Large variation in the association between seasonal antibiotic use and resistance across multiple bacterial species and antibiotic classes

Daphne S. Sun¹, Stephen M. Kissler¹, Sanjat Kanjilal²,³, ⁴, Scott W. Olesen¹, Marc Lipsitch¹,⁶, Yonatan H. Grad¹,³

1. Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
2. Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
3. Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
4. Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
5. Division of Infectious Disease, Massachusetts General Hospital, Boston, MA, USA
6. Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard Chan School of Public Health, Boston, MA, USA

Correspondence: Yonatan H. Grad (ygrad@hsph.harvard.edu)

Abstract

Understanding how antibiotic use drives resistance is crucial for guiding effective strategies to limit the spread of resistance, but the variation in the use-resistance relationship across pathogens and antibiotics remains unclear. Here, we applied sinusoidal models to evaluate the seasonal use-resistance relationship across 3 species and 5 antibiotic classes in Boston, Massachusetts. Use of all 5 classes and resistance in 10 of 15 species-antibiotic combinations showed significant amplitudes of seasonality. However, while seasonal peaks in use varied by class, resistance in all 10 species-antibiotic combinations peaked in the winter and spring. The correlations between seasonal use and resistance thus varied widely, with resistance to all antibiotic classes being most positively correlated with use of the winter-peaking classes (penicillins and macrolides). These findings suggest that in some cases the simple model of use selecting for resistance is inadequate and stewardship strategies will not be equally effective across all species and antibiotics.
Introduction

Antibiotic resistance is a growing threat to society, with important public health\(^1\) and economic consequences\(^2\). Antibiotic use is considered a primary driver of resistance not only in the pathogen targeted by the antibiotic but also in host-associated bacteria subject to 'bystander selection'\(^3\). As such, the effort to reduce antibiotic use is an important strategy for broadly limiting the spread of resistance. However, such interventions may not be equally effective across all antibiotics and bacterial pathogens and will likely depend on the strength of the relationship between use and resistance in each case. Therefore, we need to expand our understanding of these use-resistance relationships and identify factors that influence their strength.

The reported associations between antibiotic use and resistance have varied widely across previous ecological studies on the scale of European countries and US states\(^4\)–\(^10\). Several reports found strong use-resistance associations in a small number of bacterial pathogens (primarily *Streptococcus pneumoniae* and *Escherichia coli*) and antibiotics (macrolides, β-lactams, and quinolones)\(^4\)–\(^8\). However, a recent study that analyzed 72 species-antibiotic combinations found that the correlation between use and resistance, while generally positive, covered a large range and often appeared weaker than might be expected based on earlier reports\(^9\). In some cases, the difficulty in detecting associations may be attributed to several challenges of using annual geographic data to infer use-resistance relationships\(^11\). For example, the similar levels of use between regions and the existence of possibly strong 'spillover' effects\(^12\) – where use in one region affects resistance in surrounding regions due to transmission between populations – can limit the power to detect associations. Geographic analyses are also limited by confounding from comparing between populations, which arises when there are variations between regions in factors other than antibiotic use, such as population...
demographics, healthcare infrastructure, and dominant strains of circulating pathogens, that can also contribute to differing levels of resistance.

Seasonal variations in antibiotic use and resistance within a single region offer another approach to studying the use-resistance relationship13-16, with several advantages. First, seasonality studies enable assessment within a single population, thus minimizing confounding from comparing between populations or along secular trends11. Thus seasonality studies may better approximate the causal use-resistance relationship than geographic analyses. Second, the magnitude of seasonal variations in use often exceeds the variation in use across years or geographic regions16,17, which can provide seasonality studies with greater power to detect associations between use and resistance.

Previous studies found that the antibiotic use-resistance relationship is detectable on a seasonal timescale, with positive associations in \textit{Streptococcus pneumoniae}13, \textit{Escherichia coli}14,15, \textit{Staphylococcus aureus}14, and \textit{Neisseria gonorrhoeae}16. However, these studies focused on the most highly prescribed antibiotic classes, such as β-lactams and macrolides, for which use peaks in the wintertime17. Further, many of the species-antibiotic combinations studied were the same combinations that showed among the strongest use-resistance correlations in earlier geographic studies4,9. Therefore, it remains unclear whether the strength of the seasonal use-resistance relationship extends across a broader range of species and antibiotics, particularly for antibiotics with different seasonal patterns and lower rates of use.

In this study, we evaluated the extent to which seasonal variations in antibiotic use correlate with variations in resistance across multiple antibiotic classes and bacterial species in Boston, Massachusetts. Our analysis included 5 antibiotic classes—penicillins, macrolides, quinolones, nitrofurans, and tetracyclines—which represent a range of prescribing rates and seasonal
patterns of use and 3 bacterial species—*Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae*—which represent skin/nasal and gut colonizing bacteria that cause a diversity of infections and are subject to strong bystander selection. To conduct our study, we compared seasonal antibiotic use data for Boston residents, obtained from a centralized state-wide insurance claims database, with resistance data from two major Boston-area hospitals. Given the near-universal health insurance coverage in the state, this analysis provided a unique opportunity to characterize the antibiotic use-resistance relationship in a dataset that captures close to the full picture of antibiotic use in a population. Overall, this work contributes to our understanding of the use-resistance landscape and helps inform the design of effective stewardship policies to reduce the overall burden of resistance.

Results

Seasonality in antibiotic use varies across classes

The five antibiotic classes included in this study, which accounted for 74% of the total outpatient antibiotic claims in this dataset, each displayed measurable seasonal patterns of use (*Figure 1A*). Penicillins and macrolides were most frequently prescribed, with year-round averages of 14.6 and 12.4 monthly claims per 1000 people, respectively. Quinolones, tetracyclines, and nitrofurans were prescribed with year-round averages of 5.3, 3.1, and 1.6 monthly claims per 1000 people, respectively.

Penicillins had the greatest magnitude change in prescribing rate across seasons, with an amplitude of 3.3 additional claims per 1000 people above the yearly average at its peak (95% CI, 2.7 to 4.0). This was followed by macrolides (amplitude, 2.2; 95% CI, 1.6 to 2.7), quinolones (amplitude, 0.26; 95% CI, 0.12 to 0.40), nitrofurans (amplitude, 0.14; 95% CI, 0.07 to 0.22), and tetracyclines use (amplitude, 0.12; 95% CI, 0.04 to 0.20) (*Figure 1B*).
The timing of peak prescribing varied by antibiotic class (Figure 1B). Macrolide and penicillin use peaked in the winter, around late January (phase, 1.8 months; 95% CI, 1.3 to 2.2; note that phase is indexed to 1.0 representing January 1st) and mid-February (phase, 2.3 months; 95% CI, 1.9 to 2.6), respectively. Tetracycline and nitrofuran use peaked in the summer, around late June (phase, 6.7 months; 95% CI, 4.8 to 8.5) and late August (phase, 8.7 months; 95% CI, 8.0 to 9.4), respectively. Finally, quinolone use peaked twice a year in late December and late June (phase, 0.9 months; 95% CI, 0.3 to 1.4).

Seasonality in antibiotic resistance is prevalent across species and antibiotic classes. Resistance was seasonal for 10 out of 15 species-antibiotic combinations (Figure 2, Figure S1, Figure S2), with significant amplitudes of seasonality (FDR < 0.05) ranging from 0.012 to 0.064 doubling dilutions (Figure 3). Ciprofloxacin resistance and nitrofurantoin resistance were seasonal in all three species with a 12-month period (Figure 2, Figure S1, Figure S2). Resistance to erythromycin in S. aureus was also seasonal with a 12-month period (amplitude, 0.049; 95% CI, 0.013 to 0.086). Conversely, tetracycline resistance was not seasonal in any of the three species (Figure 2, Figure S1, Figure S2). Seasonality of resistance to penicillin class antibiotics was variable across species. Oxacillin resistance in S. aureus was seasonal with a 12-month period (amplitude, 0.033; 95% CI, 0.010 to 0.055), while both penicillin resistance in S. aureus (amplitude, 0.013; 95% CI, -0.008 to 0.034) and amoxicillin/clavulanate resistance in K. pneumoniae (amplitude, 0.032; 95% CI, -0.0003 to 0.064) did not show evidence of seasonality. Ampicillin and amoxicillin/clavulanate resistance in E. coli were the only species-antibiotic combinations that showed a 6-month period in seasonality, with amplitudes of 0.033 (95% CI, 0.018 to 0.047) and 0.012 (95% CI, 0.001 to 0.022), respectively. Of note, despite having a slightly worse fit, the 12-month period model of ampicillin resistance in E. coli also appeared seasonal (amplitude, 0.040; 95% CI, 0.018 to 0.061) (Figure S3).
Resistance peaked in the winter-spring months in all 10 seasonal species-antibiotic combinations, with peaks ranging from early December to mid-April (Figure 4). Comparing across species, resistance in *E. coli* (median phase, 3.0; IQR, 0.9) tended to peak slightly later in the year than resistance in *S. aureus* (median phase, 1.7; IQR, 0.6) and *K. pneumoniae* (median phase, 1.1; IQR, 1.1). Peak resistance to macrolides and penicillins in *S. aureus* and the first peak in resistance to penicillins in *E. coli* occurred around the same time of year as peak use of macrolides and penicillins. However, resistance to penicillins in *E. coli* also peaked a second time during the year in late August and October, though use did not. In addition, resistance to nitrofurans in all 3 species peaked at the opposite time of year from its use, between 3.3 to 5.8 months after peak nitrofuran use. Finally, resistance to quinolones in all 3 species peaked once a year about 1.0 to 2.3 months after the first peak in quinolone use.

Seasonal resistance is positively correlated with use of winter-peaking antibiotic classes

Spearman correlation coefficients between use-resistance antibiotic pairs across all species ranged from -0.76 to 0.94 (Figure 5). Resistance to every antibiotic, regardless of class, in all three species was most positively correlated with use of winter-peaking classes, penicillins and macrolides (median Spearman’s ρ, 0.68; IQR, 0.52). Resistance to most antibiotics also showed a negative correlation with use of summer-peaking classes, tetracyclines and nitrofurans (median Spearman’s ρ, -0.46; IQR, 0.42). Finally, resistance was not significantly correlated with use of quinolones, which peaked twice a year, for any antibiotic in any species (median Spearman’s ρ, -0.28; IQR, 0.26).

Discussion

Under a simple model in which antibiotic use drives resistance, seasonal variation in antibiotic consumption is expected to be associated with variation in population-level resistance that is in phase with or lagged up to a quarter period behind use\(^\text{21}\). Findings from previous seasonality
studies have been largely consistent with this model, where use of winter-peaking antibiotics were associated with winter to spring peaks in resistance. However, by including antibiotic classes with different seasonal peaks in use, we found that resistance to all antibiotics still peaked in the winter or spring, resulting in a large variation in correlations between use and resistance of the same antibiotic class. Resistance to all antibiotics best correlated with use of winter-peaking antibiotics, suggesting the need for other factors in models of the relationship between use and resistance.

The observed pattern for penicillins and macrolides—peak wintertime use followed by peaks in resistance in late winter to spring—was mostly consistent with previous findings and with some theoretical predictions from models in which use drives resistance. In *S. aureus*, use and resistance to oxacillin and erythromycin peaked in the winter, consistent with a previous seasonality study that compared macrolide use and resistance in methicillin-resistant *S. aureus* (MRSA), as well as findings in other species-antibiotic combinations that have shown winter peaks in use and resistance with little to no lag. In *E. coli*, the first peaks in ampicillin and amoxicillin/clavulanate resistance occurred in the winter and spring, respectively, about 0.5 to 2.5 months after the peak in penicillins use. A several month lag between use and resistance has also been previously reported in *E. coli* and *N. gonorrhoeae*. Resistance to penicillins in *E. coli* also showed a second peak in resistance 6 months later, in the absence of a second peak in use, a finding that has not been previously reported. However, we note that a 12-month period model for ampicillin resistance in *E. coli* also met our criterion for seasonality and showed a single winter peak in resistance, which is more consistent with previous findings in *E. coli*.

Antibiotic classes with different seasonal patterns of use, such as nitrofurans and quinolones, showed seasonal patterns of resistance that could not readily be explained based on their patterns of use. Nitrofurans, which are almost exclusively used to treat urinary tract infections...
(UTIs), showed summer peaks in use during the same season as peak UTI incidence. Quinolones, which are used to treat both respiratory infections and UTIs, showed both winter and summer peaks in use. However, resistance to nitrofurans and quinolones in all 3 species showed only one peak in the winter or early spring. This result for quinolone resistance is consistent with a previous finding in E. coli, which showed a single winter peak in quinolone use followed by a winter peak in resistance.

Several species-antibiotic combinations did not show seasonality in resistance. In each case, this may be due to a lack of association between use and resistance, a lack of strong seasonal variation in use of some antibiotic classes, or other factors, such as a signal too small to be identified in our dataset. The lack of seasonality in S. aureus resistance to penicillin may be explained by the already high prevalence of penicillin resistance in S. aureus (83% in this dataset, Table S3), which may limit observable selection for resistance from increased wintertime use of penicillins. For K. pneumoniae resistance to amoxicillin-clavulanate, additional data may narrow the confidence intervals around the estimated amplitude of seasonality (0.032; 95% CI -0.003, 0.064). The absence of observed seasonality in tetracycline resistance in all 3 species may be explained by the lack of a strong seasonal variation in tetracycline use, as tetracyclines showed the lowest amplitude of seasonal use among antibiotic classes (Figure 1). This finding is also consistent with a previous study that found no significant correlation between tetracycline use and resistance in E. coli.

Our finding that resistance to all antibiotics most correlated with use of winter-peaking antibiotic classes suggests that the simple model in which use of a given antibiotic independently selects for resistance is insufficient to explain the full seasonal use-resistance landscape. At least two additional factors may contribute to this result. First, resistance to one antibiotic could be indirectly selected for by increased wintertime use of a second antibiotic in bacteria that are co-
resistant to both antibiotics. This is supported by evidence that co-resistance is common across many bacterial species29. We might expect that selection by use of pencillins and macrolides dominates over selection by other antibiotics because they are prescribed at substantially higher rates and show greater seasonal variations in use17. In a previous seasonality study, antibiotics with higher rates of use showed stronger correlations between seasonal use and resistance14. In addition, use of macrolides and penicillins have been shown to be more strongly correlated with resistance than less frequently prescribed antibiotics9.

Second, the observed winter peaks in resistance may be explained by increased sampling of demographics and types of infections with higher overall rates of resistance, rather than selection by antibiotic use. Rates of resistance have been shown to vary by age, sex, and site of infection30–32; and, the incidence of infections from each of these groups can also vary by season26,33,34. As such, an increased incidence of infections from groups with higher rates of resistance could in turn lead to a winter spike in resistance, irrespective of patterns of use.

There were several limitations to this study. First, while antibiotic use is one important driver of resistance, we cannot rule out other seasonal effects that could also contribute to seasonal variations in resistance, such as a sampling bias for demographics or infection types with higher levels of resistance during certain seasons. Second, although our study analyzed data from a single city, there is still some disparity between the populations represented in the antibiotic use and resistance datasets. We compared outpatient antibiotic use data from 97\% of Boston, MA residents under age 65 to antibiotic resistance data from both inpatients and outpatients at two major Boston-area hospitals, with patient populations that skew towards older ages. Previous studies have shown that community antibiotic use has strong impact on resistance in both the hospital and community settings35,36. However, other aspects of the patient population in the resistance dataset, such as their age distribution, may not be representative of the overall
population in the use dataset, potentially limiting our conclusions. Finally, due to data limitations, the antibiotic use and resistance datasets for each species and antibiotic often spanned overlapping but different year ranges. Therefore, we aggregated monthly use and resistance data across years to perform our correlation analyses, assuming that seasonal patterns of use and resistance were stable across the years included in our study.

In conclusion, we found evidence of a seasonal relationship between antibiotic use and resistance, which varied widely across antibiotic classes but was largely consistent across the three bacterial species, *S. aureus*, *E. coli*, and *K. pneumoniae*. While antibiotic use showed varied seasonal patterns across classes, resistance to all antibiotics peaked in the winter to spring, resulting in large variations in the correlation between cognate pairs. This indicates that the simplest model of antibiotic use independently selecting for resistance to the same antibiotic is inadequate and underscores the need to identify additional factors that shape the use-resistance relationship across diverse species and antibiotics. In addition, these findings may contribute to guiding future stewardship efforts by identifying antibiotic targets, such as penicillins and macrolides, that may have the broadest effect in reducing overall resistance.

Materials and Methods

Antibiotic use data. Outpatient antibiotic use data was obtained from the Massachusetts All Payer Claims Database\(^37\), which covers >94% of outpatient prescriptions claims for Massachusetts residents under the age of 65\(^38\). Rates of use for each antibiotic class were measured as the number of antibiotic claims per 1000 people for each month from January 2011 to May 2015. This data was subset to include only individuals residing in ‘Boston City’ census tracks, as defined by the US Census Bureau\(^39\), to capture the antibiotic use patterns in the communities served by the hospitals in our resistance dataset. We aggregated use data by antibiotic class according to the WHO ATC index\(^40\) for 5 antibiotic classes, which together make
up 74% of the total outpatient antibiotic claims in Boston: penicillins (ATC code, J01C),
macrolides (ATC code, J01F), quinolones (ATC code, J01M), tetracyclines (ATC code, J01A),
and nitrofurans (ATC code, JO1XE). The distribution of use of individual antibiotics within each
class is shown in Table S1.

Antibiotic resistance data. Clinical microbiology data was obtained for S. aureus, E. coli, and
K. pneumoniae isolates collected at two tertiary care hospitals in Boston, MA: Brigham and
Women’s Hospital (BWH) and Massachusetts General Hospital (MGH), from 2007-2019 and
2007-2016, respectively. Included in this analysis were all non-surveillance isolates from
inpatients and outpatients of all demographics, collected from the 5 most common body sites
across the 3 species: blood, skin and soft tissue, abscess/liquid, respiratory tract, and urinary
tract. The distribution of isolates by hospital, patient demographic group, and body site is shown
in Table S2. Isolates of the same species that were collected from the same patient within 2
weeks were assumed to represent a single infection and thus treated as a single isolate. Our
final dataset comprised 47,219 S. aureus, 131,856 E. coli, and 27,245 K. pneumoniae isolates.

Antibiotic susceptibility testing was performed on each isolate either by automated broth
microdilution (Vitek 2, Biomerieux, Marcy l’Etoile, France) or by E-test. Resulting minimum
inhibitory concentration (MIC) values were log₂-transformed. Due to variations in hospital testing
guidelines across the years, we excluded tests on isolates that did not report an MIC value,
either because a different test method was used (e.g. disk diameter) or due to missing data. We
then excluded years/months from our analysis for each species-antibiotic combination in each
hospital where MIC values were reported for less than 80% of isolates or only a subset of
isolate types (e.g., only testing nitrofurantoin resistance in urinary tract isolates). Table S3 lists
date ranges for each species-antibiotic combination included in our analysis. For each species,
we analyzed MIC data for individual antibiotics that are in each of the 5 corresponding antibiotic use classes, as listed in Table S3.

Statistical methods. We quantified the extent of seasonality in antibiotic use and resistance by fitting the use and MIC data to a pair of mathematical models, based on a previously described method\(^\text{16}\). Both models consist of a sinusoidal component to describe seasonal deviations from average year-round use and MICs and a linear component to adjust for secular trends in use and resistance across years. To describe the seasonality of use, monthly claims data for each antibiotic class were fit to

\[
a_t \sim A_{\text{use}} \cos(\omega(t_i - P_{\text{use}})) + B_{y(i)}t_i + C_{y(i)}
\]

where \(a_t\) is the reported claims/1000 people during month \(t_i\), \(A_{\text{use}}\) is the amplitude of use seasonality, \(\omega\) is the frequency of seasonality where \(\omega = \frac{2\pi}{\text{period}}\), \(P_{\text{use}}\) is the phase of use seasonality, and \(B_{y(i)}\) and \(C_{y(i)}\) are the within-year slope and intercept terms. To describe the seasonality of resistance, MICs for each isolate were fit to

\[
y_i \sim A_{\text{MIC}} \cos(\omega(t_i - P_{\text{MIC}})) + B_{h(i)}t_i + C_{h(i)}
\]

where \(y_i\) is the log\(_2\)-transformed MIC and \(t_i\) is the month of collection of the \(i\)th isolate, \(A_{\text{MIC}}\) is the amplitude of resistance seasonality, \(\omega\) is the frequency of seasonality where \(\omega = \frac{2\pi}{\text{period}}\), \(P_{\text{MIC}}\) is the phase of resistance seasonality, and \(B_{h(i)}\) and \(C_{h(i)}\) are the within hospital/year slope and intercept terms.

The amplitude, phase, slope, and intercept terms in both models were estimated by non-linear regression, using the \textit{nls} function in R (version 3.6.2). We examined periods of both 12 and 6 months to account for annual or biannual cycles in use and resistance. To determine whether to use a 12- or 6-month period for each species-antibiotic combination, we performed model comparisons using the Akaike information criterion (AIC) and used the period that resulted in
the lower AIC (Tables S4 & S5). We determined that there was seasonality in use or resistance
if the 95% confidence interval of the amplitude did not include 0. We accounted for multiple
comparisons by applying the Benjamini-Hochberg correction with a 5% false discovery rate to
the p-values of the amplitude estimates.

Next, we quantified the association between the observed seasonal patterns of use and
resistance using Spearman’s rank correlations. To eliminate the impact of annual trends, we
calculated correlations between the average monthly seasonal deviates in use and resistance,
rather than the raw use and MIC data. We define a ‘seasonal deviate’ as the deviation in use (in
claims per 1000 people) or resistance (in doubling dilutions) at a given time of year from the
year-round average, which we estimated by the linear component of the models described
above. Seasonal deviates in use for each year and month were calculated as

\[a_i' = a_i - \hat{B}_y(i) t_i - \hat{C}_y(i) \]

(3)

where \(a_i' \) is the seasonal deviate in use of the reported claims/1000 people during month \(t_i \), \(a_i \) is
the reported claims/1000 people during month \(t_i \), and \(\hat{B}_y(i) \) and \(\hat{C}_y(i) \) are the within-year slope
and intercept terms estimated from the model fit (Eqn. 1) for the corresponding year. Similarly,
seasonal deviates in resistance for each isolate were calculated as

\[y_i' = y_i - \hat{B}_h(i) t_i - \hat{C}_h(i) \]

(4)

where \(y_i' \) is the seasonal deviate of the log₂-transformed MIC of the \(i^{th} \) isolate, \(y_i \) is the log₂-
transformed MIC of the \(i^{th} \) isolate, \(t_i \) is the month of collection of the \(i^{th} \) isolate, and \(\hat{B}_h(i) \) and
\(\hat{C}_h(i) \) are the hospital/year slope and intercept estimated from the model fit (Eqn. 2) for the
hospital and year that the \(i^{th} \) isolate was collected in.

Since we observed some seasonal patterns of resistance that better aligned with use of non-
cognate antibiotic classes, we calculated use-resistance correlations between each pairwise
We only included use-resistance pairs in this analysis for which both use and resistance met our criterion for seasonality.

All analyses were performed in R version 3.6.2. Code is available at: https://github.com/gradlab/use-resistance-seasonality

Acknowledgements

The authors thank R. Monina Klevens for assistance in acquiring the antibiotic prescribing data and Enterprise Research Infrastructure & Services at Partners HealthCare for their computational resources and support. This work was supported by funds from the HSPH Dean’s Award (to Y.H.G.) and Wellcome Trust (to Y.H.G.). D.S.S. is supported by the National Institutes of Health training grant (T32AI132120).

Competing interests

Y. H. G. and M. L. have received grant support from Pfizer. The other authors declare no competing interests.
References

staphylococcus aureus in Boston, Massachusetts, from 2000 to 2014. Ledeboer NA, ed.

Figure 1. Seasonal patterns of antibiotic use by class. (A) Monthly antibiotic claims per 1000 people in Boston, MA from 2011 to 201537. Lines indicate LOESS smoothing curves and shaded regions indicate 95% confidence intervals. (B) Sinusoidal model fits for monthly prescribing rate. Points indicate monthly mean seasonal deviates in antibiotic claims per 1000 people and error bars indicate the standard error of the mean. Lines indicate the point estimate for the amplitude and phase of the sinusoidal model. Shaded regions indicate the 95% confidence intervals for the amplitude.
Figure 2. Seasonality of antibiotic use and resistance by class in *Staphylococcus aureus*.

Solid lines indicate point estimates of the amplitude and phase from the best-fitting sinusoidal models of resistance to each antibiotic, colored by class. Dashed grey lines indicate point estimates of the amplitude and phase of sinusoidal models for use of the corresponding antibiotic class. Points indicate the monthly mean seasonal deviates in doubling dilutions and error bars indicate the standard error of the mean. Shaded regions indicate the 95% confidence intervals for the amplitude.
Figure 3. Amplitudes of seasonality of resistance by species and antibiotic class.

Comparison of amplitudes estimated from best-fitting sinusoidal models of resistance across antibiotics in *Staphylococcus aureus*, *Escherichia coli*, and *Klebsiella pneumoniae*. Error bars indicate 95% confidence intervals of the amplitude. Point color indicates the antibiotic class.

AMC, Amoxicillin-Clavulanate; AMP, Ampicillin; CIP, Ciprofloxacin; ERY, Erythromycin; NIT, Nitrofurantoin; OXA, Oxacillin; PEN, Penicillin; TET, Tetracycline.
Figure 4. Phases of seasonality of use and resistance by species and antibiotic class.

Points indicate peak month(s) of seasonal resistance estimated by the best-fitting sinusoidal model for each species-antibiotic combination, and error bars indicate the 95% confidence intervals. Vertical lines indicate the peak month(s) of seasonal use estimated by the best-fitting sinusoidal model for each antibiotic class, and the shaded regions indicate the 95% confidence intervals. Included are species-antibiotic combinations for which the amplitude met our criteria for seasonality (95% confidence intervals did not cross 0). AMC, Amoxicillin-Clavulanate; AMP, Ampicillin; CIP, Ciprofloxacin; ERY, Erythromycin; NIT, Nitrofurantoin; OXA, Oxacillin.
Figure 5. Seasonal resistance to multiple antibiotics is positively correlated with seasonal use of penicillins and macrolides. Spearman’s rank correlation coefficients were calculated between the mean seasonal deviate in resistance (in doubling dilutions) and the mean seasonal deviate in use (in claims/1000 people) in each month for every pairwise combination of antibiotics and classes. Error bars indicate the 95% confidence intervals. Colors indicate the use antibiotic class. Mac, Macrolides; Nit, Nitrofurantoin; Pen, Penicillins; Qui, Quinolones; Tet, Tetracyclines. AMC, Amoxicillin-Clavulanate; AMP, Ampicillin; CIP, Ciprofloxacin; ERY, Erythromycin; NIT, Nitrofurantoin; OXA, Oxacillin.
Supplemental Figure 1. Seasonality of antibiotic use and resistance by class in *Escherichia coli*. Solid lines indicate point estimates of the amplitude and phase from the best-fitting sinusoidal models of resistance to each antibiotic, colored by class. Dashed grey lines indicate point estimates of the amplitude and phase from sinusoidal models of use of the corresponding antibiotic class. Points indicate the monthly mean seasonal deviates in doubling dilutions and error bars indicate the standard error of the mean. Shaded regions indicate the 95% confidence intervals for the amplitude. Amox/Clav, Amoxicillin-Clavulanate.
Supplemental Figure 2. Seasonality of antibiotic use and resistance by class in *Klebsiella pneumoniae*. Solid lines indicate point estimates of the amplitude and phase from the best-fitting sinusoidal models of resistance to each antibiotic, colored by class. Dashed grey lines indicate point estimates of the amplitude and phase from sinusoidal models of use of the corresponding antibiotic class. Points indicate the monthly mean seasonal deviates in doubling dilutions and error bars indicate the standard error of the mean. Shaded regions indicate the 95% confidence intervals for the amplitude. Amox/Clav, Amoxicillin-Clavulanate.
Supplemental Figure 3. Seasonality of use and resistance for penicillins in *Escherichia coli* with a 12-month period model. Solid lines indicate point estimates of the amplitude and phase from 12-month period sinusoidal models of resistance to each antibiotic. Dashed grey lines indicate point estimates of the amplitude and phase from a 12-month period sinusoidal model of use of penicillins class antibiotics. Points indicate the monthly mean seasonal deviates in doubling dilutions and error bars indicate the standard error of the mean. Shaded regions indicate the 95% confidence intervals for the amplitude. Amox/Clav, Amoxicillin-Clavulanate.
<table>
<thead>
<tr>
<th>Antibiotic class</th>
<th>Antibiotic name</th>
<th>ATC code</th>
<th>Percent of total use within antibiotic class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillins</td>
<td>Amoxicillin</td>
<td>J01CA04</td>
<td>82.731</td>
</tr>
<tr>
<td></td>
<td>Phenoxymethylpenicillin</td>
<td>J01CE02</td>
<td>15.627</td>
</tr>
<tr>
<td></td>
<td>Dicloxacillin</td>
<td>J01CF01</td>
<td>1.14</td>
</tr>
<tr>
<td></td>
<td>Ampicillin</td>
<td>J01CA01</td>
<td>0.349</td>
</tr>
<tr>
<td></td>
<td>Benzylpenicillin</td>
<td>J01CE01</td>
<td>0.091</td>
</tr>
<tr>
<td></td>
<td>Piperacillin</td>
<td>J01CA12</td>
<td>0.036</td>
</tr>
<tr>
<td></td>
<td>Nafcillin</td>
<td>J01CF06</td>
<td>0.024</td>
</tr>
<tr>
<td></td>
<td>Oxacillin</td>
<td>J01CF04</td>
<td>0.003</td>
</tr>
<tr>
<td>Macrolides</td>
<td>Azithromycin</td>
<td>J01FA10</td>
<td>51.002</td>
</tr>
<tr>
<td></td>
<td>Clindamycin</td>
<td>J01FF01</td>
<td>28.273</td>
</tr>
<tr>
<td></td>
<td>Erythromycin</td>
<td>J01FA01</td>
<td>16.948</td>
</tr>
<tr>
<td></td>
<td>Clarithromycin</td>
<td>J01FA09</td>
<td>3.775</td>
</tr>
<tr>
<td></td>
<td>Telithromycin</td>
<td>J01FA15</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Lincomycin</td>
<td>J01FF02</td>
<td>0.001</td>
</tr>
<tr>
<td>Quinolones</td>
<td>Ciprofloxacin</td>
<td>J01MA02</td>
<td>66.561</td>
</tr>
<tr>
<td></td>
<td>Levofloxacin</td>
<td>J01MA12</td>
<td>13.512</td>
</tr>
<tr>
<td></td>
<td>Ofloxacin</td>
<td>J01MA01</td>
<td>13.311</td>
</tr>
<tr>
<td></td>
<td>Moxifloxacin</td>
<td>J01MA14</td>
<td>5.683</td>
</tr>
<tr>
<td></td>
<td>Gatifloxacin</td>
<td>J01MA16</td>
<td>0.853</td>
</tr>
<tr>
<td></td>
<td>Norofloxacin</td>
<td>J01MA06</td>
<td>0.071</td>
</tr>
<tr>
<td></td>
<td>Gemifloxacin</td>
<td>J01MA15</td>
<td>0.01</td>
</tr>
<tr>
<td>Tetracyclines</td>
<td>Doxycycline</td>
<td>J01AA02</td>
<td>79.097</td>
</tr>
<tr>
<td></td>
<td>Minocycline</td>
<td>J01AA08</td>
<td>18.816</td>
</tr>
<tr>
<td></td>
<td>Tetracycline</td>
<td>J01AA07</td>
<td>1.98</td>
</tr>
<tr>
<td></td>
<td>Tigecycline</td>
<td>J01AA12</td>
<td>0.054</td>
</tr>
<tr>
<td></td>
<td>Demeclocycline</td>
<td>J01AA01</td>
<td>0.053</td>
</tr>
<tr>
<td>Nitrofurans</td>
<td>Nitrofurantoin</td>
<td>J01XE01</td>
<td>100</td>
</tr>
</tbody>
</table>

Supplemental Table 1. Percent of claims by individual antibiotics within each class.

Antibiotic claims data for Boston, MA residents was obtained from the Massachusetts All Payers Claims Database and subset by antibiotic class according to the following ATC codes: penicillins, J01C; macrolides, J01F; quinolones, J01M; tetracyclines, J01A; and nitrofurans, JO1XE. All antibiotics under each ATC header that were present in this dataset were included in the analysis. The percentage of the total claims within each antibiotic class made-up by each individual antibiotic is listed in the last column of the table.
Supplemental Table 2. Total number of isolates by demographics. Table of the total number of isolates of each species within each clinical or demographic category that we used in our analysis. In parentheses is the percent of the total number of isolates for that species. BWH, Brigham and Women’s Hospital; MGH, Massachusetts General Hospital; NOS, not otherwise specified.
<table>
<thead>
<tr>
<th>Species</th>
<th>Antibiotic (Antibiotic class)</th>
<th>Dates included at BWH</th>
<th>Dates included at MGH</th>
<th>Percent resistance at BWH</th>
<th>Percent resistance at MGH</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>Ampicillin (Penicillins)</td>
<td>Jan 2007 – Dec 2019</td>
<td>Jan 2007 – Dec 2016</td>
<td>47.4</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Nitrofurantoin (Nitrofurans)</td>
<td>May 2010 – Jun 2013</td>
<td>Jan 2009 – Dec 2016</td>
<td>1.1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Penicillin (Penicillins)</td>
<td>May 2010 – Dec 2019</td>
<td>Jan 2009 – Apr 2015</td>
<td>81.5</td>
<td>84.3</td>
</tr>
</tbody>
</table>

Supplemental Table 3. Antibiotics included in analysis and percent resistance by hospital. Resistance was determined by applying 2017 CLSI breakpoints to the reported minimum inhibitory concentration (MIC) values for each isolate; isolates categorized as intermediate resistance were considered resistant. Percent resistance was calculated as the percentage of resistant isolates out of the total number of isolates from each hospital with a reported MIC value for that antibiotic. BWH, Brigham and Women's Hospital; MGH, Massachusetts General Hospital.
Antibiotic Class

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>12-month period</th>
<th>6-month period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macrolides</td>
<td>183.3 (+0)</td>
<td>232.4 (+49.1)</td>
</tr>
<tr>
<td>Nitrofurans</td>
<td>-64.8 (+0)</td>
<td>-52 (+12.8)</td>
</tr>
<tr>
<td>Penicillins</td>
<td>191.4 (+0)</td>
<td>255.9 (+64.5)</td>
</tr>
<tr>
<td>Quinolones</td>
<td>67.9 (+4.4)</td>
<td>63.5 (+0)</td>
</tr>
<tr>
<td>Tetracyclines</td>
<td>-12.1 (+0)</td>
<td>-5.9 (+6.2)</td>
</tr>
</tbody>
</table>

Supplemental Table 4. Comparison of the Akaike information criterion (AIC) values across two sinusoidal models for antibiotic use.

In parentheses is the difference in AIC from the model with the lower AIC.

Species

E. coli

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>12-month period</th>
<th>6-month period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amoxicillin/Clavulanate</td>
<td>343849.1 (+4.2)</td>
<td>343844.9 (+0)</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>526712.7 (+5)</td>
<td>526707.7 (+0)</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>503167.1 (+0)</td>
<td>503174 (+6.9)</td>
</tr>
<tr>
<td>Nitrofurantoin</td>
<td>199216.1 (+0)</td>
<td>199237.5 (+21.3)</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>427780.6 (+0.5)</td>
<td>427780.1 (+0)</td>
</tr>
</tbody>
</table>

K. pneumoniae

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>12-month period</th>
<th>6-month period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amoxicillin/Clavulanate</td>
<td>65272.4 (+0)</td>
<td>65275.9 (+3.6)</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>89763.1 (+0)</td>
<td>89774.1 (+11)</td>
</tr>
<tr>
<td>Nitrofurantoin</td>
<td>66283 (+0)</td>
<td>66289.3 (+6.3)</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>80847.4 (+2)</td>
<td>80845.4 (+0)</td>
</tr>
</tbody>
</table>

S. aureus

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>12-month period</th>
<th>6-month period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciprofloxacin</td>
<td>188999.8 (+0)</td>
<td>189021.3 (+21.5)</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>215665.6 (+0)</td>
<td>215671.3 (+5.7)</td>
</tr>
<tr>
<td>Nitrofurantoin</td>
<td>52311.1 (+0)</td>
<td>52327.2 (+16.1)</td>
</tr>
<tr>
<td>Oxacillin</td>
<td>182474.7 (+0)</td>
<td>182482.9 (-8.2)</td>
</tr>
<tr>
<td>Penicillin</td>
<td>125065.1 (+0)</td>
<td>125065.4 (+0.3)</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>131306 (+0)</td>
<td>131307.7 (+1.7)</td>
</tr>
</tbody>
</table>

Supplemental Table 5. Comparison of the Akaike information criterion (AIC) values across two sinusoidal models for antibiotic resistance.

In parentheses is the difference in AIC from the model with the lower AIC.