Serum proteome analysis of systemic JIA and related pulmonary alveolar proteinosis identifies distinct inflammatory programs

Guangbo Chen,1,2 Gail Deutsch,2 Grant Schulert,1 Hong Zheng,1,2 SoRi Jang,5 Bruce Trapnell,4 Claudia Macaubas,6 Katherine Ho,1,2 Corinne Schneider,7 Vivian E. Saper,8 Adriana Almeida de Jesus,9 Mark Krasnow,5 Alexei Grom,4 Raphaela Goldbach-Mansky,9 Purvesh Khatri,12,10 Elizabeth D. Mellins,6,10 Scott W. Canna7,10

1Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, California, USA.
2Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, Stanford, California, USA.
3Pathology, Seattle Children’s Hospital and University of Washington Medical Center, Seattle, Washington, USA.
4Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
5Department of Biochemistry, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
6Pediatrics, Program in Immunology, School of Medicine, Stanford University, Stanford, California, USA.
7Pediatrics, Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
8Pediatrics, School of Medicine, Stanford University, Stanford, California, USA.
9Translational Autoinflammatory Disease Section, National Institute of Allergy and Infectious Diseases.
10Co-senior authors
11Correspondence to Scott W. Canna (scott.canna@chp.edu)
Key Messages:

- Pulmonary Alveolar Proteinosis (PAP) occurring in the setting of Systemic Juvenile Idiopathic Arthritis (sJIA) is an increasingly-noted, dangerous condition that has been associated with Macrophage Activation Syndrome (MAS).
- We evaluated >1300 serum proteins by aptamer array, verifying and localizing key proteins, and identified novel pathways associated with MAS (HSPs, glycolysis), candidate pathways/proteins associated with PAP in sJIA (e.g., ICAM5, MMP7, and type 2 chemokines), and divergence of the sJIA/MAS and sJIA-PAP proteomes.
- This analysis supports the evaluation of novel pathways in MAS, the validation of screening/monitoring biomarkers in sJIA-PAP, and the management of PAP as a disease process enmeshed with, but distinct from, sJIA and MAS.

Abstract (249 without headings)

Objectives: Recent observations in systemic Juvenile Idiopathic Arthritis (sJIA) suggest an increasing incidence of high-mortality interstitial lung disease (ILD), characterized pathologically by a variant of pulmonary alveolar proteinosis (PAP). The co-occurrence of macrophage activation syndrome (MAS) and PAP in sJIA suggested a shared pathology, but features of drug reaction such as anaphylaxis, rashes, and eosinophilia are also common in these patients. We sought to investigate immunopathology and identify biomarkers of this lung disease.

Methods: We used SOMAscan to measure >1300 analytes in serum samples from healthy controls and patients with sJIA-PAP, sJIA, sJIA-MAS, and other associated diseases, and verified selected findings by ELISA and lung immunostaining. Because a sample’s proteome may reflect multiple states (SJIA, MAS, SJIA-PAP), we used linear regression modeling to identify subsets of altered proteins associated with each state.

Results: Markers identified for sJIA, including SAA, S100A9, and S100A12, were consistent with previous reports. Proteome alterations in sJIA and MAS overlapped substantially, including new findings of heat shock proteins and glycolytic enzymes. sJIA, MAS, and sJIA-PAP shared elevation of IL-18. Importantly, we identified a unique sJIA-PAP signature whose expression was independent of sJIA-MAS activity. Key proteins were ICAM5 and MMP7, previously observed markers of fibrotic ILD. Immunohistochemistry showed expression of these proteins in sJIA-PAP lung, supporting a pulmonary source. The eosinophil chemoattractant CCL11 was elevated in sJIA-PAP, but not sJIA/MAS or other PAP.

Conclusions: We found novel circulating proteins associated specifically with sJIA, sJIA/MAS and sJIA-PAP. Select biomarkers, such as ICAM5, could aid in early detection and management of sJIA-PAP.

Keywords: interstitial lung disease, systemic JIA, macrophage activation syndrome, ICAM5
Introduction
Systemic juvenile idiopathic arthritis (sJIA) is a chronic, inflammatory disease of childhood, observed worldwide, characterized by a combination of systemic inflammation, quotidian fever, evanescent rash, serositis, and arthritis. A similar disease, adult-onset Still’s disease (AOSD), occurs in adults. Macrophage activation syndrome (MAS) is a life-threatening form of secondary hemophagocytic lymphohistiocytosis (HLH) that complicates about 10% of patients with sJIA. It is characterized by cytokine storm, very high serum ferritin, progression to organ failure, and a mortality of up to 17%. Active sJIA and MAS may share a common etiology, representing a spectrum of disease severity.

Classically, lung involvement in sJIA has been limited to pleuritis with pleural effusions. However, in the last decade, pediatric rheumatologists have increasingly detected cases with parenchymal lung disease. The predominant pathology of this new lung disease is a variant of the pulmonary alveolar proteinosis (PAP)/endogenous lipid pneumonia (ELP) spectrum, with increased inflammatory infiltrate, pulmonary arterial wall thickening, but little fibrosis. Nearly all cases with this pathology were exposed to IL-1 and/or IL-6 inhibition and the drug-exposed group demonstrated clinical features atypical for sJIA, such as acute erythematous clubbing, atypical rash, eosinophilia, and anaphylaxis to tocilizumab. In a 2013 series of sJIA with parenchymal lung disease, sJIA course was considered severe, with MAS in 80%. In the largest series, children with lung disease were enriched for MAS at sJIA onset, compared to published cohorts without known lung disease. MAS at sJIA onset was not associated with the unusual clinical features of the sJIA-PAP group, and a group of children with treatment-responsive sJIA also went on to develop lung disease. However, 78% had overt or subclinical MAS at the detection of or during lung disease, raising the possibility that lung disease may stimulate MAS.

To better understand sJIA and its potentially fatal complications, MAS and sJIA-related PAP, we organized a multi-center study to collect serum samples from sJIA patients with or without these complications and relevant controls (monogenic autoinflammatory diseases and PAP from other causes). We analyzed serum proteome profiles from these patients using SOMAscan, a proteomics platform measuring analytes using a panel of engineered DNA molecules called aptamers.

Methods
Cohort & Disease Definitions
Several names have been used for the syndrome of digital clubbing and PAP-variant parenchymal lung disease observed in sJIA. Herein, we use the term “sJIA-PAP” to identify patients known or strongly suspected to have this constellation of features (online supplemental table S1). Clinical data and serum from sJIA-PAP, healthy controls, inactive sJIA, active sJIA, active MAS, and several pulmonary and autoinflammatory control groups were collected under ongoing protocols using established diagnostic, classification or genetic criteria (see table 1 and online supplemental methods).

Serum proteome analysis
We profiled and normalized serum samples by SOMAscan assay (SOMAlogic, Boulder, CO) in collaboration with the NIH Center for Human Immunology (detailed in online supplemental...
1271 analytes were evaluated, with most being mapped to a single protein (exceptions are listed in online supplemental table S2-S4). CXCL9 and IL-18 binding protein (IL-18BP) were tested by both SOMAscan and Luminex to verify reproducibility (online supplemental figure S1). Leftover serum from 80 samples remaining after SOMAscan analysis were re-analyzed for ICAM5 by ELISA per manufacturer’s instructions (R&D Systems). Additionally, a verification cohort (46 serum samples) was assayed for IL-18, IL-18BP, and CXCL9 by Luminex and for ICAM5, MMP7, and CCL11/Eotaxin by ELISA (R&D systems).

Mapping from SOMAscan probes to gene symbol ID
For 45 analytes, a SOMAscan probe matched to a protein complex. In these cases, we chose one protein from the complex to represent the probe (online supplemental tables S2-S4). If multiple probes matched to the same gene symbol, their values were averaged for down-stream analyses.

Linear Regression-Based Modeling Analysis
As our patients’ diseases were composed of multiple disease components (e.g., patients with sJIA-PAP may have an active sJIA disease component), we distinguished patient groups from disease components. Note that disease and component names may overlap (e.g., the active sJIA group vs. the sJIA disease component) and components can appear in multiple disease groups (e.g., MAS disease component in sJIA-PAP patient samples). To capture the serum proteome alterations attributed to a specific disease component (sJIA, MAS or sJIA-PAP), we used LIMMA (Linear Models for Microarray Data), in which the overall proteome alteration was regressed against the disease component(s) present in each individual patient (figure 1A). For details on LIMMA and other analyses, see online supplemental methods.

Functional annotation of the proteins
Mapping proteins to gene symbols allowed us to perform Gene Ontology (GO) analysis. We used GO terms to annotate the function of proteins associated with each disease component (detailed in online supplemental methods).

Lung Immunostaining
Immunohistochemical and immunofluorescence staining of adjacent paraffin-embedded tissue was performed for MMP7, Galectin-3, CCL2, IL-18, ICAM5, and CCL17 (described in online supplementary methods).

Analysis of cell-type specific RNA levels in normal adult lung
The processed 10x sequencing data of the human lung cell atlas was downloaded from Synapse, accession syn21041850, and analyzed using Seurat version 3.1.5.

Data availability
The SOMAscan data will be uploaded to GEO (Gene Expression Omnibus) upon publication.

Statistical Analysis
Details for linear regression analysis by LIMMA are described above and in online supplemental methods. Other statistical analyses were performed using ranking-based approaches (such as Wilcoxon test or Spearman’s correlation). Details for each analysis are provided within the relevant figure legend.

Patient and public involvement
Patients were not involved in the research process of this study. The paper will be hosted on the website of The SJIA Foundation.

Patient consent for publication
Not required.

Ethics approval
Ethics approval for collection of clinical data and patient serum through institutional review boards at the following institutions: Stanford University, University of Cincinnati, University of Pittsburgh and National Institute of Allergy and Infectious Diseases at the National Institutes of Health.
Results

A patient cohort covering sJIA, MAS, sJIA-PAP and other related inflammatory conditions

In this study, we included 151 serum samples from 120 patients for proteomic profiling using SOMAscan. The patients represented 10 patient groups, based on clinical characterizations (table 1, online supplemental table S1). Most samples (78%) and patients (85%) were from five main groups (21 healthy controls, 28 inactive sJIA, 24 active sJIA, 10 MAS secondary to sJIA, and 10 sJIA-PAP), which we analyzed by linear regression (see below and online supplemental methods). Nearly all sJIA-PAP patient samples with medication history available were collected at a time with exposure to IL-1 and or IL-6 inhibitors (online supplemental table S1). Other patient groups included hereditary/autoimmune PAP, STING-associated Vasculopathy of Infancy (SAVI) with interstitial lung disease (prior to Jak inhibition), Neonatal-Onset Multisystem Inflammatory Disease (NOMID, prior to IL-1 blockade), and NLRC4-MAS (table 1).

Though no samples from sJIA-PAP patients were obtained during periods meeting criteria for active MAS, some samples showed elevated ferritin and CRP levels. To evaluate whether analyses identifying an sJIA-PAP signature (below) were dominated by the subset with more MAS-like activity, the sJIA-PAP samples were divided into those with high levels of these serum proteins (sJIA-PAPFH) and those without (sJIA-PAPFL). The threshold was defined by ferritin and CRP abundance in the active MAS (without sJIA-PAP) group (see online supplemental methods and online supplemental figures S2A-B, and below).

Analytical strategy to delineate the impact of each disease component

In the cohort of patients studied here, the proteome in a single sample may reflect contributions of concurrent pathologic processes: SJIA, MAS, SJIA-PAP (figure 1A). We refer to these as disease “components” (e.g., the MAS component within an overall proteomic profile). Thus, there is overlap in nomenclature between disease components and disease groups, which should be noted (see above and online supplemental methods). A central goal of this study was to capture the serum proteome alterations attributed to a specific disease component (SJIA, MAS or sJIA-PAP). To do this, we used LIMMA, as described in online supplemental methods and figure 1A. Samples from hereditary/autoimmune PAP, SAVI, NOMID and NLRC4-MAS were included as comparators for significantly-altered proteins associated within the SJIA, MAS or sJIA-PAP disease components.

MAS further exaggerates many molecular changes present in SJIA

We first characterized the SJIA and MAS components (figure 1A). For the SJIA component (active SJIA versus healthy controls), we found 86 proteins altered significantly, with most (85%) elevated in the SJIA group (figure 1B, online supplemental table S2). Many of these proteins, including ferritin (FTH1), CRP, S100A12 and IL-18 (online supplemental figures S2C-F), have been previously associated with SJIA using other techniques, confirming our approach. We also identified several proteins not typically associated with SJIA, such as MMP3 (a protease induced by IL-612), and various metabolic enzymes, including GAPDH, NAGK, HK, and GPI. We found 7 proteins were significantly different in patients with inactive SJIA compared to healthy controls (online supplemental figure S3), including the IL-10 induced monokine CCL16, consistent with a state of compensated inflammation in inactive SJIA13.
The analysis for the MAS component, which compared patients with active sJIA and those with secondary MAS, identified 105 proteins that were significantly different (figure 1C, online supplemental table S3). These included many glycolytic enzymes, (e.g., GAPDH, LDH) and several chaperone proteins (e.g., HSP70, HSP90). We defined a MAS serum activity score using each significantly altered protein (see online supplemental methods). Because the significantly altered proteins included CRP and ferritin, which were also used to diagnose MAS, we excluded CRP and ferritin from the score to test whether the score can differentiate MAS and sJIA independently (see above and online supplemental methods). The MAS serum activity score was significantly correlated with ferritin (r=0.68, p<0.001) and CRP (r=0.48, p<0.001) (online supplemental figures S4A-B). In addition, the MAS serum activity score was significantly higher in patients with MAS than those with active sJIA (figure 1D) and higher in patients with active versus inactive NLRC4-MAS (online supplemental figure S4C). We observed a strong correlation between the sJIA and MAS disease components (figure 1E, online supplemental figure S4D), suggesting MAS further exaggerated the serum proteome already altered in sJIA.

Systemic activity of lung disease can be independent of MAS activity in patients with sJIA-PAP

The absence of a high MAS score in many sJIA-PAP samples, and recent clinical observations, suggested that sJIA-PAP disease activity was not sufficiently explained by active sJIA or MAS. Therefore, we sought to identify the proteins that comprise the sJIA-PAP disease component. As described above, the sJIA-PAP samples were divided into those with high levels of both ferritin and CRP (sJIA-PAPFCHi) and those without (sJIA-PAPFCLo) to track whether sJIA-PAPFCHi samples biased or confounded identification of the sJIA-PAP component. The MAS serum activity score was comparable between the active sJIA and sJIA-PAPFCLo groups. However, the sJIA-PAPFCHi group had significantly higher MAS serum activity scores than the active sJIA or sJIA-PAPFCLo groups, consistent with smoldering MAS disease activity in this group (figure 1D). Nonetheless, the sJIA-PAPFCHi group trended toward lower MAS serum activity scores than the active MAS group (figure 1D). For the sJIA-PAP LIMMA regression analysis, we represented the MAS disease component by the quantitative MAS serum activity score (now including ferritin and CRP) to account for the quantitative nature of MAS activity (figure 2A and online supplemental methods). Comparing sJIA-PAP patients to sJIA and MAS controls identified 26 proteins (20 up and 6 down) significantly associated with the sJIA-PAP disease component (figure 2B). Using these proteins, we calculated the sJIA-PAP serum activity score (see online supplemental methods) and found it was higher in sJIA-PAP cases than in either active sJIA or MAS cases (figure 2C).

Unlike the MAS serum activity score, the sJIA-PAP serum activity score did not differ between the sJIA-PAPFCLo and sJIA-PAPFCHi groups, and both groups had substantially higher sJIA-PAP serum activity than the MAS group (figure 2C, online supplemental figure S5A). The small elevation of the sJIA-PAP activity score in the active MAS group was attributed entirely to IL-18 (online supplemental figure S5B). As expected by the model design, there is little overlap between sJIA-PAP component-associated profile and the profile of MAS or sJIA (figure 2D, online supplemental figure S5C). We also found that the sJIA-PAP serum activity score was higher in sJIA-PAP than in PAPs caused by GM-CSF-neutralizing autoantibodies or surfactant-related mutations.

Half of the sJIA-PAP cohort had 4 or more timepoints analyzed by SOMAscan. When we traced the disease component-specific serum activity scores longitudinally, the sJIA-PAP serum activity score
did not track with sJIA or MAS serum activity scores (online supplemental figure S6). Overall, these findings corroborate clinical observations suggesting that sJIA-PAP may be triggered by a mechanism distinct from sJIA, MAS, and other well-characterized PAP conditions.

Proteins involved in leukocyte-mediate immunity and cellular metabolism are elevated in the sJIA and MAS serum proteomes.

Examining the top altered proteins in each disease component (online supplemental table S2-4), we found a few proteins whose functional relationship was novel or unclear. Particularly, heat shock proteins Hsp70 (HSPA1A, HSPA8) and Hsp90 (HSP90AA1, HSP90AB1) were upregulated in many sJIA patients, particularly in active MAS (2nd, 8th, 10th, and 13th ranked hits, respectively, see online supplemental table S3, figure 3A). These proteins function as intracellular molecular chaperones, but they may also be extracellular Damage-Associated Molecular Patterns (DAMPs). The glycolytic enzymes ENO1 and GAPDH were strongly elevated in MAS and sJIA, respectively (online supplemental table S3, figure 3B). We also performed Gene Ontology (GO) term enrichment analysis on the proteins significantly changed for each disease component (online supplemental table S5). Proteins involved in GO term “leukocyte mediated immunity” (Figure 3C) were elevated in both the sJIA and MAS disease components. In addition, we found the sJIA disease component was enriched for proteins involved in GO term “monocarboxylic acid metabolic process” (Figure 3D).

sJIA-PAP serum proteome profile is characterized by elevations in IL-18 and type II chemokines

We next focused on cytokines and chemokines, which primarily function in extracellular and intravascular spaces. The analyses identified many cytokine/chemokines known to be involved in sJIA/MAS, such as IL-18 and CXCL9 (figure 4A). The changes in cytokine and chemokine levels between serum proteome profiles associated with sJIA and MAS components appeared similar (figure 4A, online supplemental figure S7A), in line with our prior proteome-wide analysis. IL-18 was the only cytokine that significantly contributed to the sJIA-PAP component and overlapped with sJIA or MAS components (figure 4A, online supplemental figure S7B).

Among the cytokines/chemokines associated with the sJIA-PAP disease activity component (figure 4B), most strongly associated were CCL11 (eotaxin) and CCL17 (TARC), which did not contribute significantly to the sJIA or MAS components (figure 4B, online supplemental figure S8). CCL17 is a potent chemoattractant for Th2 cells, and CCL11/eotaxin-1 recruits eosinophils. Both proteins showed similar abundance in the sJIA-PAPFCHI and sJIA-PAPFCLo groups (figure 4B, online supplemental figure S8). CCL2 (MCP-1), a potent chemoattractant associated with lung diseases14, showed a similar pattern (figure 4C, online supplemental figure S8) but did not meet the pre-defined significance threshold. In contrast to cytokine and chemokines shown above, the interferon-inducible chemokines CXCL9 and 10 were not significantly elevated in sJIA-PAP when compared to sJIA or MAS (Figure 4D, online supplemental table S4).

ICAM5 and MMP7 are potential biomarkers for sJIA-PAP

ICAM5 and MMP7 were among the proteins most significantly associated with sJIA-PAP (figure 2B, online supplemental figure S9). ICAM5 function has been best-characterized in the nervous system due to high expression in the brain15. However, an autopsy dataset of healthy adults (GTEx)16 showed ICAM5 expression in the lung comparable to that seen in the CNS (figure 5A, online supplemental
Indeed, serum ICAM5 is elevated in several interstitial lung diseases (ILDs).\cite{17-20} MMP7, a matrix metalloproteinase (MMP) that efficiently cleaves ICAM5 \textit{in vitro},\cite{21} is also significantly elevated in sjIA-PAP sera (online supplemental table S4, online supplemental figure S9), and we found a significant correlation between serum concentrations of ICAM5 and MMP7 (figure 5B). The ICAM5 serum concentration alone was capable of distinguishing sjIA-PAP from inactive sjIA, active sjIA or MAS cases (online supplemental figure S10B). The geometric mean of the MMP7 and ICAM5 concentrations further improved the classification (AUROC for all pairs > 0.9, figure 5C). These findings suggest that ICAM5 and MMP7 could serve as useful biomarkers for sjIA-PAP in patients with sjIA/MAS.

To determine whether proteins identified by SOMAscan profiling of serum samples were also expressed in lung tissue, we used immunostaining to evaluate lung biopsies from 8 patients with sjIA-PAP/ELP, 3 with genetic disorders in surfactant metabolism (SFTPC, NKX2.1, and GATA2), 1 with idiopathic ILD, and 3 controls (asthma/ascariasis, bronchopneumonia, and normal lung adjacent to tumor) (online supplemental table S6). Consistent with our prior evaluation of sjIA-PAP histology,\cite{7} lungs from sjIA-PAP patients exhibited the characteristic pattern of pulmonary alveolar proteinosis (PAP) and/or exogenous lipid pneumonia (ELP)\cite{7} (figure 5D). Mixed acute and chronic inflammatory cells were frequently present, and several cases had patchy interstitial fibrosis. Lung pathology from the patients with genetic disorders in surfactant metabolism and idiopathic ILD showed a similar spectrum of PAP/ELP with lung fibrosis (figure 5D, online supplemental table S6, and data not shown).

Immunostaining showed membrane-associated ICAM5 in all samples and was largely restricted to interstitial fibroblasts, confirmed by double-labeling with the epithelial marker cytokeratin 7 (figure 5D, online supplemental figures S11, S12). ICAM5 expression was proportional to the number of interstitial fibroblasts, especially prominent in Case 1 (sjIA-PAP) and Case 9 (GATA2) (online supplemental table S6). MMP7 was expressed in rare to few macrophages (marked by CD163) and epithelial cells in most lung samples, except in a few cases (1, 6, 9, 11) in which epithelial expression was more robust (online supplemental table S6, Figure 5D, online supplemental figures S11, S12). We also stained for several other proteins that were identified by SOMAscan. Compared to controls with very limited signal, IL-18 immunopositivity in diseased lungs was increased within macrophages, inflammatory cells and epithelial cells. In most disease cases and controls, galectin-3 expression was strong within alveolar macrophages and patchy mild signal was observed in bronchial and alveolar epithelial cells. Robust expression of CCL2 was observed in the presence of neutrophilic and monocytic inflammation. Rare monocytes and macrophages expressed CCL17 in sjIA cases. (online supplemental table S6)

Verification of sjIA-PAP biomarkers

To verify the SOMAscan ICAM5 findings, we measured ICAM5 by ELISA in 80 of the same samples profiled with SOMAscan. As with CXCL9 and IL-18BP (online supplemental figure S1), we found a strong correlation between ELISA and SOMAscan results. Accordingly, sjIA-PAP was the only group with an elevated abundance of ICAM5 by ELISA, although ELISA showed poorer sensitivity at low concentrations (online supplemental figure S13).

We also enrolled an independent multi-center cohort of 46 samples from non-overlapping subjects (online supplemental tables S1 and S7) and measured serum ICAM5, MMP7, and CCL11 by ELISA.
In this cohort, sJIA-PAP cases had significantly higher serum ICAM5 and MMP7, compared with inactive and active sJIA (figure 6A), corroborating our previous findings. Geometric mean of the two proteins accurately classified the cases with sJIA-PAP versus active sJIA (AUROC= 0.92) and versus inactive sJIA (AUROC= 0.85) (figure 6A-B). Surprisingly, ICAM5 and MMP7 were also elevated in cases with active MAS in this cohort (figure 6A), but not the discovery cohort (online supplemental figures S9 and S13B). We also assayed CCL11 in the independent cohort. Serum CCL11 was elevated (median increase of 30%) in sJIA-PAP compared to active sJIA (figure 6A), but this was not statistically significant, possibly due to large variance in sJIA-PAP values by ELISA.
Discussion

ELP/PAP is a challenging new condition occurring in the setting of sJIA, a syndrome studied continuously since its description in 1896. To approach conceptual and practical questions surrounding both, we employed SOMAscan to measure serum levels of 1271 analytes. Our analyses yielded several insights. First, they provided an unbiased confirmation of known biomarkers for sJIA (S100 proteins, SAA, CRP, IL-6) and MAS (ferritin, IL-18). Next, they identified new proteins/pathways of potential utility in understanding sJIA and MAS, including glycolytic enzymes and heat shock proteins that can act as extracellular DAMPs. Patterns of proteins suggested that the sJIA and MAS serum proteomes were related. Finally, the proteins associated with sJIA-PAP reflected inflammation programs distinct from sJIA/MAS. We verified these findings by measuring selected markers by ELISA in remnant samples and in a small independent cohort of sJIA-PAP patients and sJIA controls. We then used immunostaining and existing transcriptional data to identify cells that may be important sources of serum proteins associated with sJIA-PAP.

The strong enrichment for known sJIA/MAS biomarkers argued for the validity of the SOMAscan assay. Likewise, the observation of high IL-18 in all sJIA groups confirms reports in sJIA/MAS and more recently in sJIA-PAP. The HSPs elevated particularly in MAS may reflect an unfolded protein response, such as that reported to sustain macrophage survival in atherosclerotic lesions. However, these chaperone proteins also play extracellular roles in wound healing, tissue regeneration, and immune responses. Their elevated serum concentration may reflect stress-induced secretion or cell death. Inflammatory forms of cell death (pyroptosis, necroptosis, etc.) are capable of releasing alarmins and DAMPs, such as IL-33, HSPs, and S100 proteins. In addition, glycolysis-associated proteins were associated with the sJIA and MAS components. Animal work suggests glycolysis may be a viable therapeutic target in cytokine storms, and many glycolytic enzymes “moonlight” as regulators of inflammatory responses. We also observed elevation of many neutrophil/monocyte proteins in sJIA and MAS sera (e.g., S100 proteins, proteinase-3, myeloperoxidase, lipocalin-2, CD163, CD177, online supplemental tables S2 and S3), possibly reflecting their secretion and/or release during cell death.

A high frequency of MAS in sJIA-PAP suggested a connection between sJIA-PAP and the IL-18-interferon gamma (IFNγ) axis that appears to drive MAS. Indeed, sJIA-PAP patients' peripheral blood often carries an IFN transcriptional signature. In our data, a portion of sJIA-PAP sera (sJIA-PAP_FCHi) showed similarly elevated CXCL9 and CXCL10 levels compared to those of the MAS group, although CXCL9 and CXCL10 were not consistently elevated in bronchoalveolar lavage (BAL) fluid from sJIA-PAP patients. Combined, these data do not indicate whether MAS activity is crucial for PAP (figures 7A-B). Notably, sJIA-PAP was reported in some patients without preceding MAS. We found the sJIA-PAP signature did not correlate with MAS serum activity across timepoints (online supplemental figure S6) or patients (figure 2C), and many cytokines/chemokines had similar abundance in both sJIA-PAP_FClO and sJIA-PAP_FCHi groups (figure 4B). Also, sera from 10 patients in the sJIA-PAP_FClO group showed no elevation of CXCL9 or CXCL10 (Figure 4D), even though these patients had markedly elevated sJIA-PAP proteome activity (Figure 2C), including an increased level of lung interstitial tissue marker, ICAM5 comparable to sJIA-PAP_FCHi group (online supplemental figure S9). Our data demonstrate that the sJIA-PAP proteome can be present without high MAS activity, supporting the independent origin model (figure 7B). The implication of this model is that treatments targeting the parallel sJIA and MAS proteome patterns (anti-IL-1, anti-IL-6, anti-IFNγ)
may be insufficient to manage sJIA-PAP. However, it is also possible that MAS activity is necessary for PAP (either initiation and/or progression), and the sJIA-PAP component indicates lung-specific damage/healing responses rather than a primary pathologic process. Understanding the interaction between the IL-18/IFNγ axis and PAP development will be crucial as therapies targeting this axis become available.

Key components of the sJIA-PAP score with potential diagnostic/monitoring utility were ICAM5 and MMP7. We also found elevated MMP7 in autoimmune/hereditary PAP, and both ICAM5 and MMP7 were elevated in a few patients with SAVI-related ILD (online supplemental figure S9). Elevation of ICAM5 was also reported in idiopathic pulmonary fibrosis (IPF)18,19, rheumatoid arthritis-associated ILD (RA-ILD)17, and bronchoalveolar lavage (BAL) fluid from neuroendocrine hyperplasia of infancy (NEHI)20. In these reports, the tissue of origin of ICAM5 is unclear. We found ICAM5 predominantly in interstitial fibroblasts by immunostaining (figures 5D), and in fibroblasts, type II alveolar (AT2) cells, and ciliated cells by RNA-sequencing11 (online supplemental figure S14). MMP7 has been shown to efficiently cleave ICAM5 and is also elevated in various other ILDs17-20. We hypothesize that ICAM5 elevation in blood may be traced back to lung-specific activity of MMP7 in sJIA-PAP, and the marker pair may be elevated in a variety of lung diseases. Amongst other biomarkers previously associated with lung disease, like LDH, surfactant proteins, and MUC-1 (the source of the KL-6 antigen32-36), we only observed elevation of LDH in sJIA-PAP (online supplemental figure S9).

Cytokines/chemokines contributing to the sJIA-PAP component, particularly CCL17/TARC, CCL7/MCP3, CCL25, GDF15/MIC-137 and CCL11/eotaxin-1 (online supplemental table S8), could be part of pro-fibrotic and/or type 2 immune responses. They, along with MMP7, have been elevated in the proteomic profiles of other ILDs17-20. In a mouse model, expression of a PAP-causing surfactant mutant led to overexpression of CCL17, CCL7, and MMP7 proteins in AT2 cells38 (see also online supplemental figure S14 for expression in normal human lung). In the lung, CCL11 can be made by epithelial cells, fibroblasts, smooth muscle cells, and resident macrophages39. CCL11 cooperates with Th2 cytokines (e.g. IL-13) in the development of fibrosis40, has a profibrogenic effect on human lung fibroblasts41, and was part of a pro-fibrotic serum profile in RA/ILD and IPF42.

In addition to fibrosis, these sJIA-PAP associated chemokines are also induced during Type 2 immune responses43. Lung biopsies in sJIA-PAP, even from children with long-standing disease, showed remarkably little fibrosis6-9,10, possibly due to the young age of the subjects. Previously, we reported atypical rashes (56%) and eosinophilia (37%) during treatment with IL-1 or IL-6 inhibitors in sJIA-PAP7. These clinical findings, a minimally-fibrotic lung pathology, recent evidence for a remarkable HLA association44, and the above serum chemokine elevations (particularly CCL11 and CCL17), are together consistent with a delayed-type drug hypersensitivity reaction45. In the current study, we were unable to analyze the impact of IL-1/6 inhibition on the serum proteome profile, as all the sJIA-PAP patients with therapeutic information were under IL-1/6 inhibition at sample collection. Investigation of a possible etiologic contribution of drug hypersensitivity to sJIA/PAP is warranted.

This exploratory study has several additional limitations. First, though the largest to date, our limited sJIA-PAP sample size may not reflect the inter-individual and temporal spectrum of this syndrome. Secondly, because all sJIA-PAP patients were being treated at sampling (often with two or more agents), we cannot exclude confounding by disease activity and treatment. Such clinical heterogeneity could contribute to the biomarker heterogeneity observed, such as the varied CCL11 level of the sJIA-PAP group in the verification cohort. We also observed discrepancy in ICAM5 levels.
in MAS patients between the discovery and the verification cohorts (figure 5, online supplemental figure 59,13 versus figure 6), suggesting heterogeneity between the cohorts. Some heterogeneity may be explained by MAS patients with non-PAP lung inflammation. Indeed, review of active MAS patient charts from both cohorts found the MAS sample with the highest ICAM5 reading derived from a patient with MAS complicated by pneumonia (figure 6A, red dot). Lastly, in order to identify immune regulators (such as cytokine/chemokines) in these diseases, we utilized Gene Ontology, a knowledge ensemble of prior information (including experiments) on gene functions. However, Gene Ontology is subject to research bias. Thus, additional functional classes may be relevant in this dataset.

Nevertheless, we have leveraged a novel, high-dimensional proteomics platform to identify serum proteins relevant to sJIA, MAS, and the life-threatening development of digital and lung immunopathology; and we have used complementary techniques to localize and verify many results. Unbiased analyses reinforced the primacy of known biomarkers for sJIA and MAS and highlighted novel, targetable markers and pathways. Focusing on sJIA-PAP revealed features of smoldering MAS in many, but also a distinct serum proteome with features of lung-specific inflammation, damage/repair, and/or hypersensitivity responses. Further, we identified biomarkers that may be useful to screen for and monitor lung disease in children for whom functional or radiologic testing may be impractical or high-risk. Finally, we hope our data will serve as a resource to investigators, clinicians, and families grappling with the management of sJIA, MAS, and PAP.

Ethics approval
Ethics approval for collection of clinical data and patient serum through institutional review boards at the following institutions: Stanford University, University of Cincinnati, University of Pittsburgh, University of California at San Francisco, and National Institute of Allergy and Infectious Diseases at the National Institutes of Health.

Acknowledgments: The authors are grateful for the assistance of the following: Angelique Biancotto, Katie Stagliano, and Jessica Mann at the NIH Center for Human Immunology. We also thank Bhupinder Nahal and the Division of Pediatric Rheumatology at University of California San Francisco, led by Dr. Emily von Scheven, for collection of several serum samples and associated clinical data.

Funding: The SOMAscan assay was supported by a grant to the Intramural Research Program of the NIAID from the Systemic JIA Foundation. AAdJ and RGM were supported by the NIAID intramural research program. GC is an Eli Lilly Fellow of the Life Science Research Foundation. SJ is supported by Dean’s Postdoctoral Fellowship, School of Medicine, Stanford. CM and EDM were supported by NIAMS R01 AR066551, AR061297 and Arthritis Foundation Great West Region Arthritis Center of Excellence; VS and EDM were supported by the Lucille Packard Foundation for Children’s Health and a Childhood Arthritis and Rheumatology Research Alliance/Arthritis Foundation grant. CS and SWC were supported by the RK Mellon Institute for Pediatric Research, NIAID K22 AI123366, and NICHD R01 HD098428. PK is funded in part by the Bill and Melinda Gates Foundation (OPP1113682); NIAID 1U19AI09662, U19AI057229, and 5R01AI25197 grants; Department of
Defense contracts W81XWH-18-1-0253 and W81XWH1910235; and the Ralph & Marian Falk Medical Research Trust.
References

44. Hollenbach J, Ombrello M, Tremoulet A, et al. Hypersensitivity reactions to IL-1 and IL-6 inhibitors are linked to common HLA-DRB1*15 alleles. *medRxiv* 2020;2020.08.10.20172338. doi: 10.1101/2020.08.10.20172338

Figure Legends

Figure 1: sJIA and active MAS change serum proteome

A) Scheme to identify sJIA and MAS disease component associated proteome profile. sJIA-PAP samples were not included in this analysis (see methods). Note that a patient group can have multiple, concurrent disease components. B, C) Volcano plots highlight the proteins (shown by gene names) with significantly different serum abundance between patients with sJIA and healthy controls (B) or between patients with MAS and active sJIA (C). Significance thresholds are represented by the dashed lines: false discovery rate [FDR (adjusted p value)] < 20% and absolute fold change > 1.5. Detailed information on these comparisons is available in online supplemental tables S2, 3. D) The MAS serum activity score (calculated without CRP or ferritin, see methods) across different groups is shown. sJIA-PAP is sub-grouped by ferritin and CRP values as in figure S2A, B. Dashed horizontal line indicates median value of healthy controls. The between group comparisons, between each indicated group and the healthy control group, were performed using Wilcoxon signed-rank test, without the assumption of normal distribution. We used Benjamini-Hochberg procedure to adjust P values. *, p<0.05; **, p<0.01; ***, p<0.001; ****, p< 0.0001. E) Shown is the correlation between the coefficients (Log2FC) assigned by LIMMA model to the sJIA and MAS disease components (see online supplementary methods) for 174 proteins. These proteins are those identified as significantly altered in at least one of the three disease components (sJIA, MAS, or sJIA-PAP, also see Figure 2D). See online supplemental figure S4D for comparison with all proteins included. To facilitate analysis, gene names are presented but represent protein targets, see online supplemental methods.

Figure 2: Protein analytes show different serum levels in sJIA-PAP and active sJIA, adjusted for MAS activity.

A) The scheme to identify the sJIA-PAP component-associated proteome profile. Note that MAS activity is quantified by the MAS score of each subject (see online supplemental methods). B) The volcano plot highlights proteins with significantly different serum abundance between patients with sJIA-PAP and active sJIA/MAS. CCL2 approached significance, as indicated by grey color. C) sJIA-PAP serum activity score, calculated by geometric mean of abundance of proteins that reached significance (see online supplementary methods), separates sJIA-PAP from other patient groups. See online supplemental figure S5 for the sJIA-PAP score in all patient groups. Dashed horizontal line indicates median value of healthy controls. Between-group comparisons between each indicated group and the healthy control group, were performed using Wilcoxon signed-rank test with p value adjusted by Benjamini-Hochberg Procedure. *, p<0.05; **, p<0.01; ***, p<0.001; ****, p< 0.0001. D) Focusing on 174 proteins that were identified as significantly altered in at least one of the three disease components (sJIA, MAS, or sJIA-PAP), we examined the correlation between the coefficients (Log2FC) assigned by LIMMA model (see online supplementary methods) to the MAS and sJIA-PAP disease components. See online supplemental figure S5C for comparison with all proteins included. To facilitate analysis, gene names are presented but represent protein targets, see online supplemental methods.

Figure 3: Protein functional groups for different disease components.
A) Examples of significantly elevated heat-shock proteins (HSPA1A, HSPA90AA1) and proteins involved in glycolytic process (GAPDH, ENO1) were plotted for different patient groups. Comparisons between each indicated group and the healthy control group were performed using Wilcoxon signed-rank test with p value adjusted by Benjamini-Hochberg Procedure. *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001. Dashed horizontal line indicates median value of healthy controls.

C-D) Proteins present in SOMAscan for two different functional groups defined by Gene Ontology (GO) terms (C: Leukocyte mediated immunity, D: Monocarboxylic acid metabolic process. GO term enrichment results are provided in online supplemental table S5). The heatmap shows the coefficients of each protein assigned by the LIMMA model to each disease component. To facilitate analysis, gene names are presented but represent protein targets, see online supplemental methods.

Figure 4: Cytokine/chemokine serum abundance differs between sJIA-PAP and sJIA/MAS
A) The heatmap presents the coefficients of concentration change from the LIMMA analysis for cytokines/chemokines associated with each disease component in the linear regression model. Cytokines/chemokines shown were those that reached significance in at least one disease component and also were associated with the respective GO term (see online supplemental methods). B) Eight significantly altered cytokines/chemokines in the sJIA-PAP disease component were plotted by different patient groups (see figure S8 for groups beyond the main disease groups). Comparisons between each indicated group and the healthy control group were performed using Wilcoxon signed-rank test with p value adjusted by Benjamini-Hochberg Procedure. *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001. C) CCL2, which approaches significance (Figure 2B), is also shown. Dashed horizontal line indicates median value of healthy controls. D) CXCL9 and CXCL10, two interferon-inducible chemokines are shown. To facilitate analysis, gene names are presented but represent protein targets, see online supplemental methods.

Figure 5: ICAM5 and MMP7 as biomarkers for sJIA-PAP in the discovery cohort.
A) The RNA expression data from an autopsy cohort (GTEx) demonstrates high specificity of expression of ICAM5 in the lung. See online supplemental figure S10A for full data. B) The correlation of MMP7 and ICAM5 protein levels among serum samples is plotted. C) ROC curves using geometric mean levels of ICAM5 and MMP7 to classify different comparisons in the discovery cohort are shown. D) Staining of ICAM5 and MMP7 in control and sJIA lung. Insert shows characteristic PAP/ELP histology in an sJIA-PAP patient. ICAM5 expression is robust in interstitial fibroblast cells and does not overlap in merged images with cytokeratin (CK), a marker for epithelial cells, or CD163, a marker of macrophages. MMP7 is expressed in rare (control lung) to few (diseased lung) epithelial cells (arrows), macrophages and hematopoietic cells (arrowheads). * denote alveolar lumen. Nuclei counterstained with DAPI (blue). All immunofluorescence images are from sJIA-PAP. Also see online supplemental figures S11 and S12.

Figure 6: Verification of ICAM5 and MMP7 as biomarkers for sJIA-PAP in an independent cohort.
Verification was performed using antibody-based ELISA. A) Protein levels among different groups. Note: the red dot in the MAS group highlights a patient without PAP but with active pneumonia at sample collection. The between group comparisons, between each indicated group and sJIA-PAP group as a reference, were performed using Wilcoxon signed-rank test with p value adjusted by
Benjamini-Hochberg procedure. *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001. ref, reference. B) ROC curves, using geometric mean levels of ICAM5 and MMP7 to classify different comparisons in the verification cohort, are shown.

Figure 7: Two hypothetical models to describe the relationships between sJIA, MAS and sJIA-PAP
A) The sequential development model: sJIA-PAP results from elevated MAS activities, with shared etiology. B) The independent origin model: sJIA-PAP and MAS are triggered by different underlying causes. In a flare of sJIA-PAP, MAS can be triggered, possibly due to elevated cytokines, such as IL-18.
<table>
<thead>
<tr>
<th>Groups</th>
<th>Clinical Definition</th>
<th>Patient N</th>
<th>Sample N**</th>
<th>Age, median (IQR)</th>
<th>Female %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy Control</td>
<td>No known pulmonary or rheumatic/autoinflammatory disease</td>
<td>21</td>
<td>21</td>
<td>8.9 (1.4-17)</td>
<td>37% (7/19) $</td>
</tr>
<tr>
<td>Inactive sJIA</td>
<td>Inactive at time of sampling per submitting investigator</td>
<td>28</td>
<td>30</td>
<td>12 (7-16)</td>
<td>64% (18/28)</td>
</tr>
<tr>
<td>Active sJIA</td>
<td>Active per submitting investigator but did not meet MAS criteria at time of sampling</td>
<td>24</td>
<td>25</td>
<td>12 (8-14)</td>
<td>58% (14/24)</td>
</tr>
<tr>
<td>Active MAS</td>
<td>Met MAS criteria at time of sampling</td>
<td>10</td>
<td>12</td>
<td>9.4 (4.1-16)</td>
<td>70% (7/10)</td>
</tr>
<tr>
<td>sJIA-PAP</td>
<td>Had radiologic evidence of lung disease. See Table S1 For details</td>
<td>10$$</td>
<td>30</td>
<td>5.2 (4.3-8.1)</td>
<td>60% (6/10)</td>
</tr>
<tr>
<td>subgroup: sJIA-PAP$^{FC<Lo}$</td>
<td>Either ferritin OR CRP not elevated (See Figures S2A,B)</td>
<td>8</td>
<td>18</td>
<td>4.4 (3.8-6.4)</td>
<td>63% (5/8)</td>
</tr>
<tr>
<td>subgroup: sJIA-PAP$^{FC>Hi}$</td>
<td>Ferritin AND CRP elevated (See Figures S2A, B)</td>
<td>6</td>
<td>12</td>
<td>6.5 (5-8.6)</td>
<td>50% (3/6)</td>
</tr>
<tr>
<td>PAP</td>
<td>PAP due to anti-GM-CSF autoantibodies (10) or genetic causes (4) without sJIA or known rheumatic/autoinflammatory disease</td>
<td>14</td>
<td>14</td>
<td>34 (17-47)</td>
<td>57% (8/14)</td>
</tr>
<tr>
<td>SAVI</td>
<td>STING-associated Vasculopathy with onset in Infancy. All patients had radiologic ILD, prior to treatment with JAK inhibitors</td>
<td>4</td>
<td>4</td>
<td>15 (10-18)</td>
<td>100% (4/4)</td>
</tr>
<tr>
<td>NOMID</td>
<td>Neonatal Onset Multi-System Inflammatory Disease, prior to treatment with IL-1 inhibitors</td>
<td>5</td>
<td>5</td>
<td>9.2 (8.6-18)</td>
<td>80% (4/5)</td>
</tr>
<tr>
<td>Inactive NLRC4 MAS</td>
<td>Inactive per submitting investigator</td>
<td>2</td>
<td>5</td>
<td>5.3 (3.2-7.4)</td>
<td>100% (2/2)</td>
</tr>
<tr>
<td>NLRC4 MAS</td>
<td>Active MAS per submitting investigator</td>
<td>2</td>
<td>5</td>
<td>4.8 (2.5-7.2)</td>
<td>100% (2/2)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>120</td>
<td>151</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*: The bold font highlights the main patient groups subjected to LIMMA analysis

**: When multiple samples were taken from the same patient in the same patient group, the SOMAscan data were merged by averaging.

$: Two healthy controls were missing data on sex.

$$: sJIA-PAP group were subdivided into Ferritin-CRP (FC)-Lo and FC-Hi, based on their ferritin and CRP values relative to active MAS disease (see Figures S4D,E).

Four patients contributed samples (from different timepoints) to both the FCLo and FCHi subgroups.

All sJIA patients met modified ILAR criteria (DeWitt et al., Arth Care Res, 2012)
Figure 1

A

Serum Proteome Profiling by SomaScan

Patient Groups

Disease Components

Healthy Controls
Active sJIA
Secondary MAS

Linear Modeling by LIMMA

Active sJIA vs. Healthy

sJIA

Component

Secondary MAS vs. sJIA

MAS

Component

B

Active sJIA vs. Healthy Controls

N of Proteins=1271

IL18

-log10(FDR)

(Coefficients)

Log2FC

(Coefficients)

C

Secondary MAS vs. Active sJIA

N of Proteins=1271

FTH1/Ferritin

-log10(FDR)

Log2FC

(Coefficients)

D

ctrl

ns

Serum Activity Score (FTH1/CRP excluded)

Healthy Ctrl
Active sJIA

S100A2

PAPPA

MMP3

MAS

S100A12

SAA1

FTH1/Ferritin

E

Spearman Correlation Test

Rho=0.35

P= 2.0E-06

IL18

Coefficients associated with sJIA Component

Coefficients associated with MAS Component
Figure 2

A

Serum Proteome Profiling by SomaScan

<table>
<thead>
<tr>
<th>Main Patient Groups</th>
<th>Disease Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>sJIA</td>
<td>MAS (Quantitative Scores)</td>
</tr>
<tr>
<td>Healthy Controls</td>
<td></td>
</tr>
<tr>
<td>Active sJIA</td>
<td></td>
</tr>
<tr>
<td>Secondary MAS</td>
<td></td>
</tr>
<tr>
<td>sJIA-PAP</td>
<td></td>
</tr>
</tbody>
</table>

Linear Modeling by LIMMA

B

- Lower in sJIA-PAP
- Not Signif.
- Higher in sJIA-PAP

C

Spearman Correlation Test

Rho=0.05
P=0.54

D

Coeficients associated with Mas Component

Points Density

- 0.25
- 0.50
- 0.75
- 1.00
Figure 3

Coefficients (Conc. Change Magnitude) associated with each disease component

Leukocyte mediated Immunity

Monocarboxylic acid metabolic process

Coefficients (Conc. Change Magnitude) associated with each disease component
Figure 4

A

Coefﬁcients associated with each disease component in linear model

B

CCL11

CCL15

CCL17

IL18

GDF15

CCL7

CCL25

ADIPOQ

Healthy Ctrl Inactive sJIA Active sJIA sJIA−PAP FCLo sJIA−PAP FCHi

C

D

CXCL9

CXCL10

CC-BY-NC-ND 4.0 International license

It is made available under a CC-BY-NC-ND 4.0 International license.
Figure 5

A

RNA expression for ICAM5

B

Spearman’s Rank Correlation

C

log2(Abundance) for ICAM5 vs MMP7

D

ICAM5 control vs ICAM5 sJIA

MMP7 control vs MMP7 sJIA
Figure 6

A

ICAM5 (ELISA)

<table>
<thead>
<tr>
<th></th>
<th>Inactive sJIA</th>
<th>Active sJIA</th>
<th>sJIA−PAP</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>log2(Abundance)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MMP7 (ELISA)

<table>
<thead>
<tr>
<th></th>
<th>Inactive sJIA</th>
<th>Active sJIA</th>
<th>sJIA−PAP</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>log2(Abundance)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CCL11 (ELISA)

<table>
<thead>
<tr>
<th></th>
<th>Inactive sJIA</th>
<th>Active sJIA</th>
<th>sJIA−PAP</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>log2(Abundance)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

Receiver Operating Characteristic (ROC) curve

- sJIA−PAP vs. Active sJIA
- sJIA−PAP vs. Inactive sJIA
- sJIA−PAP vs. MAS

Cohort sJIA−PAP vs. Active sJIA: 0.92 [95%CI: 0.8 to 1]
Cohort sJIA−PAP vs. Inactive sJIA: 0.85 [95%CI: 0.69 to 1]
Cohort sJIA−PAP vs. MAS: 0.57 [95%CI: 0.31 to 0.82]
Figure 7

A

Sequential origin

Healthy \rightarrow \text{Systemic JIA} \rightarrow \text{Macrophage Activation Syndrm.} \rightarrow \text{Pulmonary Alv. Proteinosis}

B

Independent origin

Healthy \rightarrow \text{Systemic JIA} \rightarrow \text{Macrophage Activation Syndrm.} \rightarrow \text{Pulmonary Alv. Proteinosis}