Ultra-short-wave diathermy shortens the course of moderate and severe COVID-19: a randomized controlled trial

Liangjiang Huang# PhD, MD1,2, Qian Li# PhD, MD1,2, Sayed Zulfiqar Ali Shah# MS1, Mohammad Nasb MS1, Chen Bin4, Iftikhar Ali MPhil3, Lingfeng Xie MS1,2, Jifa Hu MSc5, Hong Chen*PhD, MD1,2

1 Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.

2 WHO Collaborating Center for Training and Research in Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.

3 Paraplegic Center, Hayatabad, Peshawar, Pakistan

4 Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.

5 Office of Academic Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology

The first three authors made equal contributions to this study, and they are the first author.

*corresponding Author

Email address: chenhong1129@hotmail.com.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Address: Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
Abstract

Background COVID-19 patients have severe lung injury. The USWD could play a supportive role in relieving lung injury and enhance clinical recovery. **Methods and findings** The design was a single-center, evaluator blinded; 2-arm parallel design superiority randomized controlled clinical trial. Moderate and severe coronavirus-2 (SARS-CoV-2) positive patients with acute respiratory syndrome, Fifty patients were randomized (USWD, 25; control, 25) between February 18/2020 and April 20/2020. There were male 22 (44.0%) and female 28 (56.0%) with mean (SD) age 53(10.69). Time to clinical recovery (USWD 36.84 vs control 43.56, P = 0.03) was significantly shortened with a between-group difference of 6.72 days. The median SIRS score at day 28 was 0 (0-1) in the USWD group, while 0 (0-2) in the control group (P = 0.011), and the seven-point scale at day 28 showed significant improvement in the USWD group (P = 0.003). While the rate of RNA negative conversion at day 7 (2/25 vs 7/25, p=0.054), day 14 (14/25 vs 18/25 p=0.239), day 21 (22/25 vs 18/25 p=0.279), and day 28 (25/25 vs 22/25 p=0.730) did not show statistical significance. Similarly, no significant differences were observed in the AI-assisted CT analysis. No treatment-associated adverse events or worsening of pulmonary fibrosis were found. **Conclusions** Among the 50 moderate and severe COVID-19 patients, the USWD as an adjunctive therapy to standard therapy could shorten the recovery course and enhance clinical improvement without aggravating pulmonary fibrosis. However, the study did not report statistical significance in the negative conversion rates of SARS-CoV-2 nucleic acid due to the small sample size and early termination, the findings of this study are limited.

TRIAL REGISTRATION Chinese Clinical Trial Registry: ChiCTR2000029972, URL: http://www.chictr.org.cn/historyversionpuben.aspx?regno=ChiCTR2000029972
Introduction

The outbreak of the COVID-19 pandemic has prompted efforts to manage the threat to the well-being of populations worldwide.1,2,3,4 The second wave of the COVID-19 epidemic has emerged in some countries 5, however to date, no effective treatment for COVID-19 has been confirmed. In response to the critical demand for high-quality clinical guidance at the extreme point of the outbreak in China, guidelines have been published to clarify the role that physical therapy can play in managing COVID-19.6,7,8,9 Suggestions have also been made that supportive therapies such as ultra-short-wave diathermy (USWD) perform functions to boost the immune responses and inhibit inflammation.10,11,12,13

Although USWD has been used in the field of physical therapy and rehabilitation for many decades 14,15,16, the evidence for its application as part of COVID-19 management is debatable.10 During the outbreak of severe acute respiratory syndrome (SARS), USWD was employed widely by rehabilitation professionals in China, to reduce pneumonia inflammation. Zhang group evaluated the efficacy of both USWD and conventional therapy in 38 SARS patients, where USWD was used as an adjuvant treatment in addition to standard therapy. The study concluded that using USWD could accelerate recovery and reduced the lengths of hospital stay.17

Although the pathogens of COVID-19 and SARS are both coronaviruses, the clinical manifestation, death rate, and pathological changes especially fibrosis are different. High-quality evidence to recommend the application of USWD in pulmonary conditions is still lacking, while there is a complete absence of evidence on the use of USWD in COVID-19 because of its novel nature. The scant evidence for the USWD safety and efficacy makes its application in clinical settings questionable. Herein we designed a randomized controlled trial to investigate the clinical efficacy and safety of USWD in managing COVID-2019.
Methods

Trial design and ethical issues

This single-center, evaluator-blinded, 2-arm (1:1 ratio) parallel design superiority randomized controlled trial was approved by the ethics committee of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (certificate of approval number TJ-C20200127) and prospectively registered on February 17, 2020, with the Chinese Clinical Trials Registry (Identifier: ChiCTR2000029972). The study was conducted following the relevant regulations and guidelines of good clinical practice, and the Helsinki Declaration. Patient recruitment, randomization, and study events are visually described in the CONSORT flow diagram (Figure 1). Participants were recruited from February 18/2020 through April 20/2020. Before randomization, written and verbal informed consent was taken from every patient and an informative essay that clearly shows the risks and the supposed benefits accompanying the participation was provided to each patient.

Participants

Patients of all genders with an age range from 18 to 65 diagnosed positive for SARS-CoV-2 by nasopharyngeal swabs were recruited from the Tongji Hospital of Huazhong University of Science and Technology (Wuhan, China). Patients meeting all of the following criteria were included: (1) those aged 18 to 65 years, (2) Positive SARS-CoV-2 nucleic acid test by nasopharyngeal swabs, (3) Chest CT showed multiple patchy ground-glass shadows or other
typical manifestations in both lungs. The exclusion criteria were (1) Positive tests for other pathogens such as Tuberculosis, Mycoplasma, (2) People with metal implants or pacemakers, (3) Patients with respiratory failure or requiring mechanical ventilation, (4) Patients with multiple organ failure who need ICU monitoring and treatment, (5) Those having a bleeding tendency or active bleeding in the lungs, (6) Those with shock, (7) Cancer patients and those with severe underlying diseases, (8) Patients with severe cognitive impairment, (9) Pregnant or lactating women, (10) Those without signed informed consent, (11) Those with other contraindications to short wave diathermy.

Randomization, allocation, and blinding

A statistician who was not part of the study created an online randomization plan on www.randomization.com using the permuted blocks method with small blocks of various sizes. A total of 50 patients were randomized to either an experimental, USWD group (n=25) or a control group (n=25). This was an assessor-blinded controlled study, due to the nature of the interventions, the study could not be therapist or patient blinded; however, a well-trained health care team consisting of two evaluators, two statisticians, and two data collectors were blinded to the groups/treatment allocation. The outcomes were independently documented based on mutual consensus between the data collectors(Fig 1).

Sample size
A Priori sample size calculation was performed with GPower 3.1 (software (Düsseldor, Nordrhein-Westfalen, Germany) based on the mean values for our primary variable, length of recovery from symptoms, from a previously published SARS study.17 We estimated that with an 80% power, 5% two-sided type I error rate, and an effect size of 0.72, the enrolment of 62 participants would be enough to detect a statistically significant between-group difference of 6.6 days in the length of recovery from symptom. Moreover, 4 participants were added to the total sample size to manage the expected 5% dropouts, making the total sample size 66 (each group 33 participants).

Intervention

The experimental group (USWD group) received the nationally recommended standard medical treatment in addition to the USWD. The USWD was performed through the application of the ultra-short-wave therapy electrodes on the anterior and posterior parts of the trunk for 10 minutes, twice a day for 12 consecutive days. The Ultra short wave therapy machine specifications and details are as follows: ultrashort-wave electrizers (Dajia DL-C-C, factory no : BE1003094, A.C.power 220V, 50Hz, 700VA, Shantou Medical Equipment Factory co., Ltd, China, Guangdong). We applied USWD in continuous mode with a frequency of 27.12MHz and power of 200w, with these parameters the patient would feel a mild or no heat. On the other hand, the control group only received the nationally recommended standard treatment. Moreover, the testing of USWD machine output, disinfection of the machine and electrodes, wearing masks, protective suit, and testing the patient's skin sensation before the intervention were done to ensure the treatment safety.
Outcomes Measures

The primary outcome measures were the length of recovery from symptoms measured by 7-category ordinal, and SIRS scale (Appendix in supplement 1), and a negative conversion rate of the SARS-CoV-2 nucleic acid test by RT-PCR. The secondary outcome measures included vital signs assessment, treatment adverse effects, Computed Tomography (CT) imaging and AI-assisted analysis, the length of stay in the hospital, and blood test including Complete blood count (CBC), Creatine kinase (CK), Lactate dehydrogenase (LDH), serum glutamic pyruvic transaminase (SGPT), serum glutamic oxaloacetic transaminase (SGOT), and international normalized ratio (INR). The primary and secondary variables were measured at baseline, after 7 days, 14 days, 21 days, and 28 days of treatment. However, in this trial, we didn’t perform CT scans very frequently due to radiation hazards.

The criteria of clinical recovery were (1) Temperature returned to normal for more than 3 days: (2). Respiratory symptoms (such as cough, and breathing difficulty) improved significantly; (3). Lung CT imaging showed a significant decrease in acute exudative lesions; (4). Two consecutive negative nucleic acid tests by nasopharyngeal swabs (the sampling interval was at least 24 hours).

Data collection tools

The data collection forms developed for this trial were consisting of medical history forms for taking a relevant medical history, Case Report Form (CRF) to collect treatment-related data, adverse events form to collect data regarding any adverse event happening during the trial.
Clinical observation

The clinical assessment was performed at 5-time points, at baseline, after 7 days, 14 days, 21 days, and 28 days of treatment. The evaluation details are: (1) Before treatment: (I) Evaluation and recording of demographic data, vital signs (pulse, respiration, blood pressure, body temperature), blood oxygen saturation, and vital capacity, (II) Medical history: including current medical history, past medical history, and drug-allergy history, (III) Laboratory tests: SARS-CoV-2 nucleic acid test by pharyngeal swabs RT-PCR, Complete blood count (CBC), Lactate dehydrogenase (LDH), (IV) Radiological examination: Chest CT, (V) Other tests: ECG, (VI) Combined medications, (VII) Symptoms evaluation: Completing the 7-category ordinal scale and SIRS scale: (2) Treatment period (days 7, 14, 21) (I) Evaluation and recording of vital signs (pulse, respiration, blood pressure, body temperature), blood oxygen saturation and vital capacity, (II) Laboratory tests: SARS-CoV-2 nucleic acid test by pharyngeal swabs RT-PCR, Complete blood count (CBC), Lactate dehydrogenase (LDH), (III) Radiological examination (In some patients the chest CT scans were performed after treatment, mainly day 14): (IV) Other tests: ECG, (V) Symptoms evaluation, completion of SIRS scale, and the 7-category ordinal scale: (3) Follow-up period (day 28) (I) Evaluation and recording of vital signs (pulse, respiration, blood pressure, body temperature), blood oxygen saturation, vital capacity, (II) Laboratory tests: SARS-CoV-2 nucleic acid test by pharyngeal swabs RT-PCR, Complete blood count (CBC), Lactate dehydrogenase (LDH), Inflammatory cytokines, (III) Radiological examination: Chest CT, (IV) Other tests: ECG (V) Symptoms evaluation: Completion of SIRS scale and 7-category ordinal scale.
Statistical analysis

We planned to enroll 66 participants according to our protocol, however, due to the unavailability of COVID-19 patients later in our hospital, we had to close our study early on 50 patients. All the statistical analyses were carried out using SPSS (Statistical Package for social sciences, version 25.0) and Graphpad Prism 8. Intention to treat analysis was used. Data normality was assessed with the Kolmogorov Smirnov and Shapiro-Wilk tests. Continuous variables are presented as mean (SD) in case of the normal distribution of data or median (IQR) in case of non-normal distribution, while the categorical variables were presented as count (%). Descriptive statistics (mean, frequencies, and percentages) were calculated for demographic variables, primary, and secondary variables of the study. Baseline and post-intervention comparison between the USWD and control group was performed using independent samples t-test and Mann–Whitney statistics based on normality results of the data. The proportions of categorical variables were compared using Fischer’s exact test /chi-square tests. Chi-square test was used for the evaluation of the Seven-point scale, and Mann–Whitney test was used in the SIRS scale (treated as ordinal scales). A Difference-in-difference (D-in-D) analysis was used for analyzing the AI-assisted CT scans data. Patients who failed to reach the negative conversion of SARS–CoV–2 by the cut-off date of the analysis were considered as right-censored at the last visit date. All the patients were treated after completion of follow-up duration (28 days).

Results

Patient Demographics and Clinical Characteristics
Among 50 enrolled participants, there were 22 (44.0%) male and 28 (56.0%) female participants. The mean (SD) age was 53±10.69. Most of the participants were non-smokers (86.0%), and 34.0% were having comorbid conditions, with the most common coexisting diseases as diabetes (22%), hypertension (20%), cardiovascular diseases (8%). Fever (90%), breathing difficulty (56%), dry cough (50%), diarrhea (34%), and fatigue (24%) were the top 5 common symptoms reported on presentation. Moreover, it is worth noting that most patients were having a dry cough (50%), while very few were having productive cough (14% only). CT findings showed more severe patients in the USWD group (52%) than in the control group (28%) but the baseline difference was not significant (Table 1).

Baseline and Other Characteristics of the Participants

The baseline clinical characteristics of all participants are given in Table 2. Both of the groups were balanced at the baseline with significant differences in demographic data, clinical features, laboratory tests, and CT scan of the lung.

Primary Outcomes

The time to clinical recovery (days) in the USWD group was significantly shortened than the control group (36.84±9.93 vs 43.56±12.15, P = 0.037). The SARS-CoV-2 nucleic acid test negative conversion rate showed no significant difference between the USWD and control group at day 7 (P = 0.054), day 14 (P = 0.239), day 21 (P = 0.279), and day 28 (P = 0.730) (Table 3).
Secondary Outcomes

Clinical Outcomes

The SIRS scores which reflect the patient's present clinical condition (including heart and respiratory rate, mean arterial pressure, SpO₂ %, body temperature, white blood cells, and level of consciousness) showed a statistically significant difference between the two groups at day 7 (P = 0.030), day 14 (P = 0.002), day 21 (P = 0.003), and day 28 (P = 0.011). Likewise, the seven-point scale after intervention at day 14, day 21, day 28 also showed significance (P = 0.046, 0.001, 0.003), however, the difference at day 7 was insignificant (P = 0.371). These findings reveal the therapeutic efficacy of USWD in COVID-19 patients (Table 3).

CT Scan Outcomes

The CT images in figures 2 and 3 depict the treatment progress of moderate and severe cases from both groups, through the entire interventional period. Artificial intelligence (AI) aided CT images (AI-aided CT) analysis system was adopted for quantitative analysis of the infected lung area proportion and volume before and after treatment. The mean values for different CT scan parameters for the total population before and after treatment are given in Table 4. The lower lung had the worst infective conditions, on CT both groups improved in infected lung area proportion and volume. A comparison of AI-assisted quantitative analysis of CT scan images before and after treatment between the control and USWD group showed no significant differences (Table 5 and Figure 3).
Adverse Events and Complications

No serious AEs, deaths, permanent disability, neoplasia, or empyrosis cases were registered during the trial. In the USWD group 14/15 cases of pulmonary fibrosis recovered, one had no change in fibrosis, similarly in the control group 16/18 cases of fibrosis recovered, and two had no changes in fibrosis. No worsening of pulmonary fibrosis was observed in both groups. Out of 50, 22 in USWD and 22 in the control group were having complications such as abnormal liver function test (LFTs) (52% vs 48%, P = 0.777), electrolyte imbalance (32% vs 44%, P = 0.382), hyperfibrinogenemia (44% vs 48%, P = 0.777), and mild anemia (32% vs 52%, P = 0.152). The blood routine investigation showed all parameters in almost equal and in the normal range in both groups. However, the WBCs were significantly low in the USWD group (USWD 5.51±1.38 vs control 6.56±1.97), on the other hand, the median monocyte count was significantly higher in USWD (USWD group 8.92 (2.20) vs control group 7.10 (1.15)), the difference was statistically significant but of uncertain clinical importance.

Discussion

To our knowledge, this is the first randomized clinical trial investigating the USWD treatment of COVID-19 (a search of PubMed and MEDLINE on 31 October 2020 for publications in all languages using the keyword COVID-19 revealed no published USWD randomized clinical trials). In this randomized clinical trial, we systematically investigated the safety and therapeutic efficacy of USWD in patients with moderate or severe COVID-19. There was a significant shortening in the length of recovery (36.84±9.93 vs 43.56±12.15, P =0.037) and improvement in the mean scores of the clinical scales, including SIRS and the Seven-point scale after a 12 days course of USWD/twice per day.
The USWD enhances fibroblast activity.18 Fibroblasts are oxygen-sensitive 19, and it is theorized that the synergistic activity of USWD and high oxygen environment in COVID-19 patients could cause or aggravate pulmonary fibrosis. Interestingly we did not observe any worsening of pulmonary fibrosis in this study. On the contrary, fibrosis was alleviated in 14 out of 15 patients in USWD and 16 out of 18 patients in the control group after treatment.

In this study, we didn’t find that USWD enhances the SARS-CoV-2 negative conversion rate, suggesting that USWD exerts therapeutic function doesn’t depend on the direct antivirus effect. The ultra-shortwave diathermy (USWD) generates radiations of 27.12 MHz. When applied in continuous mode, USWD could induce vasodilation, enhance cellular activity, and reduce inflammation and pain. Our findings are consistent with the study of Zhang \textit{et al}. They hired USWD in 2003 during the SARS over 38 patients, the study outcomes showed significant improvements with USWD used as an adjuvant treatment with drug therapy. Utilizing USWD accelerated the recovery and shortened the duration of hospital stay.17 Many other studies on pneumonia patients treated with USWD have produced similar results about clinical recovery as our study: He YG 2006 20 applied USWD on Children with bronchopneumonia, USWD application reduced inflammation, enhanced lung tissue repair and immune response: Du QP 2012 21 combined USWD with other therapies in infants with pneumonia and reported that USWD adjuvant application reduced the time of disappearance of symptoms, shortened the treatment course and reduced the use of antibiotics: ZHU Q 1999 22 reported that combined use of medications and USWD can have better effects on pulmonary functions and clinical recovery signs.

On the other hand, although within the normal range, the USWD had raised the number of monocytes which is an important component of the body immune system, at the same time
reducing the number of white blood cells which is a marker of inflammation, these findings in our study are consistent with previous studies of the physiological effects of short waves therapy, supporting the immune response to accelerate the recovery. Our findings are in agreement with Bazett et al. findings, revealing that USWD could significantly increase the activity of leukocytes in performing phagocytosis and sticking to the vessel walls which supports the possibility that using USWD at an early stage in pneumonia could stimulate and boost the natural defenses of the body against the microorganisms.23, 24

Lung CT scan is providing supportive assistance in the early diagnosis and recovery monitoring of lung lesions in COVID-19. The AI-aided CT analysis could be used to identify the severity of patients and triage scientifically25, data has proven the reliability of artificial intelligence (AI) AI-aided CT quantification of lung lesion in COVID-19.26

We attempted to do AI-aided CT analysis in order to compare the treatment effects on lung involvement between the two groups in our study. The CT quantitative analysis showed no significant differences in USWD and control group, however, in most of the patients, the fibrosis observed before treatment was recovered (USW=14/15 recovered, control group 16/18 recovered). The fibrosis recovery result could completely allay the concerns about the safety of USWD. These results show a promising improvement upon using USWD in COVID-19 patients who were hospitalized and needed supplemental oxygen therapy. However, due to the early termination of the study and the small sample size, the findings of this study could be limited.

Conclusion

The USWD as adjunctive therapy to standard therapy shortens the course of moderate and severe COVID-19 without aggravating pulmonary fibrosis. Based on the observed beneficial clinical
effects and no adverse effects of USWD, we recommend the use of USWD as an adjunct to standard therapies in COVID-19 patients. We suggest studies with a larger sample size to confirm our findings and explore the USWD benefits further.

Strengths and limitations

This study had some strengths and limitations. It is the first randomized controlled trial addressing the safety and efficacy of USWD in COVID-19 patients conducted in Tongji Hospital, which is compliant with good clinical practices. However, this study had some limitations, including the early termination, small sample size, and single-center design.

Clinical Messages

- The USWD as adjunctive therapy shortened the recovery course and improved the clinical status of COVID-19 patients without obviously adverse events.
- Negative SARS-CoV-2 conversion rate didn’t improve in the USWD group, suggesting USWD exert therapeutic effect doesn’t depend on direct antivirus activity.

Acknowledgments

HC contributed to the conception, supervision, drafting, and finalizing of the study. LH and QL contributed to designing the CRF, medical history forms development, data collection, and interpretation. Authors SZASH and MN contributed to writing, designing, formatting the manuscript, and compiling and describing the results. Author IA, LX and JH contributed to data analysis. The trial data could be provided by a reasonable request to the corresponding authors (HC). Thanks for the statistical support provided by public health Professor Yin Xiaobin from the School of Public Health, Tongji Medical College, Huazhong University of Science and Technology. The author declared no potential conflicts of interest with respect to the research,
authorship, and publication of this article. The study was funded by the National Key Research and Development program (NO:2020YFC08845600).

ORCID iDs

Liangjiang Huang https://orcid.org/0000-0002-5434-4357

Hong Chen https://orcid.org/0000-0002-8848-282X

References

Fig 1. Patient Enrollment and Treatment Assignment

Among 15 excluded, 5 tested negatives for SARS-CoV-2, 3 were positive for other pathogens, 7 needed ICU care.

Three patients declined to participate during preliminary screening because of personal reasons.

Excluded because of cardiac pacemaker (n=1), and spinal fixation (n=1).
Fig 2. the outcomes on days 7, 14, 21 and 28 by treatment group. (A) The SARS-CoV-2 nucleic acid negative conversion rate showed no significant difference between the USWD and control group at day 7 (P = 0.054), day 14 (P = 0.239), day 21 (P = 0.279), and day 28 (P = 0.730). (B) The clinical condition on SIRS score showed no significant difference on study day 28 (P = 0.011), but statistically significant difference on day 7 (P = 0.030), day 14 (P = 0.002), day 21 (P = 0.003). C Time to clinical recovery in the USWD group was significantly shortened comparing with control group (P = 0.037). D Clinical status on 7-point ordinal scale on study days 14, 21 and 28 showed significance (P = 0.046, 0.001, 0.003), whereas the difference at day 7 was insignificant (P = 0.371).
Fig 3. Chest CT images of moderate and severe cases from control and USWD groups.

Moderate cases in control group (a-d): Multiple ground glass opacity (GGO) in both lower lungs, with local thickening and adhesion of bilateral pleura at baseline, while GGO significantly absorbed, streak shadows were also lighter, pleural thickening and adhesions were alleviated in week 4. **Moderate cases in USWD group (e-h):** Bilateral scattered GGO in the lower lungs, with grid shadows and striae foci visible inside, obvious near the pleura, and local pleural adhesions were observed at baseline, while bilateral scattered GGO showed lightened with a significant decrease in week 4. Bilateral local pleural slight adhesion.

Severe cases in control group (i-l): Bilateral multiple GGO, accompanied by consolidation shadows and a few cord lesions, near the pleura, while GGO still existed with slight alleviation. No obvious changes in consolidation shadows, grid shadows, and cord lesions but some pulmonary fibrosis in week 4. **Severe cases in USWD group (m-p):** Bilateral multiple GGO, and striped shadows, accompanied by bronchial inflation, and local thickening and adhesion of the pleura at baseline, while obviously alleviated in week 4. Moreover, the bronchial inflation disappeared, along with slightly thickened and adherent pleura, and little pulmonary fibrosis and consolidation.
Table 1. Demographics, Comorbidities, and Baseline Disease Characteristics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Overall cohort</th>
<th>USWD group</th>
<th>Control group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Mean ± SD)</td>
<td>53±10.69</td>
<td>53±9.29</td>
<td>54±12.08</td>
</tr>
<tr>
<td>Gender (Male/Female)</td>
<td>22/28</td>
<td>11/14</td>
<td>11/14</td>
</tr>
<tr>
<td>Severity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate n/ N (%)</td>
<td>30/50(60)</td>
<td>12/25(48)</td>
<td>18/25(72)</td>
</tr>
<tr>
<td>Severe n/ N (%)</td>
<td>20/50(40)</td>
<td>13/25(52)</td>
<td>7/25(28)</td>
</tr>
<tr>
<td>Comorbidities n/ N (%)</td>
<td>17/50(34)</td>
<td>8/25(32)</td>
<td>9/25(36)</td>
</tr>
<tr>
<td>Coexisting diseases n/ N (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiovascular disease</td>
<td>4/50(8)</td>
<td>1/25(4)</td>
<td>3/25(12)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>10/50(20)</td>
<td>4/25(16)</td>
<td>6/25(24)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>11/50(22)</td>
<td>4/25(16)</td>
<td>7/25(28)</td>
</tr>
<tr>
<td>Stroke sequelae</td>
<td>1/50(2)</td>
<td>0/25(0)</td>
<td>1/25(4)</td>
</tr>
<tr>
<td>gout</td>
<td>2/50(4)</td>
<td>1/25(4)</td>
<td>1/25(4)</td>
</tr>
<tr>
<td>arthritis</td>
<td>1/50(2)</td>
<td>0/25(0)</td>
<td>1/25(4)</td>
</tr>
<tr>
<td>Signs and symptoms n/ N (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fever</td>
<td>45/50(90)</td>
<td>24/25(96)</td>
<td>21/25(84)</td>
</tr>
<tr>
<td>Chills</td>
<td>4/50(8)</td>
<td>1/25(4)</td>
<td>3/25(12)</td>
</tr>
<tr>
<td>Muscle ache</td>
<td>12/50(24)</td>
<td>4/25(16)</td>
<td>8/25(32)</td>
</tr>
<tr>
<td>Chest Pain</td>
<td>5/50(10)</td>
<td>1/25(4)</td>
<td>4/25(16)</td>
</tr>
<tr>
<td>Breathing difficulty</td>
<td>28/50(56)</td>
<td>13/25(52)</td>
<td>15/25(60)</td>
</tr>
<tr>
<td>Dry Cough</td>
<td>25/50(50)</td>
<td>14/25(56)</td>
<td>11/25(44)</td>
</tr>
<tr>
<td>Productive Cough</td>
<td>7/50(14)</td>
<td>2/25(8)</td>
<td>5/25(20)</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>2/50(4)</td>
<td>0/25(0)</td>
<td>2/25(8)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>12/50(24)</td>
<td>4/25(16)</td>
<td>8/25(32)</td>
</tr>
<tr>
<td>Headache</td>
<td>3/50(6)</td>
<td>2/25(8)</td>
<td>1/25(4)</td>
</tr>
<tr>
<td>Palpitation</td>
<td>1/50(2)</td>
<td>1/25(4)</td>
<td>0/25(0)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>17/50(34)</td>
<td>7/50(14)</td>
<td>10/25(40)</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>1/50(2)</td>
<td>0/25(0)</td>
<td>1/25(4)</td>
</tr>
</tbody>
</table>
Table 2. Participants Clinical Status at Baseline

<table>
<thead>
<tr>
<th>Variables</th>
<th>Overall cohort</th>
<th>Control group</th>
<th>USWD group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interval between onset and admission, median (IQR), d</td>
<td>21(13.25-27.00)</td>
<td>18(8-35.5)</td>
<td>13(8-23.0)</td>
</tr>
<tr>
<td>Respiratory rate, median (IQR)</td>
<td>20.08(0.83)</td>
<td>20.00(1.00)</td>
<td>20.00(2.00)</td>
</tr>
<tr>
<td>7-Point scale at baseline, No. (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1: Not hospitalized with the resumption of normal activities</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
<tr>
<td>2: Not hospitalized, but unable to resume normal activities</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
<tr>
<td>3: Hospitalized, not requiring supplemental oxygen</td>
<td>4(8)</td>
<td>3(12)</td>
<td>1(4)</td>
</tr>
<tr>
<td>4: Hospitalized, requiring supplemental oxygen</td>
<td>46(92)</td>
<td>22(88)</td>
<td>24(96)</td>
</tr>
<tr>
<td>5: Hospitalized, requiring high-flow oxygen therapy or non-invasive mechanical ventilation</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
<tr>
<td>6: Hospitalized, requiring ECMO, invasive mechanical ventilation, or both</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
<tr>
<td>7: Death</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
<tr>
<td>SIRS scale at baseline, median (IQR)</td>
<td>2.5(1-5.0)</td>
<td>3(2-5)</td>
<td>2(1-4.5)</td>
</tr>
</tbody>
</table>

Laboratory values before treatment

<table>
<thead>
<tr>
<th></th>
<th>Overall cohort</th>
<th>Control group</th>
<th>USWD group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red blood cells 10^9/L</td>
<td>4.15(0.76)</td>
<td>4.04(0.73)</td>
<td>4.20(0.70)</td>
</tr>
<tr>
<td>White blood cells 10^9/L</td>
<td>6.30(2.64)</td>
<td>6.68(3.88)</td>
<td>5.56(2.76)</td>
</tr>
<tr>
<td>Neutrophil count 10^9/L</td>
<td>4.30(2.59)</td>
<td>4.29(3.33)</td>
<td>3.29(2.13)</td>
</tr>
<tr>
<td>Neutrophil percent %</td>
<td>64.55±13.66</td>
<td>67.52±13.41</td>
<td>61.57±13.51</td>
</tr>
<tr>
<td>Lymphocyte count 10^9/L</td>
<td>1.43(.60)</td>
<td>1.43±.56</td>
<td>1.43±.56</td>
</tr>
<tr>
<td>Lymphocyte percent %</td>
<td>25.85(11.92)</td>
<td>23.68±11.89</td>
<td>28.02±11.78</td>
</tr>
<tr>
<td>Monocyte count 10^9/L</td>
<td>8.23±2.95</td>
<td>7.77±2.79</td>
<td>8.68±3.09</td>
</tr>
<tr>
<td>ALT U/L</td>
<td>32.67(22.71)</td>
<td>29.00(16)</td>
<td>26.00(13)</td>
</tr>
<tr>
<td>AST U/L</td>
<td>32.22(21.40)</td>
<td>23.00(14.50)</td>
<td>28.00(15.50)</td>
</tr>
<tr>
<td>International normalised ratio (INR)</td>
<td>2.86(12.86)</td>
<td>1.05(0.10)</td>
<td>1.02(0.12)</td>
</tr>
</tbody>
</table>

Abbreviations: Systemic Inflammatory Response Scale (SIRS), Aspartate Aminotransferase (AST), Alanine Aminotransferase (ALT)
Table 3. Primary and Secondary Clinical Outcomes

<table>
<thead>
<tr>
<th>Variables</th>
<th>USWD group (n=25)</th>
<th>Control group (n=25)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>primary clinical outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time to clinical recovery (Mean ± SD), d</td>
<td>36.84±9.93</td>
<td>43.56±12.15</td>
<td>0.037</td>
</tr>
<tr>
<td>Viral nucleic acid negative rate, No./total (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At day 7</td>
<td>2/25(8)</td>
<td>7/25(28)</td>
<td>0.054</td>
</tr>
<tr>
<td>At day 14</td>
<td>14/25(56)</td>
<td>18/25(72)</td>
<td>0.239</td>
</tr>
<tr>
<td>At day 21</td>
<td>22/25(88)</td>
<td>18/25(72)</td>
<td>0.279</td>
</tr>
<tr>
<td>At day 28</td>
<td>25/25(100)</td>
<td>22/25(88)</td>
<td>0.730</td>
</tr>
<tr>
<td>Secondary outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time from onset to nucleic acid negative (Mean ± SD), d</td>
<td>25.92±11.28</td>
<td>26.32±14.02</td>
<td>0.192</td>
</tr>
<tr>
<td>Clinical status: SIRS scale (IQR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At day 7</td>
<td>1 (0.5-3)</td>
<td>3 (2-4)</td>
<td>0.030</td>
</tr>
<tr>
<td>At day 14</td>
<td>1 (0-2)</td>
<td>3 (1-3.5)</td>
<td>0.002</td>
</tr>
<tr>
<td>At day 21</td>
<td>0 (0-1)</td>
<td>2 (1-3)</td>
<td>0.003</td>
</tr>
<tr>
<td>At day 28</td>
<td>0 (0-1)</td>
<td>1 (0-2)</td>
<td>0.011</td>
</tr>
<tr>
<td>Clinical condition: 7-point scale on day 28, No. (%)</td>
<td></td>
<td></td>
<td>0.003</td>
</tr>
<tr>
<td>1: Not hospitalized with the resumption of normal activities</td>
<td>19/25(76)</td>
<td>7/25(28)</td>
<td></td>
</tr>
<tr>
<td>2: Not hospitalized, but unable to resume normal activities</td>
<td>3/25(12)</td>
<td>13/25(52)</td>
<td></td>
</tr>
<tr>
<td>3: Hospitalized, not requiring supplemental oxygen</td>
<td>3/25(12)</td>
<td>3/25(12)</td>
<td></td>
</tr>
<tr>
<td>4: Hospitalized, requiring supplemental oxygen</td>
<td>0/25(0)</td>
<td>2/25(8)</td>
<td></td>
</tr>
<tr>
<td>5: Hospitalized, requiring high-flow oxygen therapy or non-invasive mechanical ventilation</td>
<td>0/25(0)</td>
<td>0/25(0)</td>
<td></td>
</tr>
<tr>
<td>6: Hospitalized, requiring ECMO, invasive mechanical ventilation, or both</td>
<td>0/25(0)</td>
<td>0/25(0)</td>
<td></td>
</tr>
<tr>
<td>7: Death</td>
<td>0/25(0)</td>
<td>0/25(0)</td>
<td></td>
</tr>
<tr>
<td>Laboratory values after treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red blood cells 10^9/L</td>
<td>4.05(0.80)</td>
<td>4.03(0.62)</td>
<td>0.62</td>
</tr>
<tr>
<td>White blood cells 10^9/L</td>
<td>5.51±1.38</td>
<td>6.56±1.97</td>
<td>0.035</td>
</tr>
<tr>
<td>Neutrophil count 10^9/L</td>
<td>2.99(1.49)</td>
<td>3.83(1.59)</td>
<td>0.071</td>
</tr>
<tr>
<td>Neutrophil percent</td>
<td>58.49±7.24</td>
<td>58.55±9.37</td>
<td>0.980</td>
</tr>
<tr>
<td>Lymphocyte count 10^9/L</td>
<td>1.60(0.63)</td>
<td>1.79(0.97)</td>
<td>0.207</td>
</tr>
<tr>
<td>Lymphocyte percent</td>
<td>29.98±6.96</td>
<td>28.79±8.42</td>
<td>0.589</td>
</tr>
<tr>
<td>Monocyte count 10^9/L</td>
<td>8.92(2.20)</td>
<td>7.10(1.15)</td>
<td>0.002</td>
</tr>
<tr>
<td>ALT U/L</td>
<td>23.00(13.0)</td>
<td>24.00(16.0)</td>
<td>0.771</td>
</tr>
<tr>
<td>AST U/L</td>
<td>23.00(7.0)</td>
<td>19.00(10.0)</td>
<td>0.264</td>
</tr>
<tr>
<td>international normalized ratio (INR)</td>
<td>1.03(0.09)</td>
<td>1.00(0.06)</td>
<td>0.022</td>
</tr>
</tbody>
</table>

Complications n/ N(%)
<table>
<thead>
<tr>
<th>Condition</th>
<th>Count 1</th>
<th>Count 2</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormal LFTs</td>
<td>13/25(52)</td>
<td>12/25(48)</td>
<td>0.777</td>
</tr>
<tr>
<td>Elevated AST</td>
<td>7/25(28)</td>
<td>7/25(28)</td>
<td>1.000</td>
</tr>
<tr>
<td>Elevated ALT</td>
<td>12/25(48)</td>
<td>12/25(48)</td>
<td>1.000</td>
</tr>
<tr>
<td>Electrolyte imbalance</td>
<td>8/25(32)</td>
<td>11/25(44)</td>
<td>0.382</td>
</tr>
<tr>
<td>Hyperfibrinogenemia</td>
<td>11/25(44)</td>
<td>12/25(48)</td>
<td>0.777</td>
</tr>
<tr>
<td>Anemia</td>
<td>8/25(32)</td>
<td>13/25(52)</td>
<td>0.152</td>
</tr>
<tr>
<td>Hypoalbuminemia</td>
<td>11/25(44)</td>
<td>6/25(24)</td>
<td>0.136</td>
</tr>
<tr>
<td>Abnormal blood coagulation</td>
<td>2/25(8)</td>
<td>2/25(8)</td>
<td>1.000</td>
</tr>
<tr>
<td>Renal insufficiency</td>
<td>4/25(16)</td>
<td>1/25(4)</td>
<td>0.349</td>
</tr>
<tr>
<td>Myocardial damage</td>
<td>1/25(4)</td>
<td>1/25(4)</td>
<td>1.000</td>
</tr>
<tr>
<td>No complications</td>
<td>3/25(12)</td>
<td>3/25(12)</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Abbreviations: Ultra shortwave diathermy (USWD), Systemic Inflammatory Response Scale (SIRS), Aspartate Aminotransferase (AST), Alanine Aminotransferase (ALT), liver function tests (LFTs).
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Before treatment (Mean± SD)</th>
<th>After treatment (Mean± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole lung infection proportion (%)</td>
<td>10.19± 9.72</td>
<td>7.68± 7.56</td>
</tr>
<tr>
<td>Whole lung infection volume (cm³)</td>
<td>337.81± 274.73</td>
<td>287.11±278.46</td>
</tr>
<tr>
<td>Left lung infection proportion (%)</td>
<td>8.46±8.50</td>
<td>6.01±6.78</td>
</tr>
<tr>
<td>Left lung infection volume (cm³)</td>
<td>131.21±118.86</td>
<td>109.23±122.82</td>
</tr>
<tr>
<td>Left lung upper lobe infection proportion (%)</td>
<td>6.40±7.13</td>
<td>4.27± 5.20</td>
</tr>
<tr>
<td>Left lung upper lobe infection volume (cm³)</td>
<td>57.71± 61.91</td>
<td>43.39± 50.87</td>
</tr>
<tr>
<td>Left lung lower lobe infection proportion (%)</td>
<td>14.55±14.43</td>
<td>12.03± 12.86</td>
</tr>
<tr>
<td>Left lung lower lobe infection volume (cm³)</td>
<td>85.28±70.38</td>
<td>86.08±83.12</td>
</tr>
<tr>
<td>Right lung infection proportion (%)</td>
<td>12.08±11.87</td>
<td>9.06± 9.38</td>
</tr>
<tr>
<td>Right lung infection volume (cm³)</td>
<td>204.78± 172.40</td>
<td>174.65±170.88</td>
</tr>
<tr>
<td>Right lung upper lobe infection proportion (%)</td>
<td>11.52± 13.31</td>
<td>8.16± 10.16</td>
</tr>
<tr>
<td>Right lung upper lobe infection volume (cm³)</td>
<td>74.67±73.22</td>
<td>58.88± 67.84</td>
</tr>
<tr>
<td>Right lung middle lobe infection proportion (%)</td>
<td>7.74±9.67</td>
<td>6.93± 10.78</td>
</tr>
<tr>
<td>Right lung middle lobe infection volume (cm³)</td>
<td>24.12±23.32</td>
<td>20.01± 24.32</td>
</tr>
<tr>
<td>Right lung lower lobe infection proportion (%)</td>
<td>21.24± 18.68</td>
<td>16.63± 15.66</td>
</tr>
<tr>
<td>Right lung lower lobe infection volume (cm³)</td>
<td>136.28±95.35</td>
<td>120.61±99.53</td>
</tr>
</tbody>
</table>
Table 5. Comparison of Mean AI-assisted CT scan parameters between USWD and control group

<table>
<thead>
<tr>
<th>Variables</th>
<th>0group</th>
<th>1group</th>
<th>Change(^a)</th>
<th>D-in-D</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before</td>
<td>After</td>
<td>Before</td>
<td>After</td>
<td>Change(^a)</td>
</tr>
<tr>
<td>whole lung infection proportion%</td>
<td>8.2(8.1)</td>
<td>6.8(8.1)</td>
<td>-1.4</td>
<td>12.8(10.8)</td>
<td>8.7(7.5)</td>
</tr>
<tr>
<td>whole lung infection V cm³</td>
<td>297.1 (268.7)</td>
<td>250.9 (256.6)</td>
<td>-46.2</td>
<td>395.0 (274.5)</td>
<td>325.3 (312.0)</td>
</tr>
<tr>
<td>Lt lung infection proportion</td>
<td>6.8 (7.5)</td>
<td>5.6 (7.0)</td>
<td>-1.2</td>
<td>10.5 (9.2)</td>
<td>6.5 (7.0)</td>
</tr>
<tr>
<td>Lt lung infection V cm³</td>
<td>114.2 (118.9)</td>
<td>100.2 (111.1)</td>
<td>-14</td>
<td>154.7 (117.1)</td>
<td>119.6 (141.5)</td>
</tr>
<tr>
<td>Lt lung upper lobe infection proportion</td>
<td>5.1 (6.6)</td>
<td>4.0 (6.4)</td>
<td>-1.1</td>
<td>6.6 (7.5)</td>
<td>3.5 (3.8)</td>
</tr>
<tr>
<td>Lt lung upper lobe infection V cm³</td>
<td>49.4 (69.8)</td>
<td>37.9 (56.7)</td>
<td>-11.5</td>
<td>56.0 (52.9)</td>
<td>38.0 (45.0)</td>
</tr>
<tr>
<td>Lt lung lower lobe infection proportion</td>
<td>10.1 (12.2)</td>
<td>8.8 (9.8)</td>
<td>-1.3</td>
<td>17.3 (15.8)</td>
<td>12.2 (15.7)</td>
</tr>
<tr>
<td>Lt lung lower lobe infection V cm³</td>
<td>61.7 (59.4)</td>
<td>66.5 (60.8)</td>
<td>4.8</td>
<td>98.7 (78.7)</td>
<td>83.3 (104.6)</td>
</tr>
<tr>
<td>Rt lung infection proportion</td>
<td>9.9 (10.0)</td>
<td>7.8 (9.4)</td>
<td>-2.1</td>
<td>14.9 (13.3)</td>
<td>10.5 (9.9)</td>
</tr>
<tr>
<td>Rt lung infection V cm³</td>
<td>182.9 (162.9)</td>
<td>148.8 (155.1)</td>
<td>-34.1</td>
<td>236.5 (179.7)</td>
<td>205.3 (191.5)</td>
</tr>
<tr>
<td>Rt lung upper lobe infection proportion</td>
<td>8.5 (10.8)</td>
<td>6.3 (9.1)</td>
<td>-2.2</td>
<td>11.0 (14.9)</td>
<td>7.8 (11.1)</td>
</tr>
<tr>
<td>Rt lung upper lobe infection V cm³</td>
<td>58.0 (66.7)</td>
<td>45.0 (60.7)</td>
<td>-13</td>
<td>68.6 (79.1)</td>
<td>57.2 (74.8)</td>
</tr>
<tr>
<td>Rt lung middle lobe infection proportion</td>
<td>4.4 (6.4)</td>
<td>4.2 (7.2)</td>
<td>-0.2</td>
<td>9.2 (11.4)</td>
<td>7.8 (12.9)</td>
</tr>
<tr>
<td>Rt lung middle lobe infection V cm³</td>
<td>16.1 (17.6)</td>
<td>15.2 (20.6)</td>
<td>-0.9</td>
<td>26.9 (27.1)</td>
<td>19.6 (27.4)</td>
</tr>
<tr>
<td>Rt lung lower lobe infection proportion</td>
<td>15.8 (17.5)</td>
<td>12.4 (16.0)</td>
<td>-3.4</td>
<td>24.1 (19.6)</td>
<td>17.7 (16.0)</td>
</tr>
<tr>
<td>Rt lung lower lobe infection V cm³</td>
<td>110.6 (100.2)</td>
<td>88.3 (91.5)</td>
<td>-22.3</td>
<td>145.3 (94.8)</td>
<td>130.6 (111.5)</td>
</tr>
</tbody>
</table>

\(^a\) Average change in means before and after treatment, abbreviations: D-in-D=Difference-in-difference, V=volume, Rt=right, Lt=left
Supplement 1 Appendix

Systemic Inflammatory Response scale (SIRS)

Systemic Inflammatory Response scale (SIRS) is used for evaluation of clinical improvement based on heart rate, mean arterial pressure (MAP mmHg), respiratory rate/min, blood oxygen saturation (SpO2 %), body temperature (℃), white blood cells (WBC *10⁹/L), blood glucose (mmol/L) and level of consciousness (Aware/awake, Lethargy or irritability, shallow coma, coma, brain death). All these parameters, except “Level of consciousness” are assigned a score from 0 to 4 based on the actual values recorded from the patient corresponding to the range of values in the table below. For the level of consciousness: Aware/awake (0), Lethargy or irritability (1), Shallow coma (2), coma (3), brain death (4).

Systemic Inflammatory Response scale (SIRS)

<table>
<thead>
<tr>
<th>Description</th>
<th>0 points</th>
<th>1 points</th>
<th>2 points</th>
<th>3 points</th>
<th>4 points</th>
<th>score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart beat</td>
<td>60-100</td>
<td>55-59;</td>
<td>50-54;</td>
<td>41-49;</td>
<td><40;</td>
<td>>160</td>
</tr>
<tr>
<td></td>
<td>101-119</td>
<td>120-140</td>
<td>141-160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAP (mmHg)</td>
<td>70-100</td>
<td>60-69;</td>
<td>50-59;</td>
<td>40-49;</td>
<td><40;</td>
<td>>160</td>
</tr>
<tr>
<td></td>
<td>101-110</td>
<td>111-130</td>
<td>131-159</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory rate / min</td>
<td>12-20</td>
<td>9-12;</td>
<td>5-8;</td>
<td><5;</td>
<td>0;</td>
<td>>46</td>
</tr>
<tr>
<td></td>
<td>20-25</td>
<td>26-35</td>
<td>36-45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SpO2 (%)</td>
<td>>92</td>
<td>85-91</td>
<td>75-84</td>
<td>60-74</td>
<td><60</td>
<td></td>
</tr>
<tr>
<td>body temperature (℃)</td>
<td>36.0-37.5</td>
<td>35.5-35.9</td>
<td>34-34.9;</td>
<td>33-33.9;</td>
<td><33;</td>
<td>>40</td>
</tr>
<tr>
<td></td>
<td>37.5-38.5</td>
<td>38.6-39.5</td>
<td>39.6-40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WBC(*10⁹/L)</td>
<td>4.0-10.0</td>
<td>3.0-3.9;</td>
<td>2.0-2.9;</td>
<td>1.0-2.0;</td>
<td><1.0;</td>
<td>>30.1</td>
</tr>
<tr>
<td></td>
<td>10.1-14.9</td>
<td>15-20.0</td>
<td>20.1-30.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU (mmol/L)</td>
<td>3.5-5.5</td>
<td>5.7-8.6</td>
<td>8.7-13.5</td>
<td>13.6-23</td>
<td>>23</td>
<td></td>
</tr>
<tr>
<td>Level of consciousness</td>
<td>Aware/awake</td>
<td>Lethargy or irritability</td>
<td>Shallow coma</td>
<td>coma</td>
<td>brain death</td>
<td></td>
</tr>
<tr>
<td>Total score :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The 7-category ordinal

The 7-category or 7-point ordinal scale is consisting of seven separate categories. The categories range from 1-7, 7 corresponds to death; category 6 patients need ICU hospitalization, require ECMO and invasive mechanical ventilation; category 5 patients need ICU hospitalization but do not require ECMO and/or invasive mechanical ventilation; category 4 patients are non-ICU hospitalized patients, requiring supplemental oxygen; category 3 patients are also non-ICU hospitalized patients, but they do not require supplemental oxygen; category 2 patients are not hospitalized, but unable to resume normal activities; category 1, not hospitalized with the resumption of normal activities.