [16], which estimate and forecast
the number of infected people including those who are not tested or confirmed. Assuming that
both vaccine types become available for distribution before the peak of daily infections, our
simulation results under a reproduction number of 2.0 are aligned with the estimates in these
public datasets. Thus, we conclude that a reproduction number of 2.0 is a more realistic choice
for our simulations. To set the reproduction number at 2.0, considering the recovery rate and
death rate, we set the disease-transmission rate to be 0.1462.

We adapt an SIR-D compartmental model to portray the trajectory of an infectious disease
and the number of infections averted by a vaccine. SIR-D model is a simplified and deterministic
mathematical model of infectious diseases and classifies people into different compartments
based on their health status at each time point. Transitions among different compartments are
governed by ordinary differential equations given the epidemiological and vaccine parameters
defined previously. Susceptible population enters the Infected compartment once they make
infectious contacts with the infected population and become infectious themselves. Infected
population either recovers from the disease and enters the Recovered compartment or die and
enter the Deceased state.

We add four new compartments to the SIR-D model. Susceptible population who receives
vaccine i (= H or L) enters either ‘Vaccinated-Susceptible-i’ or ‘Immunized-i’ compartment.
Those who receive effective vaccine i are protected from the virus and enter the Immunized-i
compartment. Those who receive vaccine i but do not develop enough antibodies to fight off
infection (i.e., ineffective vaccine) enter the ‘Vaccinated-Susceptible-i’ compartment. We make
several assumptions in the model:
• Vaccinated-Susceptible-H and Vaccinated-Susceptible-L populations are unaware of their susceptibility and do not get vaccinated again.

• Vaccinated-Susceptible-H and Vaccinated-Susceptible-L populations have the same capability of being infected as (unvaccinated) susceptible population.

• Decision makers can identify which individual is in which compartment. For instance, if an individual receives vaccine-H, the decision maker knows whether the individual has received effective vaccine or ineffective vaccine.

• The entire quantity of a vaccine is administered each day unless there is no longer a susceptible population or the simulation ends.

We run the simulation using R software with a population size of 10.6 million (approximate population of the state of Georgia [17]). We initialize the simulation such that 0.000001% of this population is infected and the rest are susceptible on day 1. The decision maker initially acquires the total supply of resources equivalent to the population size and plans to use the resources uniformly over 180 days (i.e., daily resource $K = 10.6$ million / 180). The simulation is run over a one-year planning horizon with varying resource allocations between the two vaccine types $(a_H, a_L; a_H + a_L = 1)$ within the range of 0 to 1 with a discrete step size of 0.1, and varying resource consumption ratios within the range of 0.1 to 0.7 with a discrete step size of 0.02. We evaluate the impact of a resource allocation policy using IAR as the main health outcome.

Results

Our simulations show that if no vaccines are introduced, approximately 79.84% of the population is infected with the disease. In addition, about 1.29% of the population is newly infected at the peak of the daily infections on day 249 from the start of the pandemic, while the number of infected individuals is the highest on day 259 with 15.61% of the population infected.
In the simulations with the vaccines, vaccine-H and vaccine-L are introduced on days 209 and 239, respectively, which is before the peak of daily infections. On day 208 (i.e., one day before vaccine-H becomes available), the cumulative number of cases is at approximately 4.15% of the population, of whom 2.03% actively spread the disease to the susceptible population.

Table 2 shows the estimated percentage of the population that become immunized each day as a result of receiving effective vaccination, the quantity of which varies under different resource consumption ratios in the range of 0.34 to 0.4 with different resource allocation decisions. As the proportion of resources allocated to vaccine-H decreases linearly, the proportion of daily immunized population with vaccine-H decreases linearly, while that with vaccine-L increases linearly.

Table 2: Percentage of daily immunized population under different resource allocation decisions and consumption ratios

<table>
<thead>
<tr>
<th>Fraction of Resources Allocated to Vaccine H and L (a_H, a_L)</th>
<th>Immunized with Vaccine-H (%) Resource Consumption Ratio (λ)</th>
<th>Immunized with Vaccine-L (%)</th>
<th>Total Daily Immunized Population (Day 239 – 365)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1, 0)$</td>
<td>0.17 0.18 0.19 0.20</td>
<td>0</td>
<td>$[0.170, 0.200]$</td>
</tr>
<tr>
<td>$(0.9, 0.1)$</td>
<td>0.153 0.162 0.171 0.18</td>
<td>0.039</td>
<td>$[0.192, 0.219]$</td>
</tr>
<tr>
<td>$(0.8, 0.2)$</td>
<td>0.136 0.144 0.152 0.16</td>
<td>0.078</td>
<td>$[0.214, 0.238]$</td>
</tr>
<tr>
<td>$(0.7, 0.3)$</td>
<td>0.119 0.126 0.133 0.14</td>
<td>0.117</td>
<td>$[0.236, 0.257]$</td>
</tr>
<tr>
<td>$(0.6, 0.4)$</td>
<td>0.102 0.108 0.114 0.12</td>
<td>0.156</td>
<td>$[0.258, 0.276]$</td>
</tr>
<tr>
<td>$(0.5, 0.5)$</td>
<td>0.085 0.090 0.095 0.10</td>
<td>0.194</td>
<td>$[0.279, 0.294]$</td>
</tr>
<tr>
<td>$(0.4, 0.6)$</td>
<td>0.068 0.072 0.076 0.08</td>
<td>0.233</td>
<td>$[0.301, 0.313]$</td>
</tr>
<tr>
<td>$(0.3, 0.7)$</td>
<td>0.051 0.054 0.057 0.06</td>
<td>0.272</td>
<td>$[0.323, 0.332]$</td>
</tr>
<tr>
<td>$(0.2, 0.8)$</td>
<td>0.034 0.036 0.038 0.04</td>
<td>0.311</td>
<td>$[0.345, 0.351]$</td>
</tr>
<tr>
<td>$(0.1, 0.9)$</td>
<td>0.017 0.018 0.019 0.02</td>
<td>0.350</td>
<td>$[0.367, 0.370]$</td>
</tr>
<tr>
<td>$(0, 1)$</td>
<td>0 0 0 0</td>
<td>0.389</td>
<td>0.389</td>
</tr>
</tbody>
</table>

Vaccine-H and Vaccine-L become available on days 209 and 239, respectively.

When the vaccine of a given type is not available, no susceptible population becomes immunized with that vaccine.

Table 3 shows the estimated IAR (rounded to four significant figures) under different resource consumption ratios in the range of 0.34 to 0.4 with different resource allocation decisions.

* Total daily immunized population varies depending on the resource consumption ratio.
Figure 1 depicts the results in Table 3 on a two-dimensional graph with the allocation decision as an independent variable and IAR as a dependent variable. Figure 2 presents the IAR on a three-dimensional graph with varying resource consumption ratios and resource allocation decisions. Figure 3 and Figure 4 present the number of daily infections and cumulative infections with respect to the population over time, respectively. When the resource consumption ratio is at most 0.34, allocating the resources entirely to vaccine-L (i.e., $a_H = 0, a_L = 1$) minimizes IAR. On the other hand, allocating the resources entirely to vaccine-H (i.e., $a_H = 1, a_L = 0$) minimizes IAR only when the resource consumption ratio is at least 0.4. When the resource consumption ratio is between 0.34 and 0.4, one vaccine type is not favored entirely, and a decision on how much to allocate the resources to each vaccine type needs to be made.

Table 3: Infection attack rate under different resource allocation decisions and consumption ratios

<table>
<thead>
<tr>
<th>Fraction of Resources Allocated to Vaccine-H and L (a_H, a_L)</th>
<th>Resource Consumption Ratio (λ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.34</td>
</tr>
<tr>
<td>(1, 0)</td>
<td>64.74</td>
</tr>
<tr>
<td>(0.9, 0.1)</td>
<td>64.49</td>
</tr>
<tr>
<td>(0.8, 0.2)</td>
<td>64.27</td>
</tr>
<tr>
<td>(0.7, 0.3)</td>
<td>64.07</td>
</tr>
<tr>
<td>(0.6, 0.4)</td>
<td>63.91</td>
</tr>
<tr>
<td>(0.5, 0.5)</td>
<td>63.78</td>
</tr>
<tr>
<td>(0.4, 0.6)</td>
<td>63.68</td>
</tr>
<tr>
<td>(0.3, 0.7)</td>
<td>63.60</td>
</tr>
<tr>
<td>(0.2, 0.8)</td>
<td>63.55</td>
</tr>
<tr>
<td>(0.1, 0.9)</td>
<td>63.52</td>
</tr>
<tr>
<td>(0, 1)</td>
<td>63.51</td>
</tr>
</tbody>
</table>
Figure 1: Infection attack rate under different resource allocation decisions (with different resource consumption ratios $\lambda = 0.32, 0.34, 0.36, 0.38$ and 0.40 from top to bottom). When the resource consumption ratio is at most 0.34, $\alpha_H = 0$ (equivalently, $\alpha_L = 1$) minimizes IAR, and when it is at least 0.40, $\alpha_H = 1$ (equivalently, $\alpha_L = 0$) minimizes IAR.

Figure 2: Contour plot of infection attack rate under different resource allocation decisions (α_H) and consumption ratios (λ). When comparing two different resource consumption ratios that are both less than or equal to 0.34 (i.e., $\lambda_1 < \lambda_2 \leq 0.34$), the one with λ_1 can achieve a smaller IAR with a lower α_H than the one with λ_2 and a higher α_H.

CC-BY-NC-ND 4.0 International license
It is made available under a CC-BY-NC-ND 4.0 International license.
Figure 3: Daily new infections under different resource consumption ratios (\(\lambda \)) and allocation decisions (\(a_H \) and \(a_L \)). Three scenarios are considered: (red) \(\lambda = 0.34, a_H = 1 \), (green) \(\lambda = 0.40, a_H = 1 \), and (blue) \(a_L = 1 \) (or equivalently, \(a_H = 0 \), where the resource consumption ratio has no impact on the simulation). The peak of daily infections is highest when \(a_L = 1 \).

Figure 4: Infection attack rate under different resource allocation decisions and consumption ratios over time. Same parameter values are used for the scenarios as in Figure 3. The lowest IAR among the three scenarios is achieved when \(\lambda = 0.4 \) and \(a_H = 1 \), followed by when \(a_L = 1 \) and when \(\lambda = 0.34 \) and \(a_H = 1 \).
Discussion

In this study, we simulate the trajectory of an infectious disease using a modified SIR-D model when two types of vaccines with different efficacies and resource consumption rates were introduced at different points in the horizon during a pandemic. We demonstrate that the reach of a vaccine to be distributed widely under limited resources is a key factor to achieve low IAR levels, even though the vaccine may be of higher efficacy and may become available earlier than others. A recent study modeled a similar setting with various vaccine efficacies, daily administered quantities, and reproduction numbers for the case of a single type of vaccine (either prophylactic vaccine, disease-modifying vaccine, or a composite of the two); thus, resource allocation decisions between multiple types of vaccines, as in our study, were not considered [18]. The study showed that the wider reach of a vaccine could result in significant reductions in total infections and deaths, which is consistent with our study’s findings. However, we consider two types of prophylactic vaccines—vaccine-H and vaccine-L—whose daily quantities distributed are determined by resource allocation decisions and resource consumption ratios. In addition, the vaccine with high efficacy (vaccine-H) is introduced earlier in our study than the vaccine with lower efficacy (vaccine-L), consistent with the vaccine development setting during the COVID-19 pandemic. Pfizer and Moderna’s mRNA-based vaccines with expected efficacy of at least 90%, an example of vaccine-H in our model, became the first vaccine against COVID-19 available for distribution in the United States, while other vaccine candidates, such as AstraZeneca’s adenovirus-vectored vaccine with expected efficacy of 70%, an example of vaccine-L in our model, is anticipated to be distributed later. The mRNA-based vaccines face potential logistics and storage challenges due to the requirement of extremely low temperatures, whereas the adenovirus-vectored vaccines do not. Our study captures the impact of these
challenges and thus, the reach of the vaccines through the resource consumption ratio parameter, and shows that allocating more resources to vaccine-H that becomes available earlier than vaccine-L does not always guarantee better health outcomes if vaccine-H cannot be distributed more widely than vaccine-L.

Reducing the number of infections is of paramount importance during a pandemic, which is possible via various non-pharmaceutical and pharmaceutical interventions, including prophylactic vaccines. The decline in new infections can lead to a decline in the effective reproduction number and, potentially, even the eradication of the pandemic. Hence, the implementation of effective vaccines as early as possible is of the essence. In addition, the number of individuals who can be vaccinated by either type of vaccine each day throughout the epidemic (both before and after the peak of daily infections) critically affects the potential benefits of a vaccine upon its implementation. One may intuitively expect that allocating resources primarily towards vaccine-H, which becomes available sooner, can minimize IAR. However, our simulations indicate that this may not always be true. In particular, allocating more resources to vaccine-H, when it is highly resource-intensive, leads to fewer individuals being vaccinated and a worse overall IAR. Even when vaccine-L becomes available after the peak of daily infections, this continues to hold.

Accordingly, identifying what percent of the population can be immunized with vaccine-H before vaccine-L becomes available plays a key role in the resource allocation decision between the two types of vaccines. Since we assume that the resource allocation decisions are made before either vaccine type is introduced with fixed epidemiological parameter values and vaccine attributes, as shown in Table 2, the allocation decisions can aim to either 1) immunize more people early on with vaccine-H in lieu of utilizing larger quantities of vaccine-L once it becomes
available, or 2) immunize fewer people early on with vaccine-H and more people later utilizing a
larger quantity of vaccine-L once it becomes available. If the first strategy is chosen, the decision
maker needs to increase the resource allocation to vaccine-H, and if the second strategy is
chosen, the opposite action needs to be taken. The tradeoff is that in the first strategy where more
resources are allocated to the resource-intensive but effective vaccine-H, more people can be
vaccinated with vaccine-H before vaccine-L becomes available (days 209-238). However, since
the allocation decision is made at the beginning of the horizon and cannot be modified
afterwards, this then implies fewer resources allocated to the less resource-intensive vaccine-L,
which can reach a wider population. The result is that not many people can be vaccinated with
vaccine-L once it becomes available (days 239-365), as compared to the second strategy where
more resources are allocated to vaccine-L from the beginning. Thus, in order for the first strategy
to be preferable from a health outcome perspective, vaccine-H should be able to immunize a
sufficient number of people early on (days 209-238) to exceed the health benefits from a larger
vaccine coverage in later periods (days 239-365) using the second strategy. Our results show that
if the resource consumption ratio is at least 0.4 and, consequently, at least 6% of the population
can be immunized with vaccine-H before vaccine-L becomes available, then the first strategy is
preferred, and vaccine-H should be fully allocated all available resources (i.e., $a_H = 1$). This
observation is driven by the fact that a sufficient number of individuals need to be immunized
before the peak of daily infections is reached so that fewer people become infected and spread
the disease. When we examine the number of daily infections in our simulations, the case of
$a_H = 1$ lowers the peak of daily infections if the resource consumption ratio is at least 0.16,
which is a lot lower than the 0.4 threshold for this case to hold. On the other hand, if at most
5.1% of the population could be immunized with vaccine-H before vaccine-L becomes available
(which occurs when the resource consumption ratio is at most 0.34, i.e., vaccine-H is highly resource-intensive), then the second strategy is preferred and vaccine-L should be fully allocated all available resources (i.e., $a_L = 1$). As shown in Figure 3 and Figure 4, even though the peak of daily infections is higher when $a_L = 1$ compared to the peak when $\lambda = 0.34$ and $a_H = 1$, the former peak occurs only a day before the latter peak, and the number of daily infections drops faster when $a_L = 1$, which leads overall to a lower IAR. These results remain robust under different efficacy levels of vaccine-H from 85% to 95% and different days of availability for vaccine-L from 239 to 259, as shown in Supplemental Materials, despite different resource consumption ratio thresholds based on the efficacy of vaccine-H and the availability day for vaccine-L, respectively. The different resource consumption ratio thresholds in Supplemental Materials indicate that allocating resources entirely to vaccine-H does not lead to a lower IAR, if it can immunize less than a range of 5.9% to 6.4% of the population before vaccine-L becomes available.

Our study also shows that an incorrect resource allocation, or a resource allocation that neglects the extent of resource consumption differences between the two vaccine types, can have a major impact on the total number of infections. When vaccine-H is highly resource-intensive (the resource consumption ratio is at most 0.34), a linear increase in the allocated resources to vaccine-H results in an increase in the IAR at a faster rate. For example, when the resource consumption ratio is exactly 0.34, the IAR under $a_L = 1$ is about 1.22% lower than the IAR under $a_H = 1$. For a total population size of 10.6 million as in our model, this corresponds to approximately 130,000 infections that could have been averted by allocating all resources to vaccine-L. As the resource consumption ratio declines and vaccine-H becomes even more resource-intensive than vaccine-L, the impact on IAR can even be more drastic, with differences
in IAR due to the two allocation policies increasing at a faster rate. For example, when the
resource consumption ratio is 0.24, the difference in IAR is 5.44%, while when the ratio further
declines to 0.14, the difference in IAR increases to 9.85%, corresponding to an increase from
about 570,000 infections to 1.04 million infections that could have been averted by allocating all
resources to the lower-efficacy but less resource-intensive vaccine-L. On the other hand, when
the resource consumption ratio is at least 0.4, a linear increase in the allocation of resources to
vaccine-H results in a lower IAR at a faster rate. For example, when the resource consumption
ratio is 0.4, 0.5 and 0.6, the IAR under $a_H = 1$ is 1.20%, 5.07% and 8.71% lower than the IAR
under $a_L = 1$, respectively. Thus, when vaccine-H is not as highly resource-intensive, allocation
of resources towards the high efficacy vaccine which becomes available earlier can lead to lower
IAR levels.

The resource and resource consumption can be interpreted in many ways depending on the
context. For instance, the resource could correspond to trained healthcare workers, where each
vaccine administration site needs to identify how many trained health-care workers are required
to administer vaccine-H if it requires more stringent quality monitoring and administration
processes than vaccine-L. Alternatively, the resource may refer to a fixed monetary budget,
where the resource consumption ratio would imply differences in the cost of production,
distribution, storage or deployment of vaccine-H relative to that of vaccine-L. For instance, in
September 2020, the U.S. Department of Health and Human Services (HHS) and the CDC
provided $200 million to jurisdictions for COVID-19 vaccine preparedness, which could be used
to support vaccine providers and healthcare workforce, open new vaccine administration sites
and purchase personal protective equipment [19]. A third alternative interpretation for resource
could be related to storage requirements. An administration site needs to determine how much of
its storage space (and/or available funds to purchase equipment) should be allocated to ultra-cold freezers to store vaccine-H vs. refrigerators to store vaccine-L. An ultra-cold freezer may be able to store a lower quantity of vaccine-H to preserve appropriate temperatures, relative to a refrigerator’s capacity for vaccine-L, or in order to hold the same quantity of vaccines, it may take up a larger space due to its physical structure.

If a decision maker has the means of increasing the resource consumption ratio by either reducing the resource requirements of vaccine-H relative to vaccine-L or increasing its capabilities to cover more individuals with vaccine-H given the resource requirements, this is always beneficial as it increases the daily number of vaccines that can be administered. However, increasing the resource consumption ratio may imply different levels of complexity depending on how it is defined in a given context. For example, if we refer back to the example of the ultra-cold freezers and refrigerators, increasing the resource consumption ratio could be very costly and difficult since each ultra-cold freezer costs more than $10,000. Many hospitals, especially those in rural areas, cannot afford these expensive freezers as nearly half of U.S. rural hospitals have been running deficits since early 2020, stated by the chief executive of the National Rural Health Association [20]. In addition, the CDC’s interim COVID-19 Playbook, lastly updated on October 29, 2020, also states that jurisdictions are advised not to purchase ultra-cold storage equipment [21]. These scenarios would correspond to the low values of the resource consumption ratios in our models, where the decision maker may not have much room to change those but treat as given. In such a case, the decision maker can still minimize IAR by allocating more of its available resources to the lower efficacy vaccine given its potential wider reach, rather than putting a significant effort into trying to incrementally increase the resource consumption ratio and allocate resources to vaccine-H. In our simulations, allocating all...
resources to vaccine-H with a resource consumption ratio of 0.36 gives an IAR of 63.92%. For a slightly smaller ratio of 0.34, the decision maker can still achieve an IAR lower than 63.92% with a reduction in the resource allocation to vaccine-H ($a_1 \leq 0.6$). Hence, a decision maker can still achieve the same level of IAR under a slightly higher resource consumption ratio by allocating more resources to vaccine-L. This also implies that if some individuals must be vaccinated early (e.g., frontline workers) but the resource consumption of vaccine-H is too high, the decision maker should procure the smallest amount of vaccine-H that is enough to cover those individuals, which still results in a smaller IAR than investing the entire resources into vaccine-H and/or putting effort to increase the resource consumption ratio slightly.

We also acknowledge some limitations of this study. First, our modified SIR-D model does not fully capture the potential trajectory of an infectious disease over its lifetime. There could be additional stages (compartments), such as asymptomatic infected individuals who spread the disease with a different transmission rate or symptomatic infected individuals who are either quarantined or hospitalized such that they no longer spread the virus. Second, implementation of non-pharmaceutical interventions often separates conforming individuals from the susceptible population temporarily. Individuals who decide to stop conforming to the interventions may re-enter the susceptible populations during a pandemic, as considered in [22]. Third, a virus may mutate and change the reproduction number over time. Fourth, while we assume a homogeneous population, each individual may show different characteristics to build antibodies when vaccinated or to recover from the virus, depending on factors such as demographics. Fifth, we model all vaccinations in an immediate deployment rather than a phased rollout. Even if one receives an effective vaccine, it may still take several days to fully build antibodies and fight off the infection. Lastly, our model assumes that both vaccine types require
a single dose. Most of the current vaccine candidates against COVID-19, both mRNA-based and adenovirus-vector-based, require two doses with three to four weeks apart application to provide the most protection. Since the individuals who receive the first shot experience minimal protection and could still get infected before the second shot, it would be worthwhile to simulate a two-dose vaccine scenario. In this scenario, identifying the trade-off between the resource consumption ratio and efficacy may be even more critical since the vaccines would consume more resources.

Overall, our results suggest that allocating limited resources towards a prophylactic vaccine with high efficacy that becomes available earlier than a prophylactic vaccine with lower efficacy may not always result in increased benefits of a vaccine upon its implementation, especially if the latter can be distributed more widely. In fact, this may result in a significant deterioration in the infection attack rates if the high-efficacy vaccine is highly resource intensive, relative to the low-efficacy one, such that only a few people can be vaccinated each day. Therefore, identifying the resource consumption requirements of each vaccine type as a function of their efficacy levels, timelines and disease characteristics, is critical for resource allocation decisions, as there is a clear threshold for which vaccine type should be favored, and a significant improvement in health outcomes can be achieved. Manufacturing an mRNA-based vaccine is based on a new vaccine development technology, which is expected to be one of the prime methods in the future. Therefore, building a suitable infrastructure for effective distribution and storage of mRNA-based vaccines, considering the tradeoffs and synergies between efficacy and reach, is critical. We hope that this study can provide guidance to decision makers in their resource planning for different vaccine types to better prepare for future pandemics.
References

Supplemental Exhibit 1: Identification of resource consumption ratio that favors vaccine-H and vaccine-L for the entire allocation of resources under different efficacies of vaccine-H

<table>
<thead>
<tr>
<th>Vaccine-H Efficacy (%)</th>
<th>Resource Consumption Ratio*</th>
<th>IAR when $a_H = 1$†</th>
<th>Percentage of Early-Immunized Population‡</th>
<th>Resource Consumption Ratio§</th>
<th>IAR when $a_H = 1$†</th>
<th>Percentage of Early-Immunized Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>0.36</td>
<td>64.72</td>
<td>5.10</td>
<td>0.42</td>
<td>62.43</td>
<td>5.95</td>
</tr>
<tr>
<td>86</td>
<td>0.34</td>
<td>65.35</td>
<td>4.87</td>
<td>0.42</td>
<td>62.25</td>
<td>6.02</td>
</tr>
<tr>
<td>87</td>
<td>0.34</td>
<td>65.20</td>
<td>4.93</td>
<td>0.42</td>
<td>62.06</td>
<td>6.09</td>
</tr>
<tr>
<td>88</td>
<td>0.34</td>
<td>65.04</td>
<td>4.98</td>
<td>0.42</td>
<td>61.88</td>
<td>6.16</td>
</tr>
<tr>
<td>89</td>
<td>0.34</td>
<td>64.89</td>
<td>5.04</td>
<td>0.40</td>
<td>62.49</td>
<td>5.93</td>
</tr>
<tr>
<td>90</td>
<td>0.34</td>
<td>64.74</td>
<td>5.10</td>
<td>0.40</td>
<td>62.31</td>
<td>6.00</td>
</tr>
<tr>
<td>91</td>
<td>0.32</td>
<td>65.42</td>
<td>4.85</td>
<td>0.40</td>
<td>62.14</td>
<td>6.07</td>
</tr>
<tr>
<td>92</td>
<td>0.32</td>
<td>65.28</td>
<td>4.91</td>
<td>0.40</td>
<td>61.97</td>
<td>6.13</td>
</tr>
<tr>
<td>93</td>
<td>0.32</td>
<td>65.13</td>
<td>4.96</td>
<td>0.40</td>
<td>61.80</td>
<td>6.20</td>
</tr>
<tr>
<td>94</td>
<td>0.32</td>
<td>64.99</td>
<td>5.01</td>
<td>0.38</td>
<td>62.45</td>
<td>5.95</td>
</tr>
<tr>
<td>95</td>
<td>0.32</td>
<td>64.85</td>
<td>5.07</td>
<td>0.38</td>
<td>62.29</td>
<td>6.02</td>
</tr>
</tbody>
</table>

* Under any lower resource consumption ratio, vaccine-L receives the entire allocation.
† IAR under the specified resource consumption ratio (When $a_L = 1$, IAR is fixed at 63.51% regardless of the resource consumption ratio).
‡ Percentage of the population who become immunized with vaccine-H between days 209 and 238 (i.e., before vaccine-L becomes available) under the specified resource consumption ratio.
§ Under any higher resource consumption ratio, vaccine-H receives the entire allocation.
Supplemental Exhibit 2: Identification of resource consumption ratio that favors vaccine-H and vaccine-L for the entire allocation of resources under different days of availability for vaccine-L

<table>
<thead>
<tr>
<th>Vaccine-L Available Time</th>
<th>Resource Consumption Ratio††</th>
<th>IAR ($a_H = 1, a_L = 1$)‡‡</th>
<th>Percentage of Early-Immunized Population§§</th>
<th>Vaccine-L</th>
<th>Resource Consumption Ratio***</th>
<th>IAR ($a_H = 1, a_L = 1$)</th>
<th>Percentage of Early-Immunized Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>239</td>
<td>0.34</td>
<td>(64.74, 63.51)</td>
<td>5.10</td>
<td>0.40</td>
<td>(62.31, 63.51)</td>
<td>6.00</td>
<td></td>
</tr>
<tr>
<td>244</td>
<td>0.28</td>
<td>(67.24, 65.54)</td>
<td>4.90</td>
<td>0.36</td>
<td>(63.92, 65.54)</td>
<td>6.30</td>
<td></td>
</tr>
<tr>
<td>249</td>
<td>0.24</td>
<td>(68.95, 67.43)</td>
<td>4.80</td>
<td>0.32</td>
<td>(65.57, 67.43)</td>
<td>6.40</td>
<td></td>
</tr>
<tr>
<td>254</td>
<td>0.20</td>
<td>(70.69, 69.17)</td>
<td>4.50</td>
<td>0.28</td>
<td>(67.24, 69.17)</td>
<td>6.30</td>
<td></td>
</tr>
<tr>
<td>259</td>
<td>0.16</td>
<td>(72.46, 70.76)</td>
<td>4.00</td>
<td>0.24</td>
<td>(68.95, 70.76)</td>
<td>6.00</td>
<td></td>
</tr>
</tbody>
</table>

†† Under any lower resource consumption ratio, vaccine-L receives the entire allocation.
‡‡ IAR under the specified resource consumption ratio
§§ Percentage of the population who become immunized with vaccine-H before vaccine-L becomes available under the specified resource consumption ratio
*** Under any higher resource consumption ratio, vaccine-H receives the entire allocation.