Objective adherence to an online FAVAS therapeutic game for treating amblyopia in children

Catheline Bocqué¹, Jingyun Wang², Annekattrin Rickmann¹, Henrike Julich-Haertel¹, Uwe Kaempf³, Kai Januschowski¹,⁴

¹ Klaus Heimann Eye Research Institute, An der Klinik 10, 66280 Sulzbach, Germany
² SUNY College of Optometry, 33 W 42nd St, New York, NY 10036, United States
³ Caterna Vision GmbH, David-Gilly-Str. 1, 14196 Potsdam, Germany
⁴ Centre for Ophthalmology, University Eye Hospital Tuebingen, Schleichstr. 12, 72076 Tuebingen, Germany

ABSTRACT

Aim: This retrospective study was to evaluate whether an updated version of an attention binding computer therapy game based on the principle of Focal Ambient Visual Acuity Stimulation (FAVAS) would result in an optimized patient adherence of patching in 4- to 12-year-old patients with amblyopia.

Methods: We analyzed anonymized electronically recorded data from patients treated with 2 different versions of attention binding computer therapy games regarding the gamefication aspect in 2015 and 2020. Depending on the treatment version, two groups of children treated with patching were compared. Patients in the Group 2015 used the old 1.0 version of therapy games, while Group 2020 used more attractive therapeutic games. Objective adherence was calculated by comparing the amount of minutes using the computer game as monitored in the automatized logbook versus prescribed minutes of using the game.

Results: Children in the Group 2015 spent on average 2009.3±1372.1 (36 to 5472) minutes using FAVAS; children in the Group 2020 spent on average 2695.5±1526.8 (37.5 to 5672) minutes using the therapy. Meaning, Group 2020 spent 686.2 more minutes than Group 2015 (t=3.87, P<0.001). Although patient adherence was very variable, it significantly improved in the 2020 group up to 78% ± 46% compared to the 57% ± 34% in the Group 2015 (t=4.3, P<0.001).

Conclusion: FAVAS 2020 with an improved gamefication aspect increased adherence significantly compared to the earlier version FAVAS 1.0, indicating that FAVAS could be an effective approach to support patching amblyopia treatment.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Introduction
Amblyopia is one of the most common ophthalmological disorders in children and has a lasting effect on the individuals’ quality of life. While affected children are impacted in their daily activities and future job selection, it also increases the risk of a severe trauma for the better fellow eye. Since Sattler (1927) occlusion therapy has been the standard therapeutical approach forcing visual development of the affected weak eye by an input deprivation of the better seeing eye. However, by applying this therapy, a high rate of patients (approximately 25% to 30%) do not show a full recovery of visual function and some of those patients even show further worsening in visual function. Visual acuity improvement in the amblyopic eye is significantly impacted by adherence of the patching therapy. It has been identified as one critical factor besides the deprivate nature of the occlusion therapy. For a long time, a system of monocular and binocular visual exercises and stimulation methods (pleoptics and orthoptics) in support of the standard occlusion treatment has been developed but only with limited success. To improve the adherence of the occlusion therapy, a gamification of therapy could be helpful and has been implemented in several approaches.

Monocular Focal Ambient Visual Acuity Stimulation (FAVAS) therapeutic games are an innovative visual training approach designed as a supplementary treatment to patching. In the background of focal attention binding computer games a customized rotating ambient sinusoidal wave pattern (rotating gratings) is presented, stimulating cortical areas to activate the central perceptive activity of the amblyopic eye again and thus improving visual acuity. FAVAS originates but differs in several ways from the grating stimulation Cambridge Stimulator (CAM) treatment that was initially reported to improve outcome combined with patching. The CAM used high-contrast square-wave gratings, which were rotated in front of the amblyopic eye while playing on a transparent cover in front of the stimulator, but failed to succeed in subsequent prospective randomized controlled studies. Beyond CAM treatment, FAVAS relies not only on spatial frequency selectivity of the ambient background stimulus, but also on an interaction of its coordinated temporal frequency parameters with the focal sensory-motoric gaming activity (Kämpf et al. 2008). Previously, Kämpf et al. showed that FAVAS had a promising effect. Since the early version of FAVAS focused on the therapeutic aspect of visual acuity stimulation and put less focus on the user-friendliness, gamefication and attention binding aspect, this modification could potentially impact patient adherence. Apart from other technical updates, later
versions of commercially available treatment games improved specifically this aspect.

The goal of this study is to evaluate whether an improved gamefication aspect of FAVAS therapeutic games would result in a higher patient adherence than the earlier version. Therefore, we analyzed the electronically recorded data from a commercially available FAVAS system (Caterna Vision GmbH, Potsdam, Germany), and compared adherence to the earlier version FAVAS 1.0 games in 2015 with adherence to an updated version FAVAS 2020 in 4- to 12-year-old patients.

Methods

We compared anonymized electronic user protocols showing the game activity time of patients aged between 4 and 12 years; all patients were diagnosed with amblyopia by their ophthalmologist, treated with a combination of occlusion and FAVAS therapy (Caterna Vision GmbH, Potsdam, Germany). The treatment was reimbursed for the home-based stimulation therapy by their insurance company.

Inclusion criteria: patients between 4 to 12 years diagnosed with amblyopia associated with anisometropia and/or mild strabismus. Patients had their current refractive correction worn for at least 16 weeks until 2 consecutive visual acuity measurements at least 8 weeks apart did not change by more than 1 logMAR line. The amblyopic eye had a best-corrected visual acuity (BCVA) from 20/40 to 20/200; the fellow eye a BCVA of 20/32 or better, and the difference between the eyes was ≥ 3 logMAR lines.

Exclusion criteria: patients with other ophthalmological pre-existing diseases or with a deprivation amblyopia (weak vision due to an organic cause) were excluded from the study. As well as patients with proven learning disabilities or patients with known epilepsy were excluded.

Treatments: All patients had full binocular correction with glasses, which were prescribed by their local eye doctors. For occlusion therapy patients used standard eye patches like opticlude (3M), Piratoplast etc. Each participant was provided with an access to a home-based FAVAS, offered by the Caterna Vision GmbH.

Group 2015: Dataset from patients used FAVAS version 1.0 in 2015. Patients with daily occlusion regimen were prescribed to play 30 to 45 minutes FAVAS games daily
for 90 days. They had to read instructions for the games. For playing games, only keyboard and mouse at a fixed screen size of 15 inches were available.

Group 2020: Dataset included all patients starting in 2020, who already completed their therapy. Patients with daily occlusion regimen were prescribed to play FAVAS 2020 version games daily for 30 to 45 minutes for 90 days. They were able to play directly with high resolution graphics and high usability. For playing games, not only keyboard and mouse but also touchscreen at screens between 10 to 27 inches were available.

Adherence: Objective adherence was defined by comparing the amount of minutes using the computer game as monitored in the automatized logbook versus prescribed minutes of using the game.

Modification of attention binding games: The FAVAS 1.0 therapy was modified in a few ways: rotating gratings were personalized selected according to the type of amblyopia (mild, moderate, severe) with or without astigmatism, and with or without strabismus. Figure 1 shows a few examples of personalized selected FAVAS therapy. In terms of technical refinement, a larger selection with a variety of engaging games to attract children’s attention and participation was included, resulting in nine edutainment HTML5 games for children between 4 to 12 years. There was a backward compatibility for browser, screen size and hardware combined with better onboarding (patient manual, AQ, simplified usability). It was established to function as well for touchscreens down to 10 inches of screen size, to fit patients’ needs for
tablet PCs.

Figure 1. Examples of FAVAS 2020 in customization of vertical rotating gratings according to the type of amblyopia. A) vertical moving gratings for anisometric amblyopia, BCVA=0.2. B) vertical moving gratings for anisometric amblyopia, BCVA=0.5. C) circular moving gratings for strabismic amblyopia, BCVA=0.2. D) oblique moving gratings for meridional amblyopia, BCVA=0.5.

Sample size estimates were based on data from literature reviews and data from participants in the Group 2015 pilot trials who would meet the eligibility criteria for the current protocol.1,2,4,5,12 With our sample size of the Group 2020, the effect size between the 2 groups is 0.51, meaning medium.

This retrospective study adhered to the declaration of Helsinki, was conducted at a single center and was approved by the local ethics committee (118/19, trial registration DRKS00017633). Due to the retrospective nature of this study and an anonymization at the source, no informed consent was required.

Results

In the Group 2015, a total of 138 patients were analyzed; in the Group 2020, a total of 129 patients were analyzed. Basic characteristics of the two groups, such as age, sex and types of amblyopia are shown in Table 1. The Group 2020 was slightly younger than the Group 2015 by approximately 0.6 year. Both groups had similar gender ratios and amblyopia types distribution.
Table 1. Characteristics of patients in two groups.

<table>
<thead>
<tr>
<th></th>
<th>Group 2015</th>
<th>Group 2020</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=138</td>
<td>n=129</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female no. (%)</td>
<td>70 (50.7)</td>
<td>67 (51.9)</td>
<td>Chi-squared=0.005, P=0.93</td>
</tr>
<tr>
<td>Male no. (%)</td>
<td>68 (49.3)</td>
<td>62 (48.1)</td>
<td></td>
</tr>
<tr>
<td>Age of exam (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean±SD (min, max)</td>
<td>7.8±2.1</td>
<td>7.2±2.3</td>
<td>t=2.22, P=0.03*</td>
</tr>
<tr>
<td></td>
<td>(4.2, 15.6)</td>
<td>(4.3, 14.7)</td>
<td></td>
</tr>
<tr>
<td>Amblyopia Types</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strabismic/Anisometropic</td>
<td>65/73</td>
<td>61/68</td>
<td>Chi-squared=0, P=1</td>
</tr>
</tbody>
</table>

Adherence:

Children in the Group 2015 spent on average 2009.3±1372.1 (36 to 5472) minutes of time on FAVAS games; children in the Group 2020 spent on average 2695.5±1526.8 (37.5 to 5672) minutes on playing. Meaning that Group 2020 spent on average 686.2 minutes more time on FAVAS games than Group 2015 (t=3.87, P<0.001).

In both groups, some patients had a high adherence of more than 150%, which indicates that some individuals enjoyed FAVAS treatment (Figure 2). In the Group 2015 the mean adherence was 57% ± 34% of the prescribed exercise time. Adherence in the Group 2020 significantly improved up to 78% ± 46% compared to the Group 2015 (t=4.3, P<0.001).
Discussion

In this study we could show that improving the gaming aspect and user handling of FAVAS therapy can enhance patient adherence, thus possibly improve overall therapeutic effect. In light of the actual pandemic but also considering problematic access to specialists these data are encouraging and give us important information about the acceptance of online treatment strategies. This suggests that FAVAS with a larger selection of games to attract active participation, backward compatibility for browsers, screen size and hardware combined with better onboarding (patient manual, FAQ, simplified usability) is a good strategy to improve patient adherence. These findings are supported by other studies showing that common interventions (Cartoons, education, Sticker-Games) have been effective to improve compliance.18

Considering occlusion therapy it was shown in earlier studies that adherence is rather low with only is 60\% adherence.1,2,4 This adherence was better (80\%) during the FAVAS therapy indicating that this might be beneficial for overall treatment adherence, especially for patients with e.g. only 2 hours of prescribed patching. However, our data do not give a precise information about the rest of the occlusion time therefore this conclusion should be regarded critically; they should be evaluated further regarding functional outcome such as visual acuity or contrast sensitivity improvement in further studies.19 An overview about therapy adherence studies is shown in Table 2 and an average of occlusion compliance in Figure 3.

\textbf{Table 2.} Literature overview of 24 occlusion compliances with standard regimens to interventions like education, cartoons, stickers to boost motivation in children and parents.9
Our study has a few limitations: the retrospective character and only self reported data about patching should be regarded critically. During ongoing therapeutic interventions, the adherence to patching treatment is on average continuously decreasing as the longer the treatment lasts. Thus, our future tasks will not only be increasing average adherence, but also to change the current dynamic of adherence by slowing, maintaining or reversing the decreasing trend with computer-assisted therapeutic interventions. The data of this study show an attractive option: changing the gaming...
aspect of the games towards the end of a therapeutic circle might improve this negative dynamic, however further studies are warranted.

References

