Polygenic risk for immuno-metabolic markers and specific depressive symptoms: A multi-sample network analysis study

Nils Kappelmann¹,², Darina Czamara¹, Nicolas Rost¹,², Sylvain Moser¹,², Vanessa Schmoll¹, Lucia Trastulla¹, Jan Stochl³,⁴, Susanne Lucae⁵, CHARGE inflammation working group, Elisabeth B. Binder¹, Golam M. Khandaker³,⁶,⁷,⁸,* & Janine Arloth¹,⁹,*

¹Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
²International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
³Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
⁴Department of Kinanthropology, Charles University, Prague, Czech Republic
⁵Max-Planck-Institute of Psychiatry, Munich, Germany
⁶Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
⁷MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
⁸Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
⁹Institute of Computational Biology, Helmholtz Zentrum Munich, Neuherberg, Germany

*joint senior authors

Corresponding author:
Nils Kappelmann
Max-Planck-Institute of Psychiatry
Kraepelinstraße 2-10
80804 Munich, Germany

Email: nils_kappelmann@psych.mpg.de; n.kappelmann@gmail.com

Abstract word count: 384

Manuscript word count: 5,406

Tables and Figures: 2 Tables and 3 Figures

Online Supplementary Tables and Figures: 7 Tables and 9 Figures

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Background

About every fourth patient with major depressive disorder (MDD) shows evidence of systemic inflammation. Previous studies have shown inflammation-depression associations of multiple serum inflammatory markers and multiple specific depressive symptoms. It remains unclear, however, if these associations extend to genetic/lifetime predisposition to higher inflammatory marker levels and what role metabolic factors such as Body Mass Index (BMI) play. It is also unclear whether inflammation-symptom associations reflect direct or indirect associations, which can be disentangled using network analysis.

Methods

This study examined associations of polygenic risk scores (PRSs) for immuno-metabolic markers (C-reactive protein [CRP], interleukin [IL]-6, IL-10, tumour necrosis factor [TNF]-α, BMI) with seven depressive symptoms in one general population sample, the UK Biobank study (n=110,010), and two patient samples, the Munich Antidepressant Response Signature (MARS, n=1,058) and Sequenced Treatment Alternatives to Relieve Depression (STAR*D, n=1,143) studies. Network analysis was applied jointly for these samples using fused graphical least absolute shrinkage and selection operator (FGL) estimation as primary analysis and, individually, using unregularized model search estimation. Stability of results was assessed using bootstrapping and three quality criteria were defined to appraise consistency of results across estimation methods, network bootstrapping, and samples.

Results

Network analysis results displayed to-be-expected PRS-PRS and symptom-symptom associations (termed edges), respectively, that were mostly positive. Using FGL estimation, results further
suggested 28, 29, and six PRS-symptom edges in MARS, STAR*D, and UK Biobank samples, respectively. Unregularized model search estimation suggested three PRS-symptom edges in the UK Biobank sample. Applying our quality criteria to these associations indicated that only the association of higher CRP PRS with greater changes in appetite fulfilled all three criteria. Four additional associations fulfilled at least two quality criteria; specifically, higher CRP PRS was associated with greater fatigue and reduced anhedonia, higher TNF-α PRS was associated with greater fatigue, and higher BMI PRS with greater changes in appetite and anhedonia.

Associations of the BMI PRS with anhedonia, however, showed an inconsistent valence across estimation methods.

Conclusions

Our findings align with previous studies suggesting that systemic inflammatory markers are primarily associated with somatic/neurovegetative symptoms of depression such as changes in appetite and fatigue. We extend these findings by providing evidence that associations are direct (using network analysis) and extend to genetic predisposition to immuno-metabolic markers (using PRSs). Our findings can inform selection of patients with inflammation-related symptoms into clinical trials of immune-modulating drugs for MDD.

Keywords: Depression; Depressive Symptoms; Inflammation; C-reactive protein; Body Mass Index; Interleukin 6; Interleukin 10; Tumour Necrosis Factor-α; Network Analysis
INTRODUCTION

Recent findings suggest that every fourth patient with Major Depressive Disorder (MDD) shows evidence of systemic, low-grade inflammation as indicated by elevated (>3mg/L) C-reactive protein (CRP) concentrations (Osimo et al., 2019). This association has been supported by cross-sectional case-control studies synthesised in multiple meta-analyses (Dowlati et al., 2010; Goldsmith et al., 2016; Haapakoski et al., 2015; Howren et al., 2009; Köhler et al., 2017) as well as longitudinal studies (Khandaker et al., 2014; Lamers et al., 2020; Mac Giollabhui et al., 2020). Clinically, patients with evidence of inflammation do not respond as well to standard monoaminergic and psychotherapeutic treatments (Liu et al., 2020; Lopresti, 2017). These patients may, however, benefit from alternative treatment with immune-modulating drugs (Kappelmann et al., 2018; Köhler-Forsberg et al., 2019; Wittenberg et al., 2020). To prioritise drug and patient selection for clinical trials, it is crucial to further understand immunological and clinical complexity of inflammation-symptom associations, which may allow shortlisting of promising immunotherapeutic drug targets and could highlight patients with a profile of inflammation-related depression.

Regarding immunological complexity, studies have reported various associations of serum inflammatory proteins with depression, including among others CRP, interleukin (IL)-6, IL-10, and tumour necrosis factor (TNF)-α (Goldsmith et al., 2016; Haapakoski et al., 2015; Köhler et al., 2017). Evidence from in-depth immunophenotyping further suggests that there may be distinct subgroups of inflammation-related depression as shown by immune cell count clustering and transcriptome analyses (Cattaneo et al., 2020; Lynall et al., 2020). These studies suggest that acutely elevated levels of inflammatory markers are associated with depression, but associations of depression with genetic/lifetime predisposition to higher inflammatory markers has been
studied less frequently and primarily for CRP (Badini et al., 2020; Kappelmann et al., 2020; Milaneschi et al., 2017b, 2016). Moreover, inflammatory markers such as CRP are influenced by metabolic factors (Timpson et al., 2011), which may causally underlie some inflammation-symptom associations (Kappelmann et al., 2020), so a combined investigation of immunometabolic factors is needed to disentangle their etiological roles.

Regarding clinical complexity, studies have shown associations of inflammatory markers with specific depressive symptoms including fatigue, changes in appetite, anhedonia, and suicidality (Badini et al., 2020; Fried et al., 2019; Jokela et al., 2016; Kappelmann et al., 2020; Köhler-Forsberg et al., 2017; Lamers et al., 2020, 2018; Milaneschi et al., 2017a; Moriarity et al., 2020a; Simmons et al., 2018; White et al., 2017). Most prior research, however, has restricted its investigation to complexity on one side, that is focusing on multiple immune markers (e.g., cell counts/ serum cytokine levels) while studying a composite depression phenotype or focusing on multiple depressive symptoms in the context of a single inflammatory marker (mostly CRP). Moreover, previous studies have usually considered associations of inflammatory markers with each depressive symptom in isolation. Although these prior approaches have led to important findings, they cannot address potential causal interactions between symptoms, thus conflate evidence for indirect and direct associations. For example, analyses of isolated symptoms could hypothetically provide evidence for associations of CRP with both fatigue and sleep problems even if CRP was only indirectly associated with fatigue via its effect on sleep problems. A network-based approach provides one means of disentangling such direct from indirect inflammation-symptom associations.

Network theory and related analysis techniques have recently been put forward to accommodate the symptomatic complexity of mental disorders (Borsboom, 2017). Network theory proposes
putative causal interactions between symptoms (e.g., fatigue causing concentration problems
causing low mood), which could result in self-reinforcing vicious symptom cycles triggering and
maintaining mental disorders. Such associations have been investigated in an increasing amount
of studies on psychological symptom networks (Contreras et al., 2019; Robinaugh et al., 2020).
To accommodate etiological factors beyond symptoms, however, recent work has proposed an
expansion of symptom networks to so-called ‘multi-plane’ networks, for instance also including
genetic, metabolic, immunological, or environmental variables (Guloksuz et al., 2017). To our
knowledge, so far, two studies have evaluated such multi-plane networks in the context of
inflammation and depression by jointly analysing serum CRP and cytokine concentrations with
individual depressive symptoms (Fried et al., 2019; Moriarity et al., 2020a). Findings suggested
unique associations of CRP with fatigue and changes in appetite. A third study has recently also
provided evidence that the symptom structure itself was a function of CRP levels; that is,
interconnections between symptoms were moderated by CRP (Moriarity et al., 2020b). All of
these previous studies were based on serum markers for inflammatory proteins, however,
reflective of acutely elevated inflammatory activity. Therefore, it remains unclear if
inflammation-symptom associations generalise to genetic/lifetime predisposition to higher
immuno-metabolic marker levels.

In the present study, we explored associations of polygenic risk scores (PRSs) for four major pro-
and anti-inflammatory markers (i.e., CRP, IL-6, IL-10, & TNF-α) and Body Mass Index (BMI),
as a metabolic marker, with individual depressive symptoms using a multi-sample, multi-plane
network analysis approach. We evaluated associations in three large samples including the
inpatient Munich Antidepressant Response Signature (MARS) study (n=1,058), the outpatient
Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study (n=1,143), and the
general population UK Biobank cohort (n=110,010) (Hennings et al., 2009; Rush et al., 2004;
Sudlow et al., 2015). This investigation aimed to contribute to the study of inflammation and depression by simultaneously addressing (i) combined immunological and symptom complexity (using network analysis), (ii) unclarity regarding the influence of genetic/lifetime predisposition to higher immuno-metabolic marker levels on depression (defining immuno-metabolic markers using PRSs), and (iii) issues of reproducibility and generalisability (testing associations in one large general population and two clinical samples).
METHODS

An overview of the study design and analytic procedure is presented in Figure 1.

Study samples

The Munich Antidepressant Response Signature (MARS) study was a naturalistic, observational study of inpatients with major depressive disorder (MDD) or bipolar disorder conducted between 2000 and 2015 in three Southern German hospitals (Hennings et al., 2009). The present study included 1,058 patients of European decent with an ICD diagnosis of MDD (F32 and F33 codes) and genetic and depressive symptom data from an original sample of 1,411 patients.

The STAR*D trial (identifier: NCT00021528) was a multisite, multistep, randomised controlled trial (RCT), conducted from 2000 to 2004, evaluating different treatment options and sequences for outpatients suffering from MDD without psychotic features (Rush et al., 2004). The present study included 1,143 individuals of European decent with genetic and depressive symptom data from 1,953 patients who took part in the STAR*D genetics study.

The UK Biobank is a general population cohort including more than 500,000 individuals, recruited from 2006 to 2010, with genotyping and in-depth phenotyping information (Bycroft et al., 2018). More than 150,000 individuals from the initial sample took part in a follow-up mental health survey (Davis et al., 2020) and we included a subset of 110,010 individuals that were of European decent and had available genetic and depressive symptom data.

Ethics approval and informed consent

MARS received local ethics approval from Ludwig Maximilians University Munich (Hennings et al., 2009). STAR*D received ethics approval from 14 participating institutional review boards, a...
National Coordinating Center, a Data Coordinating Center, and the Data Safety and Monitoring Board at the National Institute of Mental Health (Rush et al., 2006, 2004). The UK Biobank study received ethics approval from North West Centre for Research Ethics Committee and Human Tissue Authority research tissue bank (Bycroft et al., 2018); this project was approved under project no. 26999. All three studies collected informed consent from participants prior to study participation.

Depressive symptom assessment

Depressive symptoms were assessed differently across the three samples. MARS and STAR*D studies used the observer-rated Hamilton Rating Scale for Depression (HAM-D) (Hamilton, 1986) while the UK Biobank used the self-report Patient Heath Questionnaire (PHQ)-9 (Löwe et al., 2004). From these questionnaires, we selected seven depressive symptoms for joint analyses across samples. These symptoms included completely overlapping symptoms of depressed mood, anhedonia, fatigue, and suicidality, but also partially overlapping symptoms of sleep problems, changes in appetite, and psychomotor changes. Supplementary Table 1 provides an item-level overview of depressive symptoms and Supplementary Table 2 displays symptom coding, where this differed from original item Likert scale ratings.

Regarding partially overlapping symptoms of sleep problems, changes in appetite, and psychomotor changes, the PHQ-9 only assesses information on conflated symptoms (e.g., insomnia and hypersomnia are conflated to sleep problems) while the HAM-D incorporates disaggregated symptoms. To harmonise these symptom data for retention in network analyses, we conflated HAM-D symptoms of psychomotor retardation and agitation to “psychomotor changes”. For sleep problems and changes in appetite (available in the PHQ-9), only insomnia and loss of appetite are available in the HAM-D, so we included both conflated and
unidirectional symptoms in network analyses as previous studies have specifically highlighted associations of inflammation with these symptoms (Jokela et al., 2016; Milaneschi et al., 2017b). We reasoned that comparative appraisal of associations, for example with changes in appetite and loss of appetite, could give further indications on potential specificity of associations to symptom directions, as observed in a previous report (Kappelmann et al., 2020).

Genotyping, quality control and imputation

We provide detailed information on genotyping, quality control and imputation procedures in the Supplementary Methods. Briefly, genotyping in the MARS study was conducted using three genotyping arrays across the recruitment period (see Supplementary Figure 1), the Illumina 610k (n=548), Illumina OmniExpress (n=284) and Illumina GSA (n=226) arrays. In STAR*D, genotyping was conducted using the Affymetrix Human Mapping 500K Array Set (n=979) and the Affymetrix Genome-Wide Human SNP Array 5.0 (n=969) that displayed a concordance of >99%; described in detail by Garriock and colleagues (2010). In the UK Biobank study, samples were genotyped on the UK BiLEVE Axiom Array or the Affymetrix UK Biobank Axiom Array (Bycroft et al., 2018). Following imputation in all samples, single nucleotide polymorphisms (SNPs) with info-metric>0.6, minor allele frequency (MAF)>1%, genotyping missingness<2%, and no deviation from Hardy-Weinberg Equilibrium (MARS & STAR*D: $P>1e^{-5}$; UK Biobank: $P>1e^{-7}$) were retained.

Polygenic risk scores

Immuno-metabolic marker selection and GWAS data sources

PRSs for CRP, IL-6, IL-10, TNF-α, and BMI were computed based on available summary statistics from genome-wide association studies (GWAS; Ahola-Olli et al., 2017; Ligthart et al., 2018; Locke et al., 2015). These inflammatory markers were selected, because (i) they showed...
robust differences in case-control studies; (ii) CRP, IL-6, and TNF-α have been the most frequently investigated inflammatory markers overall in the context of depression; and (iii) IL-10 was the most frequently studied anti-inflammatory cytokine, so could be informative on direction of associations between depressive symptoms and innate immune activity (Köhler et al., 2017; Osimo et al., 2019). BMI was selected as the most frequently investigated metabolic marker.

GWAS data for CRP were obtained from a large European GWAS of 88 studies including 204,402 individuals (Ligthart et al., 2018). GWAS data for IL-6, IL-10, and TNF-α were obtained from a GWAS of 8,293 Finns (Ahola-Olli et al., 2017). GWAS data for BMI were obtained from the Genetic Investigation of Anthropometric Traits (GIANT) consortium that included up to 322,154 individuals (Locke et al., 2015).

PRS computation

PRSs can be computed by summing the GWAS association estimates of risk alleles for each individual. Classically, this summation is done using an approach termed “clumping and thresholding” (C+T), which first reduces summary statistics to independent SNPs and then applies one or multiple thresholds (usually based on P-values) to restrict summation to SNPs with high evidence for associations with phenotypes (Choi et al., 2020). As the optimal threshold for the C+T approach is unknown and should ideally be estimated in a separate dataset with available phenotype data, we computed PRSs using the Bayesian regression and continuous shrinkage priors (PRS-CS) approach, which has been shown to perform similar to or outperform other PRS computation approaches such as C+T (Ge et al., 2019; Ni et al., 2020).

PRS-CS takes a linkage disequilibrium (LD) reference panel into account (we used European ancestry data from 1000 Genomes Project phase 3 samples) to update SNP effect sizes in a blocked fashion, thus providing accurate LD adjustment. We pre-specified the global shrinkage
parameter using suggested defaults for less polygenic ($=1e^{-4}$) and more polygenic ($=1e^{-2}$) phenotypes as $=1e^{-4}$ for CRP, IL-6, IL-10, and TNF-α, and as $=1e^{-2}$ for BMI; see details in Supplementary Methods. Following PRS computation in individual samples, polygenic scores were corrected for age, sex, and the first two genotyping principal or multidimensional scaling (MDS) components using linear regression; genotyping MDS components were computed based on raw Hamming-distances in MARS and STAR*D, and using principal component analysis on high-quality, unrelated individuals in the UK Biobank sample (Bycroft et al., 2018). PRSs in MARS were additionally corrected for the genotyping array. Following computation, higher PRSs reflect higher genetic predisposition to respective immuno-metabolic phenotype levels.

PRS evaluation

In Supplementary Table 3, we provide the number of SNPs included in PRS computation in each sample, which was approximately around one million SNPs for each phenotype-sample combination. The proportion of SNP overlap between samples (for the same phenotype) was >0.89 suggesting that mostly overlapping SNPs contributed to PRSs (Supplementary Table 4). Taking these overlapping SNP sets, correlations between the posterior SNP effect sizes between samples were large for CRP (Pearson’s r range: 0.69-0.76) and BMI (Pearson’s r range: 0.79-0.80) and relatively smaller for IL-6, IL-10, and TNF-α (Pearson’s r range: 0.41-0.46; see Supplementary Table 5). This suggests polygenic risk was quantified more similarly across samples for CRP and BMI as compared to IL-6, IL-10, and TNF-α.

We quantified the impact that pre-specification of the hyperparameter had on resulting PRSs, which was likely small (Supplementary Table 6). Specifically, PRSs with pre-specified exhibited large correlations with PRSs based on automatic learning of from GWAS summary data (termed PRS-CS-auto in the literature; Pearson’s r range: 0.82-0.98). Furthermore,
moderate-to-large correlations remained to PRSs based on extreme grid search boundary values of \(\rho \) (Pearson’s \(r \) range: 0.47-0.93).

Since MARS utilised three different genotyping arrays, we evaluated if our approach of combining data from these arrays into a combined sample was justified. Based on highly similar PRS distributions following adjustments for age, sex, genotyping principal/MDS components, and genotyping array as well as absence of edges between genotyping array and PRSs in an exploratory mixed graphical network model, we proceeded with the main analysis using the combined MARS sample; see details in Supplementary Methods and Supplementary Figures 2 and 3.

Network analysis

Estimation

Network analysis was conducted in R (version 4.0.3; R Core Team, 2017). In network analysis, unique associations between variables reflect partial correlations and are termed ‘edges’.

Variables in the network are referred to as ‘nodes’.

In primary analyses, networks were estimated using the `EstimateGroupNetwork` package (version 0.2.2; Constantini et al., 2020). This package estimates networks jointly across samples using fused graphical least absolute shrinkage and selection operator (LASSO) estimation, abbreviated as FGL (Danaher et al., 2014). Tuning parameters for FGL (\(\lambda_1 \) & \(\lambda_2 \)) were selected using 10-fold cross-validation to optimise the Bayesian Information Criterion (BIC). As recommended, we set weights for the importance of each sample as ‘equal’ to ascertain that a single sample would not dominate estimation (Danaher et al., 2014).

As secondary analysis, we also estimated networks for each sample individually using an unregularized gaussian graphical stepwise model selection (“ggModSelect”) algorithm.
implemented in the *qgraph* package (version 1.6.5; Epskamp et al., 2012). The model search algorithm used Spearman correlations and started from an empty model. Throughout results, we will refer to this estimation strategy as “unregularized model search” or “model search” for simplification.

We also estimated node predictability with the *mgm* package (version 1.2-10), which uses node-wise estimation to estimate networks for each sample (Haslbeck and Waldorp, 2020). Node predictability describes the amount of variance in a node that is explained by all other nodes in the network, so can be interpreted akin to R^2 (Haslbeck and Fried, 2017). Tuning parameter selection for λ in *mgm* estimation was based on optimising the BIC based on 10-fold cross-validation.

Networks were visualised with the *qgraph* package using an average layout estimated with the Fruchterman-Reingold algorithm for the FGL networks. This algorithm places nodes close to each other that are connected by large edges (Epskamp et al., 2012). While this simplifies network appraisal, it is important to note that nodes and edges should not be interpreted based on their relative position within the network, which can be unstable.

Stability

To evaluate stability of estimated networks, we assessed accuracy of edge estimates using bootstrapping strategies. Specifically, for FGL networks 500 bootstrapped samples with replacement were drawn using the implementation in the *EstimateGroupNetwork* package and FGL networks re-estimated (Constantini et al., 2020). For unregularized model search estimation in individual samples, the same procedure was applied using non-parametric bootstrapping procedures implemented in the *bootnet* package (version 1.4.3; Epskamp et al., 2018).
Interpretation

We interpreted estimated networks based on the presence and reproducibility of edges as defined using three quality criteria. First, we tested if edges were nonzero in FGL networks as well as nonzero and directionally consistent in >50% of bootstrapped analyses (quality criterion 1) akin to a previous PRS-symptom network study in psychosis by Isvoranu *and colleagues* (2020).

Second, we tested if edges between PRSs and symptoms were present (according to criterion 1) across FGL networks of the three samples (quality criterion 2). Third, we tested if edges were present in secondary analyses using unregularized model search estimation in individual samples, again confirmed in >50% of bootstrapped estimations exhibiting directionally consistent estimates (quality criterion 3).

Availability of data and materials

Data from original studies is not openly available, but can be requested; see details in Supplementary Table 7. GWAS summary data for IL-6, IL-10, and TNF-α is openly available from the original publication by Ahola-Olli *and colleagues* (2017), for BMI from the GIANT consortium, and can be requested for CRP from the CHARGE inflammation working group. We provide analysis scripts and estimated network matrices (including bootstrapped network matrices) on the Open Science Platform (OSF) under https://osf.io/q4vw9/.
RESULTS

Baseline characteristics of study populations are displayed in Table 1.

Network analysis

We conducted network analyses of five immuno-metabolic PRSs (CRP, IL-6, IL-10, TNF-α, & BMI) and seven depressive symptoms using two estimation techniques (FGL & unregularized model search estimation) in three samples (MARS, STAR*D & UK Biobank). Bootstrap analyses were conducted to assess stability of networks. We defined three quality criteria to denote consistency of results across estimation techniques, bootstrapping, and samples. Focus of this network investigation were unique associations (termed edges in network analysis) between PRSs and symptoms, which are summarised in Table 2.

Fused Graphical LASSO (FGL) estimation suggests four consistent PRS-symptom edges

Using FGL estimation, we obtained networks that are visualised in Figure 2. PRS-symptom edge bootstrapping results are displayed in Figure 3 with PRS-PRS and symptom-symptom edge bootstrapping results shown in Supplementary Figures 4 and 5.

As expected, nodes within the same plane displayed relatively stronger within-plane (i.e., symptom-symptom & PRS-PRS) than between-plane (i.e., PRS-symptom) associations. Among PRSs, CRP displayed associations with BMI (edge weight range across samples: 0.16-0.19) while IL-6, IL-10, and TNF-α (based on the same GWAS) were associated with each other (edge weight range across samples: 0.08-0.52). Associations of BMI and CRP with IL-6, IL-10, and TNF-α were largely absent or very small (edge weight range across samples: -0.02-0.01). Among symptoms, the largest associations were present between the core symptoms depressed mood and
anhedonia (edge weight range across samples: 0.14-0.55). Supplementary Figure 4 also illustrates interesting edge differences between samples that are likely arising from the diverging symptom definitions in individual samples as edges of fatigue with changes in appetite (edge weight=0.21) and sleep problems (edge weight=0.33) were relatively larger in the UK Biobank, assessing composite symptoms of changes in appetite and sleep problems, but substantially smaller in MARS (fatigue-changes in appetite: edge weight=0.09; fatigue-sleep problems: edge weight=0.10) and STAR*D (fatigue-changes in appetite: edge weight=-0.01; fatigue-sleep problems: edge weight=-0.01), assessing loss of appetite and insomnia.

Regarding PRS-symptom edges, FGL estimation resulted in 28 (MARS), 29 (STAR*D), and 6 (UK Biobank) nonzero PRS-symptom edges. 26 (MARS), 28 (STAR*D), and 5 (UK Biobank) of these edges fulfilled criterion 1 (nonzero edges are nonzero and directionally consistent in >50% of bootstraps); see Table 2. Applying quality criterion 2 (consistency of results across samples), we observed reproducible edges of the CRP PRS with anhedonia (negative edge weight), changes in appetite, and fatigue and of the TNF-α PRS with fatigue; these edges were manually unfaded in Figure 2. It is important to note that the edge between the CRP PRS and changes in appetite has a diverging valence in individual samples; in MARS and STAR*D (assessing loss of appetite) the edge weight was negative and in the UK Biobank study (assessing changes in appetite) the edge weight was positive.

Unregularized model search estimation suggests three consistent PRS-symptom edges

Using unregularized model search estimation, we again observed networks with relatively larger within-plane (i.e., PRS-PRS & symptom-symptom) than between-plane (i.e., PRS-symptom)
edges. Networks were comparable to FGL estimation, but generally sparser than those using FGL estimation; see network graphs in Supplementary Figure 6 and bootstrapping results in Supplementary Figures 7-9.

Regarding PRS-symptom edges, only three edges were estimated, which were all observed in the UK Biobank sample and fulfilled quality criterion 3 (nonzero edges are also nonzero and directionally consistent in >50% of bootstraps); these edges have been manually unfaded in Supplementary Figure 6. The specific PRS-symptom edges were between the BMI PRS and changes in appetite and anhedonia and between the CRP PRS and changes in appetite. Comparing these edges to FGL estimation, the edge of the CRP PRS with changes in appetite reproduced one of the edges fulfilling quality criteria 1 and 2 while the two edges observed for the BMI PRS were only fulfilling quality criterion 1 (presence in FGL estimation and >50% of bootstraps). Moreover, the BMI PRS association with anhedonia was negative using unregularized model search estimation, but positive using FGL estimation.
DISCUSSION

The present study investigated associations of PRSs for immuno-metabolic markers with depressive symptoms using a multi-plane, multi-sample network analysis approach. Based on three quality criteria emphasising consistency of network analysis results across statistical bootstraps, samples, and estimation methods, we observed a unique association between the CRP PRS and changes in appetite that met all three quality criteria. In addition to this association, we observed five additional PRS-symptom associations that met two quality criteria. These included edges of the CRP PRS with anhedonia (negative association) and fatigue, the TNF-α PRS with fatigue, and the BMI PRS with anhedonia and changes in appetite. However, the BMI PRS-anhedonia association switched association direction depending on the estimation method, so may not be fully consistent despite fulfilling our consistency criteria. Due to the novelty of our analysis approach, we highlight several methodological considerations below, which we hope provides a helpful framework to the discussion of our findings afterwards.

Methodological challenges and opportunities

Combining PRSs with psychological symptom networks is a relatively recent extension of network analysis and, to our knowledge, has only been applied in one previous investigation incorporating a schizophrenia PRS into a psychotic symptom network (Isvoranu et al., 2020). Therefore, it is important to emphasise the unique challenges and opportunities of this approach.

First, as noted by Isvoranu and colleagues (2020), statistical power is potentially the greatest challenge of PRS-symptom network analysis. Network analysis itself requires relatively large sample sizes for psychological symptom networks (Epskamp et al., 2018; Fried and Cramer, 2017), which should be in the hundreds or thousands depending on the number of nodes in the
network. Inclusion of PRSs into psychological symptom networks, and especially of potential pathomechanistic (e.g., inflammatory) rather than main illness (e.g., depression) scores into these networks, aggravates the sample size requirements for network analysis as PRSs only explain a fraction of variance in the heritable component of their target phenotypes (Choi et al., 2020; Wray et al., 2020).

Second, and because PRSs only measure a fraction of variance in their target phenotype, unique associations observed in network analyses are inevitably smaller than actual target phenotype-symptom associations. Taking this study as an example, absolute sizes of CRP-symptom associations were 5- to 10-fold smaller than those from a prior network investigation using serum CRP concentrations by Moriarity and colleagues (2020a). Therefore, PRS-symptom associations are unlikely to give meaningful insights into size of association with the target phenotype, but should, in our opinion, be interpreted based on robust presence/absence of specific associations.

Third, the large statistical power requirements and difficulty quantifying such power for a given study may lead to biased result interpretations. Absence of PRS-symptom associations could be interpreted as false negatives while presence of association may be interpreted as true positives. Such divergence in interpretation necessarily biases the literature towards hypothesis confirmation. Consequently, any associations observed in PRS-symptom network analyses should be followed up by- and interpreted in line with- evidence from other studies, thus adhering to the recommended triangulation of evidence approach (Lawlor et al., 2017; Ohlsson and Kendler, 2019).

Despite these challenges, PRS-symptom networks also provide multiple opportunities. First, PRSs reflect estimates of genetic liability to phenotype expression, so can give an indication on the influence of lifelong predisposition to higher phenotype levels on the symptom level. In this
way, PRS-symptom associations also provide an indication regarding temporality of association, which Bradford-Hill defined as one of the viewpoints for causality (Bradford Hill, 1965). It is important to note, however, that evidence for a unidirectional temporal association does not preclude bi-directionality. Moreover, PRSs combine information from a multitude of genetic variants (in our case from ~1 million SNPs) that are not restricted to functional SNPs only, can include false positive associations (i.e., noise), and can also tag information of pleiotropic environmental confounding factors. Therefore, causal inferences should rely on separate evidence from clinical trials and/or more focused genetic approaches such as Mendelian Randomisation studies (Lawlor et al., 2008).

Second, the PRS-symptom network analysis approach allows the concurrent investigation of multiple immuno-metabolic markers with multiple symptoms. Thereby, immunological and clinical complexity is addressed concurrently, which is an advantage to previous investigations. Furthermore, network analyses usually estimate partial/unique associations, so any emerging associations could suggest direct causal paths from PRS phenotypes to individual symptoms, so may pinpoint so-called ‘bridge symptoms’ that act as etiological docking sites of risk effects on the symptom plane.

Third, large-scale population-based or patient cohort studies, commonly used in network analysis, often do not have detailed immunophenotyping data available. If at all, studies mostly have data available for serum CRP, but rarely for more specific cytokines. Conversely, the advent of large GWAS investigations has produced a substantial amount of large cohort databases with in-depth genotyping and phenotyping information. Combining such databases with GWAS summary statistics from more focused investigations, such as on individual cytokines (Ahola-Olli
et al., 2017), enables the investigation of a diverse range of immunopsychiatric research questions.

Associations of immuno-metabolic markers with depressive symptoms

Network analysis results showed consistent associations of the CRP PRS with changes in appetite, which was the only association that fulfilled all of our quality criteria. The BMI PRS showed similar associations with changes in appetite, but only fulfilled two quality criteria. Importantly, both of these associations were positive in the UK Biobank sample, which assessed changes in appetite, and negative in MARS and STAR*D samples, which assessed loss of appetite. These associations and their divergence with symptom direction are highly consistent with previous research using cross-sectional and longitudinal designs (Fried et al., 2019; Lamers et al., 2019, 2018; Moriarity et al., 2020a) as well as genetic correlation and PRS investigations (Kappelmann et al., 2020; Milaneschi et al., 2017b, 2016). Evidence from Mendelian randomisation analyses further suggests that BMI could be a potential causal factor for changes in appetite and specifically for increased appetite (Kappelmann et al., 2020; Milaneschi et al., 2020b).

In addition to these PRS associations with changes in appetite, we also observed associations of higher CRP PRS with lower anhedonia and greater fatigue and of higher TNF-α PRS with greater fatigue. Fatigue in particular has long been considered to have a neuroimmune basis (Dantzer et al., 2014), is common across other medical illnesses characterised by chronic inflammation, and has been reliably associated with inflammatory markers in previous studies including two network investigations (Fried et al., 2019; Jokela et al., 2016; Lamers et al., 2020; Moriarity et al., 2020a; van Eeden et al., 2020; White et al., 2017). While there have also been some studies suggesting associations of inflammatory markers with anhedonia (Köhler-Forsberg et al., 2017;
van Eeden et al., 2020), it is important to note that associations of the CRP PRS with anhedonia observed in the present report were negative, so do not offer straightforward replication of these findings. Nonetheless, we have recently shown in Mendelian randomisation analyses that BMI could be a potential causal factor for both fatigue and anhedonia (Kappelmann et al., 2020), so continued investigation of these symptoms is warranted.

Together, our findings add to the notion of an immuno-metabolic subtype of depression characterised by neurovegetative symptoms of changes in appetite and fatigue (Dantzer et al., 2008; Milaneschi et al., 2020a). We also expand upon previous work by showing that genetic/lifetime predisposition to higher inflammation and metabolic dysregulation increases risk for depression and, based on network analysis results, these etiological factors may specifically confer their risk on the broader depression syndrome through symptoms such as changes in appetite and fatigue. These results can inform the design of clinical trials of anti-inflammatory approaches and metabolic interventions by specifically selecting patients with an atypical, neurovegetative symptom presentation. As clinical trials for immune-modulating drugs are currently still characterised by relatively small sample sizes (Husain et al., 2020; Khandaker et al., 2018; McIntyre et al., 2019; Raison et al., 2013), it may be worthwhile to pilot new interventions with neurovegetative symptoms/phenotypes as outcome variables. This might increase statistical power and sensitivity to detect effects for these proof-of-concept trials and could then be followed up by larger trials testing broader clinical efficacy measures.

Strengths and limitations

Strength of this study include availability of large general population-based and patient samples (maximising generalisability), polygenic definition of immuno-metabolic risk variables (indexing lifetime predisposition to higher immuno-metabolic marker levels), and application of network
analysis (addressing immunological and clinical complexity concurrently). We have addressed some of the more general limitations of combined PRS-symptom network analysis above, but there are two more specific limitations that warrant mentioning.

First, data used in the current study included inpatients, outpatients, and individuals from the general population and was based on different scales to measure depressive symptoms. Depressive symptom structure varies between acutely ill patients versus those in remission (van Borkulo et al., 2015), which may have influenced PRS-symptom associations. Moreover, two of the seven symptoms used in the present report only overlap partially; the UK Biobank study includes conflated items on sleep problems and changes in appetite while MARS and STAR*D include items on insomnia and loss of appetite, respectively. This difference may explain some of the inconsistencies observed in the current report such as the diverging valence of edge estimates between CRP and changes in appetite. However, this may have also reduced statistical power to detect associations. Future studies would benefit from inclusion of studies with the same questionnaire and disaggregated symptom measures.

Second, PRSs are based on GWAS with highly diverging samples sizes as a large number of individuals were included in the GWAS for BMI and CRP (>200 thousand individuals) and smaller numbers of individuals (~8 thousand individuals) for IL-6, IL-10, and TNF-α. Consistency of effect sizes following the PRS-CS approach was also larger for CRP and BMI as compared to IL-6, IL-10, and TNF-α. This is likely to have shifted the balance of statistical power towards detection of PRS-symptom associations to BMI and CRP rather than IL-6, IL-10, and TNF-α. Therefore, our findings require replication once larger individual cytokine GWAS become available.

Conclusion
The present investigation studied associations between four major pro- and anti-inflammatory markers, BMI, and depressive symptoms by applying network analysis across one large general population and two patient samples. Defining immuno-metabolic markers using polygenic risk scores expanded previous reports by suggesting direct associations of genetic/lifetime predisposition to immune-metabolic markers with depressive symptoms and provided evidence for temporality of association. Despite methodological restrictions of the presented approach, we observed associations of polygenic risk for CRP with changes in appetite and fatigue, for TNF-α with fatigue, and similar associations for BMI. These findings align with recent conceptualisations of an immuno-metabolic subgroup of depressed patients characterised by atypical, neurovegetative symptom profiles. Results can inform future clinical trials of anti-inflammatory approaches by prioritising these patients for selection into clinical trials.
DECLARATION OF INTERESTS

The authors do not have any competing interests.

FUNDING

This study is funded by the Max Planck Institute of Psychiatry. NK, NR, and SM are supported by the International Max Planck Research School of Translational Psychiatry (IMPRS-TP). NR received funding from the Bavarian Ministry of Economic Affairs, Regional Development and Energy (BayMED, PBN_MED-1711-0003). GMK acknowledges funding support from the Wellcome Trust (grant code: 201486/Z/16/Z), the MQ: Transforming Mental Health (grant code: MQDS17/40), the Medical Research Council, UK (grant code: MC_PC_17213 and grant code: MR/S037675/1), and the BMA Foundation (J Moulton grant 2019). JA received support by a NARSAD Young Investigator Grant from Brain and Behavior Research Foundation.

ACKNOWLEDGMENTS

We are grateful to all original authors, technical assistants and patients who contributed to the MARS study. We are grateful for the National Institute of Mental Health (NIMH) and the NIMH Repository and Genomics Resource (NRGR) for the possibility of analysing the STAR*D data. We are also grateful to the original STAR*D authors, and particularly for the contributions of all patients and families who participated in the study. Data were obtained from the limited access datasets distributed from the NIH-supported ‘Sequenced Treatment Alternatives to Relieve Depression’ (STAR*D). The study was supported by NIMH Contract No. N01MH90003 to the University of Texas Southwestern Medical Center. The ClinicalTrials.gov identifier is NCT00021528. This research has been conducted using the UK Biobank Resource. We are grateful for all scientists and participants who made this large-scale effort and resource possible.
REFERENCES

https://doi.org/10.1016/j.ajhg.2016.11.007

https://doi.org/10.1017/S0033291720002342

https://doi.org/10.1002/wps.20375

Davis, K.A.S., Coleman, J.R.I., Adams, M., Allen, N., Breen, G., Cullen, B., Dickens, C., Fox,

Garriock, H.A., Kraft, J.B., Shyn, S.I., Peters, E.J., Yokoyama, J.S., Jenkins, G.D., Reinalda,

Kappelmann, N., Arloth, J., Georgakis, M.K., Czamara, D., Rost, N., Ligthart, S., Khandaker,

Köhler-Forsberg, O., Nicolaisen Lydholm, C., Hjorthøj, C., Nordentoft, M., Mors, O., Benros, M.E., 2019. Efficacy of anti-inflammatory treatment on major depressive disorder or

https://doi.org/10.1111/acps.13016

Ligthart, S., Vaez, A., Vösa, U., Stathopoulou, M.G., de Vries, P.S., Prins, B.P., Van der Most,

Cereceda, A., Gådin, J.R., Gharavi, A.G., Goddard, M.E., Handsaker, R.E., Huang, J.,
Karpe, F., Kathiresan, S., Keildson, S., Kiryluk, K., Kubo, M., Lee, J.-Y., Liang, L., Lifton,
R.P., Ma, B., McCarroll, S.A., McKnight, A.J., Min, J.L., Moffatt, M.F., Montgomery,
G.W., Murabito, J.M., Nicholson, G., Nyholt, D.R., Okada, Y., Perry, J.R.B., Dorajoo, R.,
Reinmaa, E., Salem, R.M., Sandholm, N., Scott, R.A., Stolk, L., Takahashi, A., Tanaka,
Toshihiro, van’t Hooft, F.M., Vinkhuyzen, A.A.E., Westra, H.-J., Zheng, W., Zondervan,
K.T., Heath, A.C., Arveiler, D., Bakker, S.J.L., Beilby, J., Bergman, R.N., Blangero, J.,
Bovet, P., Campbell, H., Caulfield, M.J., Cesana, G., Chakravarti, A., Chasman, D.I.,
Farrall, M., Felix, S.B., Ferrannini, E., Ferrières, J., Ford, I., Forouhi, N.G., Forrester, T.,
Franco, O.H., Gansevoort, R.T., Gejman, P. V., Gieger, C., Gottesman, O., Gudnason, V.,
Gyllensten, U., Hall, A.S., Harris, T.B., Hattersley, A.T., Hicks, A.A., Hindorff, L.A.,
Hingorani, A.D., Hofman, A., Homuth, G., Kees Hovingh, G., Humphries, S.E., Hunt, S.C.,
Hyppönen, E., Illig, T., Jacobs, K.B., Jarvelin, M.-R., Jöckel, K.-H., Johansen, B., Jousilahti,
P., Wouter Jukema, J., Jula, A.M., Kaprio, J., Kastelein, J.J.P., Keinanen-Kiukaanniemi,
Kumari, M., Kuusisto, J., Lakka, T.A., Langenberg, C., Le Marchand, L., Lehtimäki, T.,
Lyssenko, V., Männistö, S., Marette, A., Matise, T.C., McKenzie, C.A., McKnight, B.,
Moll, F.L., Morris, A.D., Morris, A.P., Murray, J.C., Nelis, M., Ohlsson, C., Oldehinkel,
A.J., Ong, K.K., Madden, P.A.F., Pasterkamp, G., Peden, J.F., Peters, A., Postma, D.S.,
Pramstaller, P.P., Price, J.F., Qi, L., Raitakari, O.T., Rankinen, T., Rao, D.C., Rice, T.K.,
Ridker, P.M., Rioux, J.D., Ritchie, M.D., Rudan, I., Salomaa, V., Samani, N.J., Saramies, J.,

Milaneschi, Y., Lamers, F., Penninx, B.W.J.H., 2020b. Dissecting depression biological and
clinical heterogeneity: The importance of symptom assessment resolution. JAMA Psychiatry.

in Depressed Outpatients Requiring One or Several Treatment Steps: A STAR*D Report.

https://doi.org/10.1038/s41380-018-0093-6

PLOS Med. 12, e1001779. https://doi.org/10.1371/journal.pmed.1001779

JAMA Psychiatry 72, 1219–1226. https://doi.org/10.1001/jamapsychiatry.2015.2079

https://doi.org/10.1038/s41398-020-00920-4
White, J., Kivimäki, M., Jokela, M., Batty, G.D., 2017. Association of inflammation with specific
symptoms of depression in a general population of older people: The English Longitudinal
https://doi.org/10.1016/j.bbi.2016.08.012

Wittenberg, G.M., Stylianou, A., Zhang, Y., Sun, Y., Gupta, A., Jagannatha, P.S., Wang, D., Hsu,
immunomodulatory drugs on depressive symptoms: A mega-analysis of randomized,
https://doi.org/10.1038/s41380-019-0471-8

From Basic Science to Clinical Application of Polygenic Risk Scores: A Primer. JAMA
TABLES & FIGURES

Tables

*Table 1. Baseline characteristics of MARS, STAR*D, and UK Biobank samples*

<table>
<thead>
<tr>
<th></th>
<th>MARS</th>
<th>STAR*D</th>
<th>UK Biobank</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1,058</td>
<td>1,143</td>
<td>110,010</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women, N (%)</td>
<td>563 (53.2%)</td>
<td>676 (59.1%)</td>
<td>61,212 (55.6%)</td>
</tr>
<tr>
<td>Men, N (%)</td>
<td>495 (46.8%)</td>
<td>467 (40.9%)</td>
<td>48,798 (44.4%)</td>
</tr>
<tr>
<td>Age in years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>47.8 (14.4)</td>
<td>43.2 (13.6)</td>
<td>56.2 (7.7)</td>
</tr>
<tr>
<td>Range</td>
<td>18-87</td>
<td>18-75</td>
<td>39-72</td>
</tr>
<tr>
<td>Study location</td>
<td>Germany</td>
<td>United States</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Study population</td>
<td>MDD inpatients</td>
<td>MDD outpatients</td>
<td>General population</td>
</tr>
<tr>
<td>PHQ-9 sum-score, Mean (SD)</td>
<td>-</td>
<td>-</td>
<td>2.7 (3.6)</td>
</tr>
<tr>
<td>Missing, N (%)</td>
<td>-</td>
<td>-</td>
<td>351 (0.3)</td>
</tr>
<tr>
<td>HAM-D sum-score, Mean (SD)</td>
<td>23.8 (5.9)</td>
<td>22.4 (4.9)</td>
<td>-</td>
</tr>
<tr>
<td>Missing, N (%)</td>
<td>6 (0.6%)</td>
<td>0 (0%)</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: MDD=Major Depressive Disorder, SD=Standard deviation, PHQ-9=Patient Health Questionnaire-9, HAM-D=Hamilton Rating Scale for Depression.
Table 2. PRS-symptom edge consistency criteria (C) across network analyses

<table>
<thead>
<tr>
<th>PRS-symptom edges</th>
<th>MARS (FGL (C1) Model search (C3))</th>
<th>STAR*D (FGL (C1) Model search (C3))</th>
<th>UK Biobank (FGL (C1) Model search (C3))</th>
<th>FGL consistency (C2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anhedonia</td>
<td>-0.016 (67%)</td>
<td>-0.043 (95%)</td>
<td>-0.002 (60%)</td>
<td>Yes</td>
</tr>
<tr>
<td>Depressed mood</td>
<td>-0.009 (57%)</td>
<td>0.045 (94%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep problems†</td>
<td>-0.02 (75%)</td>
<td>0.031 (84%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>0.053 (98%)</td>
<td>0.025 (79%)</td>
<td>0.011 (100%)</td>
<td>Yes</td>
</tr>
<tr>
<td>Changes in appetite†</td>
<td>-0.034 (89%)</td>
<td>-0.043 (94%)</td>
<td>0.003 (91%)</td>
<td>Yes</td>
</tr>
<tr>
<td>Psychomotor changes</td>
<td>0.039 (91%)</td>
<td>0.001 (53%)</td>
<td>0.013 (73%)</td>
<td></td>
</tr>
<tr>
<td>Suicidality</td>
<td>-0.02 (74%)</td>
<td>-0.038 (88%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anhedonia</td>
<td>-0.047 (97%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depressed mood</td>
<td>-0.001 (52%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep problems†</td>
<td></td>
<td>-0.02 (82%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>0.012 (72%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Changes in appetite†</td>
<td>-0.032 (87%)</td>
<td>0.032 (85%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychomotor changes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suicidality</td>
<td>0.053 (95%)</td>
<td>-0.029 (83%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anhedonia</td>
<td>0.008 (67%)</td>
<td>-0.005 (66%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depressed mood</td>
<td>-0.002 (52%)</td>
<td>0.014 (72%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep problems†</td>
<td></td>
<td>0.007 (66%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td></td>
<td>0.021 (80%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Changes in appetite†</td>
<td>0.015 (66%)</td>
<td>0.033 (90%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychomotor changes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suicidality</td>
<td>0.054 (99%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF-α</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anhedonia</td>
<td>0.054 (96%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depressed mood</td>
<td>-0.017 (66%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep problems†</td>
<td></td>
<td>-0.005 (57%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>0.016 (65%)</td>
<td>0.032 (91%)</td>
<td>0.002 (58%)</td>
<td>Yes</td>
</tr>
<tr>
<td>Changes in appetite†</td>
<td>-0.015 (70%)</td>
<td>0.023 (75%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRS-symptom edges</td>
<td>MARS</td>
<td>STAR*D</td>
<td>UK Biobank</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>------</td>
<td>--------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FGL (C1)</td>
<td>Model search (C3)</td>
<td>FGL (C1)</td>
<td>Model search (C3)</td>
</tr>
<tr>
<td>Psychomotor changes</td>
<td>0.008 (63%)</td>
<td></td>
<td>0.008 (59%)</td>
<td></td>
</tr>
<tr>
<td>Suicidality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anhedonia</td>
<td>0.036 (91%)</td>
<td></td>
<td>0.033 (86%)</td>
<td></td>
</tr>
<tr>
<td>Depressed mood</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep problems</td>
<td>0.06 (99%)</td>
<td></td>
<td>0.055 (97%)</td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>-0.016 (74%)</td>
<td></td>
<td>-0.031 (87%)</td>
<td></td>
</tr>
<tr>
<td>Changes in appetite*</td>
<td>0.003 (55%)</td>
<td></td>
<td>-0.023 (83%)</td>
<td></td>
</tr>
<tr>
<td>Psychomotor changes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suicidality</td>
<td>0.021 (75%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Cell values reflect edge weights (i.e., partial correlation coefficients) and the percentage of 500 bootstrap estimations that edges were present. Estimates are restricted to those edges, for which >50% of bootstrapped samples were non-zero and directionally consistent (i.e., criteria 1 & 3). *Changes in appetite and sleep problems are measured as composite symptoms in UK Biobank, but as loss of appetite and insomnia in MARS and STAR*D samples.
Figure Titles and Legends

Figure 1. Study design and analysis pipeline
Legend: BIC=Bayesian information criterion; CV=cross-validation; PC=principal component (or multi-dimensional scaling component used for MARS & STAR*D); []=PRS-CS tuning parameter.

Figure 2. Estimated FGL networks across samples
Legend: Networks are visualised with the qgraph package. Blue lines indicate positive and red lines negative associations, respectively, with larger associations displayed with thicker lines. Circles around nodes display node predictability, which can be interpreted similar to explained variance. Maximum size of edge associations is 0.55. As the primary focus of this investigation was to identify consistent PRS-symptom associations, we manually unfaded edges between PRSs and symptoms if these edges met quality criteria 1 and 2 (see Table 2). Changes in appetite and sleep problems are measured as composite symptoms in UK Biobank, but as loss of appetite and insomnia in MARS and STAR*D samples.

Figure 3. Bootstrapped 95% quantile intervals of PRS-symptom edges using FGL estimation
Legend: Bootstrapped 95% quantile intervals (i.e., 95% of the distribution of raw bootstrapped edge estimates) are highlighted as shaded area for each edge. Black points indicate the raw FGL sample estimate while red points indicate the raw bootstrapped mean estimate. Edges are indicated on the y-axis and sorted by mean edge weight across samples in descending order.
Fused Graphical LASSO (FGL)

UK Biobank
$n=110,010$

MARS
$n=1,058$

STAR*D
$n=1,143$

Sample

Data Preparation

Network Analysis

Consistency Evaluation

Polygenic Risk Score Computation (PRS-CS)

1. CRP
2. IL-6
3. IL-10
4. TNF-α
5. BMI

$\phi = 1e^{-4}$

Residual-correction:

$PRS \sim age + sex + PC1 + PC2 + array^*$

*correction for array only in MARS

Symptom Data Harmonisation

1. Depressed mood
2. Anhedonia
3. Sleep problems*$
4. Fatigue
5. Changes in appetite*$
6. Psychomotor changes*$
7. Suicidality

* only partially overlapping

Primary analysis

Node Predictability

- mgm package

Secondary analysis

Fused Graphical LASSO (FGL)

- EstimateGroupNetwork package
- 10-fold CV (BIC optimisation)
- equal sample weighting
- 500 bootstraps

Unregularised Model Search

- qgraph & bootnet packages
- ggModSelect algorithm
- Spearman correlations
- 500 bootstraps

Criterion 1

- PRS-symptom edge present in individual sample
- Edge present and directionally consistent in >50% bootstraps

Criterion 2

- Criterion 1 consistent across samples

Criterion 3

- PRS-symptom edge present in individual sample
- Edge present and directionally consistent in >50% bootstraps
A: Depressive Symptoms
- 1: Depressed mood
- 2: Anhedonia
- 3: Sleep problems
- 4: Fatigue
- 5: Changes in appetite
- 6: Psychomotor changes
- 7: Suicidality

B: Polygenic Risk Scores
- 8: CRP
- 9: IL-6
- 10: IL-10
- 11: TNF-α
- 12: BMI