Liver immune abnormalities persist after cure of Hepatitis C Virus by antiviral therapy

Xia Wu¹, *, Jessica B. Roberto¹, Allison Knupp¹, Alexander L. Greninger¹,³, Camtu D. Truong¹, Nicole Hollingshead¹, Heidi L. Kenerson², Marianne Tuefferd⁴, Antony Chen⁴, Helen Horton⁴, Keith R. Jerome¹,³, Stephen J. Polyak¹, Raymond S. Yeung² and Ian N. Crispe¹

¹Department of Laboratory Medicine and Pathology, and ²Department of Surgery, University of Washington, Seattle, WA, USA
³Fred Hutchinson Cancer Research Institute, Seattle, Washington, USA.
⁴Infectious Diseases and Vaccines, Janssen Research and Development, B-2340 Beerse, Belgium.

*To whom correspondence should be addressed:
Xia Wu, Ph.D.
Department of Medicine, University of Washington,
750 Republican St., E630, Seattle, WA 98109
E-mail: xiawu2@uw.edu Tel: 1-206-221-3343

Keywords: Hepatitis C virus, direct-acting antiviral treatment, liver slice culture, innate immunity, inflammation, fibrosis

Short Title: Immune abnormalities in human liver after HCV cure

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Electronic word count

5926 words

Number of figures and tables

6 figures, 1 table

Financial support

This work was supported by NIH NIAID R56 grant AI143683; US Department of Defense grant CA150370; Janssen Research and Development; the Seattle Foundation; and the University of Washington.

Authors' contributions

X.W., J.B.R., A.C., H.H., R.S.Y. and I.N.C. designed research; X.W., J.B.R., A.K., A.L.G., N.H., H.L.K, M.T. and A.C. performed research; K.R.J., S.J.P. and R.S.Y. contributed reagents/analytic tools; X.W., A.L.G., C.D.T. and I.N.C. analyzed data; X.W., S.J.P. and I.N.C. wrote the manuscript; all authors reviewed the manuscript and provided suggestions.
Abstract

Direct-Acting Antiviral (DAA) drugs are highly effective in eliminating HCV in most chronically infected subjects, but it is unclear whether the multiple mechanisms employed by HCV to disable both innate and adaptive immunity cease to function as soon as HCV is eliminated. To test this, we evaluated the capacity of human liver tissue to respond to TLR3 and TLR4 ligands using non-infected liver tissue, tissue with active HCV infection, and tissue from which HCV had been eliminated by DAA. We found that DAA-treated, formerly HCV-infected liver tissue manifested ongoing abnormalities of innate immunity that mapped to liver non-parenchymal cells (NPC). Hepatic innate immunity was not suppressed but enhanced in HCV-infected tissue, and these abnormalities were not corrected in the successfully DAA-treated liver tissue. In conclusion, ongoing immune activation persists in formerly HCV-infected but now DAA-cured liver.
Introduction

HCV is a positive-strand RNA virus classified in its own genus, *Hepacivirus*, within the Flaviviridae family. Approximately 71 million individuals are infected with HCV worldwide [1]. The acute phase of infection is often subclinical, but 55–85% of infected individuals develop a chronic infection leading to progressive liver pathology [2]. The World Health Organization (WHO) estimated that approximately 399,000 people died from HCV-related diseases in 2016, mostly from cirrhosis and hepatocellular carcinoma (HCC).

The recent introduction of highly effective direct-acting antiviral (DAA) drugs has presented a window of opportunity to compare innate immunity in virus-free human subjects, chronically HCV-infected but untreated individuals, and individuals successfully treated for HCV with DAA. This window is closing as most HCV patients in resource-rich countries are now being treated with DAA, with substantial benefit [3]. However, the extent to which such drugs revert the liver to normal is controversial, with some studies suggesting that HCV clearance with DAA therapy leaves residual abnormalities in innate immunity in peripheral monocytes and NK cells [4, 5], adaptive immunity in peripheral CD4+ and CD8+ T cells [6-9], in γδ-T cells [10], in mucosal associated invariant T cells [11], and in the persisting risk to hepatocellular cancer [12-15]. Other studies also found abnormal serum lipids [16], persistent epigenetic modifications [17], and sustained hepatic inflammation [18] in liver biopsies after DAA treatment. To our knowledge, no studies have evaluated hepatic immunity of untreated versus DAA-treated HCV infection in the context of intact liver tissue.
We developed a liver slice culture model in which human liver tissue can be sustained for up to 291 weeks [19], allowing the evaluation of innate immune responses in liver slices collected from non-infected subjects, chronic HCV-infected patients, and patients whose HCV was cured by DAA treatment. Because of the emerging concept that the liver is not normal after HCV eradication, the objective of the study was to investigate which aspects of immune pathology are not corrected by DAA cure of chronic HCV infection. Our data indicate that, in formerly HCV-infected but now DAA-cured liver, ongoing immune activation co-exists with fibrosis.

Materials and Methods

Liver slice culture

Fresh liver tissues were obtained from patients undergoing liver resection at the University of Washington Medical Center (Seattle, WA, USA). Liver tissue was obtained under Institutional Review Board protocol #00001852. Liver slices were cultured and assayed for immune gene function with ex vivo stimulation assay with polyinosinic–polycytidylic acid (poly-I:C) or lipopolysaccharide endotoxin (LPS) as described previously [19]. Gene expression data included 8 HCV-infected, 10 DAA-cured, and 9 non-infected control patients. Liver slices of four of these HCV-infected and eight DAA-cured patients were further analyzed with fibrosis staining. Additional details are provided in supplementary materials.

RNA isolation and qRT-PCR analysis
The RNA of liver slices or the purified liver cells was isolated with TRIzol and the Direct-zol RNA MiniPrep Kit (Zymo Research, Irvine, CA, USA). Gene expression was analyzed with fluidigm platform as previously described [19], with normalization to the arithmetic mean of Ct values of ACTB, HPRT, and GAPDH. Additional details are provided in supplementary materials.

HCV RNA measurement

HCV RNA was measured with an Food and Drug Administration-approved Abbott Real-Time HCV assay (Abbott Molecular, Des Plaines, IL, USA) as previously described [18, 20]. Fifty ng of total RNA for each sample was input in the assay, and HCV IU/ng total RNA was calculated from the calibration curve of positive controls. The reliable detection limit for HCV with this assay was 1.2 IU/50 ng liver total RNA.

Results

Ex vivo detection of HCV RNA with liver slices

We first examined the HCV status of liver slices that were collected from three groups of patients, including untreated patients with chronic HCV infection, patients previously infected with HCV but treated and cured with DAA therapy, and patients who had no history of HCV
infection (Fig. 1A). Liver slices collected from all eight chronic HCV patients contained detectable HCV RNA. None of the non-infected or DAA-treated subjects were positive for HCV RNA ex vivo (Fig. 2A). Chronic HCV-infected liver slices continued to be HCV positive after 7 days of ex vivo culture (Fig. 2B), and the viral load on day 7 did not significantly differ from day 0 (Wilcoxon matched-pairs signed rank test, two-tailed, P=0.4688). The detection of HCV RNA in ex vivo cultured liver slices is consistent with a previous report that human liver slices could be infected ex vivo with HCV [21].

Persistent fibrosis in untreated HCV versus DAA-treated livers

Previous reports on the impact of liver fibrosis with DAA treatment relied on the indirect measurements with transient elastography and noninvasive fibrosis indices [22, 23]. We examined the liver fibrosis directly using picrosirius red and trichrome staining (Fig. S1). Six out of eight DAA-cured patients met the definition of cirrhosis (i.e. fibrosis score of 4, Scheuer/Batts-Ludwig method) in livers despite the absence of HCV RNA (Fig. 2C). Likewise, the untreated chronic HCV livers were fibrotic, as previously reported [24]. None of the non-infected subjects had liver fibrosis. Thus, liver fibrosis was not corrected by DAA treatment, despite the elimination of HCV RNA, when we evaluated livers for fibrosis out to 20 months from the completion of DAA treatment (Table S1).

Ongoing immune activation persists in liver slices of chronic HCV-infected and DAA-cured subjects
We used multiplex qRT-PCR to examine 140 genes functioning in immune activation and suppression, and tissue repair. Forty immune genes differed in expression in chronic HCV-infected livers versus non-infected patients (Mann Whitney test, two-tailed, P < 0.05) (Fig. 3A). This included antiviral interferon (IFN)-stimulated genes (ISGs) including *IFIT1/2/3, ISG15, RSAD2, MX1, CXCL9, CXCL10*, consistent with previous reports [25-28]. In addition, immune activation genes including MHC genes *HLA-A, HLA-DRA, CIITA, CD80, CD86*, tumor necrosis factor (TNF) superfamily genes *OX40, 4-1BB, TNFSF9, TNFRSF18* and inflammation genes including *CASP1, IL-12A, IL-12B, TNF, IL-18*, and *NFkB* were also significantly up-regulated in HCV-infected livers (Fig. S3).

DAA treatment restored the antiviral genes to baseline, as reported previously [29], but some immune genes were remained elevated after cure of HCV infection (Figs. 3BC, S2, S3). These included immune activation genes (*HLA-A, CIITA, 4-1BB, CCL5, CCR2*), inflammatory genes (*CASP1, IL-12A*), and immune suppression genes (*CTLA4, TIGIT, IDO1, ARG1*).

A recent paper [17] reported HCV-induced epigenetic alterations persisted in liver tissue in DAA-cured patients after SVR. The phosphoinositol-3-kinase (PI3K) pathway-linked genes *SPHK1* and *SOX9* were among those genes harboring epigenetic modification insensitive to DAA treatment. We therefore analyzed a more extended set of PI3K related genes in different liver tissue, and found that *SPHK1, BTG2, SOX9, SNAP25*, and *GPRC5B* were significantly up-regulated in chronic HCV infected livers (Fig. S3E). Furthermore, *SPHK1, BTG2*, and *SOX9* remained significantly up-regulated after HCV clearance with DAA treatment (Fig. S3E). The up-regulation of PI3K genes may be associated with persistent liver fibrosis [30, 31].
The dysregulation of immunoregulatory genes in DAA-cured liver tissue maps to hepatic non-parenchymal immune cells

To identify the cellular origin of the dysregulated immune genes, we mapped gene expression to specific liver cell types, using FACS purified liver cells [19] (Figure 1B). Six liver wedge samples of non-infected liver tissue were large enough in size and anatomically ideal for perfusion through the vasculature, which allowed them to be dissociated and analyzed for gene expression. We could not do this with samples of DAA-cured patients due to limitations in the amount of liver tissue obtained. Compared with the total liver and hepatocyte enriched fraction, the majority of the antiviral genes, immune activation, inflammation genes were significantly enriched in the NPC (Table 1). Even though NPC may not be the cell type targeted by HCV infection, previous studies demonstrate that NPC can be activated through paracrine signaling by the neighboring HCV-infected hepatocytes [27, 32, 33].

Innate immune responses were altered in HCV infected and DAA-cured liver slices

We stimulated liver slices with poly-I:C (TLR3 agonist) and LPS (TLR4 agonist) for varying times using the method established in a previous study [19]. We chose day 7 as the time to add novel immune stimuli because the immune induction by tissue slicing was broadly stabilized after 4 days of ex vivo culture [19]. The immune genes were recorded at the day 7 baseline prior to the treatment. A number of the immune genes remained at elevated baseline in HCV-infected or DAA-cured samples compared with non-infected control (Fig. 4). The PBS mock stimulation
did not significantly induce IFNs and ISGs in liver slices [19]. Expression of TLR3, TLR4 and NF-κB were not significantly different at day 7 among chronic HCV-infected, DAA-treated and non-infected liver slices (**Fig. S3A and S3F**).

Against this baseline, we describe three major findings. First, robust induction of IFNs and ISGs by both TLR3 and TLR4 agonists was observed in liver slices from all three groups of liver specimens (*i.e.*, non-infected, HCV-infected, and DAA-cured). *IFNB1* and *IFNL3* (IL28B) peaked at 2-4 h, prior to the maximum abundance of ISGs (*IFIT 1/2/3, RSAD2* and *MX1*) which occurred at 4-8 h, consistent with the sequential signaling cascade induced by TLR3 and TLR4 pathways.

Second, for chronic HCV-infected livers, PAMP sensing appeared robust and enhanced compared to non-infected liver tissue. For example, antiviral genes *MX1, RSAD2, IFNG,* chemokine genes *CCL3, CX3CL1, CXCL9,* inflammatory genes *TNF, CASP1* and *IL-10* were not suppressed but induced more strongly by TLR3 agonist in liver slices of chronic HCV-infected liver at least at one time point (Mann-Whitney test, two tailed, *P* < 0.05) (**Figs 5 and 6**). Other common activation markers for TLR3 signaling, including *IFNB1, IL28B, IFIT 1/2/3, ISG15,* *CXCL10, IL-1B* and *CCL-5,* were also responsive in chronic HCV-infected slices with elevation of greater than 10-fold, as strong as changes in the non-infected liver slices. Thus, TLR3 sensing and signaling did not appear to be impaired in chronic HCV-infected liver slices. Notably, *TNF, IL-10* and *RSAD2* remained abnormally induced at 12 h and 24 h in chronic HCV liver slices, indicating persistent inflammation.
TLR4 sensing and signaling were similarly robust in chronic HCV-infected livers. *IFIT1, IFIT3, RSAD2, MX1, CCL3, CASP1* and *IL-10* were again identified along with *IL-1A, CCL7* and *TGFBI* at greater abundance post stimulation in chronic HCV-infected liver slices on at least one time point (Mann-Whitney test, two tailed, *P* < 0.05) (*Figs* 5 and 6). *IFIT1, IFIT3, IL-1A, CCL3, IL-10, CASP1*, and *TGFBI* were more strongly elevated at 12 h and 24 h in chronic HCV liver slices, again revealing that innate immune signaling was not disabled in these liver tissue.

Third, most of the hyper-induction of the genes in HCV-infected tissue (7/8 genes in TLR3 response, 10/12 genes in TLR4 response) was not reversed in the tissue from formerly HCV+, but now successfully treated donors (*Figs* 5 and 6). *IFNG, CX3CL1*, and *IL-10* induction by the TLR3 agonist, and *TNF, MX1* and *CCL5* induction by the TLR4 agonist exacerbated differences at 12 h and 24 h in tissue from the DAA-treated livers, consistent with the sustained inflammation in these tissues (*Fig. S7*). However, *TGFBI, CCL3* and *IL-18* were examples of genes whose expression was restored to normal by DAA treatment (*Fig. 6B*). The shared abnormality in TLR3 and TLR4 signaling pathway in HCV-infected and DAA-treated liver tissue is in line with epigenetic changes in TNF and IFNG signaling and inflammatory response identified for such liver tissue [17]. Importantly, since NPCs were the main cellular compartment expressing TLR3 and TLR4 (*Fig. S4G*) as well as the majority of the immune genes, the hyper-activation signals during TLR3 and TLR4 response were likely contributed by the abnormal NPC. Analysis of fold-change (delta-delta Ct) also identified the greater induction of inflammatory-related genes (*TNF, IL-1B, IL-8, IL-10, CX3CL1* and *CTGF*) in chronic HCV-infected or DAA-cured liver tissues during poly-I:C or LPS responses (*Fig. S8*).
Discussion

Here we showed that immune abnormalities persist after the elimination of HCV by anti-viral therapy, and the persisting inflammatory and immune signatures mapped to hepatic non-parenchymal cells. An improved method for culture of human liver slices [19] enabled us to further investigate the immunopathology of liver slices ex vivo. Innate immunity was not suppressed but enhanced in HCV-infected tissue, and these abnormalities were not corrected after effective DAA treatment.

In human hepatocyte cultures [34, 35] HCV infection triggered cleavage of MAVS and TRIF host proteins by HCV NS3/4A protease, disrupting TLR3-antiviral signaling. Reduction of protein levels of MAVS and TRIF was also observed previously in chronic HCV-infected livers [36, 37]. Nevertheless, we observed a robust response to TLR3 signaling in the HCV-infected liver, which supports the idea that ISG induction is weak in HCV infected cells, but strong in HCV infected liver due to paracrine activation of NPC. The data on the direct effect of HCV on the TLR3 response in liver tissue is novel and is distinct from previous work focused on the IFN-induced gene expression in chronically HCV-infected liver by pegylated IFN therapy [38, 39], since such direct activation of IFN signaling bypasses MAVS and TRIF.

In DAA-cured, formerly HCV+ liver slices, a number of antiviral genes were hyper-activated by poly-I:C and LPS. The gene induction pattern, coupled with our ability to assign these genes to hepatic non-parenchymal cells, indicates excessive immune activation in NPC, with risk of both
increased inflammation, and impaired immunity [40-42]. Histological analysis of DAA-cured, formerly HCV+ liver biopsy samples also reported sustained inflammation and cirrhosis despite the clearance of HCV [18] (and this study). Such ongoing liver inflammation that was not cured by DAA treatment, could result from the properties of liver-resident immune cells, including NK cells and Kupffer cells, which were pre-activated during HCV infection; or from the abnormal fibrotic liver environment in DAA-treated livers.

The immune abnormalities observed in HCV-infected liver tissue were distinct from those identified in a recent study of TLR immune response with chronic HBV-infected liver biopsy tissues [43]. Here we used several approaches to improve the TLR ligand treatment method to enable enhanced detection of differences from non-infected, control liver tissue. However, the logistics of our approach made it impractical to study a wide variety of TLR ligands, so we concentrated on TLR3 and TLR4 firstly to interrogate a major pathway against RNA viruses, and second to engage both the TRIF and the MyD88 signaling pathways. We would not expect the defects induced by HBV and HCV to be identical, but some common features emerge: other studies with chronic HBV-infected hepatic tissue have reported immune interference by HBV [44].

From the days of IFN-based therapy, we know that HCV-induced liver disease can regress when the virus is eradicated from the liver [45]. However, halting or reversing liver disease upon IFN cure of HCV has not been universal; some patients with advanced disease still go on to develop HCC [46-48]. DAA drugs are now able to cure the majority of HCV infections, even in subjects with advanced liver disease. Nevertheless, clearance of HCV with DAA treatment only partially
restores immune cell function. In this study, we have identified immune genes that were restored to normal by DAA treatment, and more importantly immune genes that were not restored \textit{ex vivo} (\textit{i.e.,} at day 0 time point), including a subset of immune activation genes, inflammation genes, immune suppression, and PI3K pathway genes.

The era during which some, but not all HCV patients were treated with DAA was brief and has passed. Within this narrow time window, we worked with tissue from patients who were treated for surgical resection of a liver lesion. Accordingly, there are inherent limitations to this study. First, due to the small sample size, we did not further classify patient subgroups based on HCV genotypes. Likewise, other subject characteristics including gender, age, genetic polymorphisms (such as IL28B), and liver fibrosis status which may play a role in immunity and responses to HCV infection \cite{13, 49, 50} were not used as factors to subdivide patient groups in the downstream analysis. Surprisingly, we observed significant effects that cut across these hidden variables. Among these, the identification of aberrant immune gene expression in NPC, and alteration of signaling transduction in TLR3 and TLR4 pathways in chronic HCV-infected and formerly HCV+ but now DAA-cured liver tissues are novel. Second, we cannot determine how far the sustained abnormality is due to the host response to hepatic fibrosis or HCC rather than HCV-mediated. Future study may extend the conclusion through analysis of a more diverse group of clinical situations, including chronic HCV patients and DAAs-SVR cases with or without fibrosis or HCC, as well as non-HCV related liver tissues with fibrosis or HCC.

Acknowledgements
We thank Pathology Research Services Laboratory, and Histology and Imaging Core (HIC) at UW for their help in data and image acquisition.

Conflict of Interest

The authors have no conflict of interest to declare.

References

15. Dong Ji ea. Increase in Incidence of Hepatocellular Carcinoma in Chronic Hepatitis C Chinese After Sustained Virologic Response with Direct Acting Antiviral Agents as Compared

33. Wieland S, Makowska Z, Campana B, Calabrese D, Dill MT, Chung J, et al. Simultaneous detection of hepatitis C virus and interferon stimulated gene expression in infected...

Figure legends
Figure 1. Experimental Overview. (A) Liver slices were collected from resected livers from three
groups of patients including non-HCV-infected patients (controls), chronic HCV-infected patients, and
patients with previous history of HCV infection who were cured by DAA treatment (DAA-cured
patients). Day 0 liver slices were harvested immediately after slicing, which revealed the *ex vivo*
immunopathology of liver cells. Day 7 baseline differences were compared with liver slices collected
after seven days of *ex vivo* culture and before the addition of TLR agonist. Innate immune responses
were analyzed with day 7 liver slices which were stimulated with poly-I:C (TLR3 agonist) or LPS (TLR4
agonist) with time points of 2, 4, 8, 12, 24 hours of treatment. (B) Specific liver cell types were purified
from fresh resected liver wedges from non-HCV-infected individuals with perfusion, differential
centrifugation and fluorescence-activated cell sorting (FACS) techniques. Immune gene expression was
analyzed with liver cell samples enriched with hepatocytes, total non-parenchymal cells (NPC), Kupffer
cells (KC), liver sinusoidal endothelial cells (LSEC), or hepatic stellate cells (HSC).

Figure 2. Analysis of HCV RNA and liver fibrosis with liver slices. (A) All eight chronic HCV
samples (blue color) were confirmed with positive HCV RNA detection. None of the DAA cured
subjects (red color) or the non-infected controls (black color) was positive for HCV RNA. n.d., meaning
non-detected. The limit of reliable detection (LoD) was 1.2 IU/50 ng liver total RNA. (B) HCV RNA
remained robustly detected in the day 7 liver slices cultured from chronically HCV-infected patients. The
viral load between day 0 and day 7 liver slices was not statistically significant (P=0.4688, Wilcoxon
matched-pairs signed rank test). (C) Fibrosis analysis of the day 0 *ex vivo* liver specimens with trichrome
staining and picrosirius red staining indicated that in DAA-treated, and now HCV-negative patients there
was persistent fibrosis, similar to untreated HCV and different from tissue without a history of HCV.
infection. The scoring system was based on the Scheuer/Batts-Ludwig method. The box-and-whisker plot included data of 10 non-infected patients, 4 chronic HCV patients, and 8 DAA-treated patients, with the minimum and maximum data points for each subgroup being shown. Statistical significance was based on Mann-Whitney test. **, P < 0.01. ††, P < 0.01. For additional details, see Fig S1.

Figure 3. Differential expression of immune genes at the day 0 baseline in chronic HCV-infected and DAA-cured patients versus non-infected controls. (A) Day 0 differentially expressed genes in chronic HCV-infected versus non-infected patients were highlighted with red markers (increased genes in HCV) and green markers (decreased genes in HCV). Gene subsets persistent to DAA treatment were highlighted. In comparison, HLA-DR, MX1 and CXCL10 were examples of genes that were restored to normal by DAA therapy at the day 0 baseline. (B) Day 0 differential expressed immune genes in DAA-cured versus non-infected liver slices. (C) Venn diagram showing commonality of immune gene changes in different patient groups. Comparison of D0 baseline for DAA-cured versus HCV-infected livers is provided in Fig S2.

Figure 4. Immune gene changes at the day 7 baseline in chronic HCV-infected and DAA-cured livers. (A) Hierarchical clustering of immune genes with statistically significant elevation in HCV or DAA-cured subjects at Day 0 or Day 7 time points. Genes were colored according to their group-level fold changes, which were calculated with the mean Ct value of each gene within each patient group. Individual gene plots are provided in Fig. S3. (B) Summary diagram for genes that were statistically significant at day 7 time point. Genes were categorized based on their statistical significance in chronic
HCV-infected and DAA-treated samples. The cell-type-specific expression was mapped to their cell types analyzed with the day 0 perfused liver wedge samples. Many of the immune genes were enriched in expression in the NPC compartment (Fig. S4 and S5). Genes that were also statistically significantly evaluated at the day 0 time point are indicated with bold fonts.

Figure 5. Poly-I:C and LPS induced TLR3 and TLR4 response with chronic HCV-infected liver slices and DAA-cured liver slices. The relative RNA abundance was normalized to ACTB, GAPDH and HPRT1. Statistical significance was based on two-tailed Mann-Whitney test. *, statistical significantly different between non-infected versus chronic HCV liver slices. †, statistical significantly different between non-infected versus DAA-cured liver slices. ‡, statistical significantly different between chronic HCV versus DAA-cured liver slices. Levels of statistical significance was *, P < 0.05 **, P<0.01, ***, P<0.001. TNF, IFNG, MX1 and IL-10 are examples of genes that were hyper-activated in TLR3 and TLR4 response in chronic HCV-infected liver slices and in DAA-cured liver slices.

Figure 6. Altered TLR3 and TLR4 response in chronic HCV-infected liver slices not restored in DAA-cured liver slices. (A) Hierarchical clustering of immune responsive genes with 2-fold or greater induction during LPS stimulation. Genes and time points were colored based on the statistical significance P value of HCV-infected versus control, and DAA-cured versus control according to two-tailed Mann-Whitney test. The poly-I:C induced heat map is in...
Fig. S6. The gene clusters that were altered by chronic HCV infection and not restored to normal by DAA therapy were highlighted. Data of individual genes are shown in Fig. S7. (B) Summary of statistically significant genes (P < 0.05) that were altered by HCV infection and not restored by DAA treatment with the mapping the enriched liver cell types.

Table
Table 1 Immune gene changes *ex vivo* (Day 0)

<table>
<thead>
<tr>
<th></th>
<th>Fold change</th>
<th>Statistical significance</th>
<th>Cell-type-specific information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1HCV/Con</td>
<td>DAA/Con</td>
<td>1HCV/Con</td>
</tr>
<tr>
<td>Antiviral genes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cured by DAA at D0 baseline 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CXCL10</td>
<td>54.39</td>
<td>2.93</td>
<td>0.05</td>
</tr>
<tr>
<td>RSAD2</td>
<td>7.68</td>
<td>1.05</td>
<td>0.14</td>
</tr>
<tr>
<td>IFIT1</td>
<td>7.16</td>
<td>1.51</td>
<td>0.21</td>
</tr>
<tr>
<td>IFIT3</td>
<td>7.02</td>
<td>1.61</td>
<td>0.23</td>
</tr>
<tr>
<td>CXCL9</td>
<td>6.80</td>
<td>1.45</td>
<td>0.21</td>
</tr>
<tr>
<td>IFIT2</td>
<td>5.39</td>
<td>1.82</td>
<td>0.34</td>
</tr>
<tr>
<td>ISG15</td>
<td>6.16</td>
<td>1.04</td>
<td>0.17</td>
</tr>
<tr>
<td>MX1</td>
<td>7.05</td>
<td>1.01</td>
<td>0.14</td>
</tr>
<tr>
<td>Immune activation genes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOT cured by DAA at D0 baseline 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HLA-A</td>
<td>3.84</td>
<td>1.61</td>
<td>0.42</td>
</tr>
<tr>
<td>CCL5</td>
<td>3.30</td>
<td>1.92</td>
<td>0.58</td>
</tr>
<tr>
<td>CCR2</td>
<td>9.93</td>
<td>4.45</td>
<td>0.45</td>
</tr>
<tr>
<td>4-1BB (CD137, TNFRSF9)</td>
<td>6.35</td>
<td>3.17</td>
<td>0.50</td>
</tr>
<tr>
<td>CIITA</td>
<td>5.03</td>
<td>4.64</td>
<td>0.92</td>
</tr>
<tr>
<td>Inflammation genes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOT cured by DAA at D0 baseline 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASP1</td>
<td>3.13</td>
<td>2.71</td>
<td>0.87</td>
</tr>
<tr>
<td>IL-12A</td>
<td>3.71</td>
<td>1.91</td>
<td>0.51</td>
</tr>
</tbody>
</table>
Liver tissue was perfused, and total livers, hepatocytes (Hep) and NPC populations (NPC) were obtained with differential centrifugation. Kupffer cells (KC), liver sinusoidal endothelial cells (LSEC), and hepatic stellate cells (HSC) enriched populations were obtained with FACS from NPC (Fig. 1B). RNA was extracted from each cell type, followed by qRT-PCR gene expression analysis using the fluidigm platform.
1The comparisons were HCV/ Con, chronic HCV-infected versus non-infected controls; DAA/ Con, DAA-cured versus non-infected controls; DAA/HCV, DAA-cured versus chronic HCV-infected.

2Statistical significance was based on non-parametric two-tailed Mann-Whitney test.
3Cell-type-specific information was based on analysis of the non-HCV-infected samples. N/A means cell-type-specific gene information not analyzed. This was due to the limit of sample availability and the assay throughput with fluidigm assays.

4Cured by DAA at D0 baseline categorized the gene subsets that were normalized to the same level as non-infected controls.

5Not cured by DAA at D0 baseline categorized gene subsets that were not normalized to the correct levels as the non-infected controls.
Figure 1

A

- **Resected liver cores**
- **Liver slices containing hepatocytes and NPC**
- **Precision-cut liver slicing**
- **Liver slice culture**
- **Day 0 baseline**
- **Day 7 baseline**
- **Poly(A):C (TLR3)**
- **LPS (TLR4)**
- **Innate immunity response comparison**

(Non-infected vs. Chronic HCV-infected vs. DAA-cured)

B

- **Resected liver wedges**
 - collagenase perfusion
 - 100 μm strainer filtering
 - centrifugation 50 x g, 3 min
 - 50 x g pellet and supernatants
 - 50 x g, pellets
 - centrifugation 500 x g, 7 min
- **Total NPC**
 - Hepatocytes
 - KC
 - CD3-CD45+
 - CD68+CD14+CD32+
 - LSEC
 - CD45-CD31+PacBlue-
 - HSC
 - CD45-PacBlue+CD271+
 - SSC-H > 150 units
Figure 2

A

HCV load (IU) / (50 ng liver total RNA)

Day 0

Fibrosis scores

B

HCV load (IU) / (50 ng liver total RNA)

Day 0

Day 7

C

Fibrosis scores

P = 0.4909

††

**
Figure 3

A. Non-infected vs. Chronic HCV

B. Non-infected vs. DAA-cured

C. Day 0 genes

Up-regulated in chronic HCV livers

Up-regulated in DAA-cured livers

Non-infected vs. HCV | Non-infected vs. DAA-cured

<table>
<thead>
<tr>
<th></th>
<th>28</th>
<th>12</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-infected vs. HCV</td>
<td>22</td>
<td>18</td>
<td>5</td>
</tr>
</tbody>
</table>
Figure 4

<table>
<thead>
<tr>
<th>Gene</th>
<th>Day 0</th>
<th>Day 7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HCV vs Con. DAA</td>
<td>DAA vs Con.</td>
</tr>
<tr>
<td>TIGIT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASP1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIITA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTLA4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDCD1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDO1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNFRSF18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCR2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OX40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNFSF9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCL5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNAP25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTG2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFIT3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HLA-A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFIT2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CXCL9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CXCL10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFIT1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HLA-DRA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VISTA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIMP1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MX1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSAD2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFKB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAG3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CX3CL1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-12B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PD-L1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOXP3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFNG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-1BB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-12A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B7-H4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPHK1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPRC5B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOX9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISG15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIM3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMP9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARG1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Genes with elevated level at Day 7 time point

Significant in HCV

Significant in DAA

Elevated genes in HCV

Elevated genes in DAA

Elevated genes in HCV at Day 7

Elevated genes in DAA at Day 7

Log2 (Fold-change)
Figure 5

IFNG, **polyI:C**, and **LPS**

- **IFNG**: Relative abundance (Log2 scale) over time for different treatments.
- **polyI:C**: Relative abundance (Log2 scale) over time for different treatments.
- **LPS**: Relative abundance (Log2 scale) over time for different treatments.

- **Non-infected**
- **Chronic HCV**
- **DAA-cured**

TNF

- Relative abundance (Log2 scale) over time for different treatments.

MX1

- Relative abundance (Log2 scale) over time for different treatments.

IL-10

- Relative abundance (Log2 scale) over time for different treatments.
Figure 6

A

LPS stimulation

HCV vs Control

DAA vs Control

0 4 8 12 24

0 4 8 12 24

Hyper-stimulated genes in HCV or DAA

Hyper-stimulated in pIC

Up-regulated in pIC and LPS

Up-regulated in LPS

B

TLR3, TLR4 hyper-response

Not cured by DAA

Up-regulated in pIC

Up-regulated in pIC and LPS

Up-regulated in LPS

1 0.01

Significance value

1 0 13 2 1 3

All liver cell types

Enriched in Hep

Enriched in total NPC

Enriched in KC

Enriched in LSEC

Enriched in HSC

1 0 13 2 1 3

All liver cell types

Enriched in Hep

Enriched in total NPC

Enriched in KC

Enriched in LSEC

Enriched in HSC