Abstract

School classrooms, where students and teachers spend prolonged periods of time, are risky environments for airborne transmission of SARS-CoV2. While countries worldwide have been pursuing different school reopening strategies, most EU countries are planning to keep schools open during the whole winter season 2020/21. However, this poses a controversial “technical” issue: air ventilation of classrooms (an essential mitigation factor for airborne transmission) is expected to lower down sensibly due to colder outdoor temperatures. More specifically, personnel and students will ask for more window closure during winter lessons and regulators will probably allow less restrictive policies on windows closure. A fundamental question arise: to which extent can we contain airborne risk in schools during the cold season? What would be the best mitigation strategy considering also the risk for other seasonal diseases? To try answering these questions the concept of cumulative risk is presented, showing the link between intervals of ventilation (natural or mechanical) and the lowering of aerosol contagion risk. A safety risk-zone and a theoretical optimum are presented based on air change intervals optimization.

Keywords:

- airborne transmission
- school classrooms
- natural ventilation
- SARS-Cov2
- GN-model
- optimization
Introduction

In these days of tense debate over the opening (or re-opening) of schools worldwide in the middle of the second pandemic wave, it is important to shed more light on a matter of crucial importance: the link between the so-called “natural ventilation” and the lowering of the viral load in school classrooms. As demonstrated by past and recent high-level scientific publications (for instance [Leung 2020, Morawska 2020, Escombe 2007]), oral transmission of infectious diseases in confined environments can be significantly reduced not only by using personal protective equipment (PPE) such as face masks, but also by natural ventilation, i.e. frequent opening of windows and doors. Although most of the available past literature focused on the spread of tuberculosis and influenza in hospitals, the general principle of dilution of viral load by means of natural ventilation is valid and pertinent for SARS-Covid2 in school buildings, even though some important epidemiological parameters are still under investigation. It is important to stress that the natural ventilation approach is not the only possible option: mechanical ventilation systems, when adequately configured, can be equally or even more effective [AICARR 2020]. However, unlike hospitals, the vast majority of schools worldwide is not equipped with such systems, and will not be, at least for the foreseeable future (including the 2020/2021 school year). A very recent paper, authored by several experts in the field [Morawska 2020], elucidated how a possible mechanism for transmission of SARS-Covid2 in confined spaces is the formation of “light” aerosol droplets (i.e. < 5 µm in diameter, unlike “heavy” droplets, over 5 µm) that diffuse in the environment after being produced by an infected person, and can persist for an extended period of time. This can therefore be supposed as the major source of risk of infection in schools, especially in winter. Groups of students, which can potentially include tens of individuals, share the same premises for hours and in conditions of potentially insufficient ventilation, thereby greatly increasing the likelihood of coming into contact with virus-loaded aerosol droplets generated by even only one infected student / pupil / teacher in the same classroom. This issue is of concern even when social distancing is correctly implemented and adhered to. The extent of efficacy of face masks in reducing this route of transmission is the subject of still ongoing debate, although a general wide agreement on their importance as mitigation factor has been accepted. Some recent results [Leung 2020] strongly supported the effectiveness of face masks in reducing the spread of infected aerosol droplets during exhalation, under the condition that the mask is correctly and permanently worn by both the infected and the susceptible subjects. In a classroom environment, however, it will be difficult to ensure complete and continuous compliance over the many hours of a typical school day. The recent case of a pupil in Terni (Italy), who suffered from respiratory distress after wearing a mask for an extended period of time (in compliance with the school internal policy), suggests that in a realistic scenario, students will be occasionally removing their masks while maintaining social distancing. For instance, a recommendation by some EU local scientific committees as of October 2020, is to wear masks for as long as possible, but to allow their occasional removal as long as social distancing is respected. Taken together, these facts suggest that SARS-Covid2 transmission by contact with infected aerosol particles is a very plausible scenario in all kind of schools where scholars are exposed for hours in relative small environments. Small/medium volume classrooms (<250 m³) are typical of most schools (from primary to high-schools).

On the other hand, frequent natural ventilation may help dilute the viral load by allowing fresh air from the outside to enter the classrooms. This simple countermeasure can dramatically reduce the viral load accumulated over several hours of teaching in the presence of one or more infected subjects. Natural ventilation therefore, being simple to
implement at virtually no additional cost, may take a primary role in the mitigation of the aerosol transmission risk in schools.

![Figure 1. Range of variation for ERq for resting and standing individual as previously published in [Buonanno 2020]. The two values chosen in the present study are highlighted from the straight line in blue and orange.](image)

Figure 1. Range of variation for ERq for resting and standing individual as previously published in [Buonanno 2020]. The two values chosen in the present study are highlighted from the straight line in blue and orange.

Extended GN-model

The infection risk model used in the present analysis is essentially based on the Gammaitoni-Nucci (GN) model, which is adequate for confined, ventilated environments [Gammaitoni 1997]. This model is based on the assumption that newly-produced viral particles are instantly diluted over the whole environment volume (perfect-mixing) and that the emission rate parameter ER_q (number of viral particles generated per hour by each infectious subject) is known. In addition, classical non-threshold models, such as this, assume that the probability of infection is given by the ratio between infectious subjects (C) and exposed subjects (S), therefore the probability of infection is not proportional to number of exposed subjects. The rationale for this approximation can be traced back to the hypothesis of perfect mixing and the fact that the model explicitly represents only “indirect” transmission (i.e. via aerosol droplets), while omitting “direct” transmission (i.e. by sneezing or by two subjects A and B breathing in close proximity). In the GN model, if the number of viral sources (i.e. infectious subjects) remains constant, the probability of infection for each subject at a given time t will only depend on the total concentration of viral particles in the volume V, where it is supposed isotropically distributed. This probability follows an exponential law for increasing exposure time t, and obviously depends on the parameter ER_q and the ventilation ratio p/Q, where p is the average inhalation flow (related to pulmonary capacity) and Q is the inflow of clean air provided by natural or mechanical ventilation. The risk factor R, in the original RMR model (by Riley, Murphy and Riley) can be written as:

$$R_{RMR}(t) = \frac{C(t)}{S_0} = 1 - e^{-\frac{ER_q p t}{Q}} = 1 - e^{-\frac{ER_q p t}{N V}}$$

In the dynamical GN model, Eq. 1 can be improved by considering the variation of the number of viral particles over time. According to the GN model, the risk of infection in a volume V, where one infective subject is present and the initial number of viral particles is n_0 (which can be
different from zero) is given by the general formula for the solution of this class of differential
equations (which we omit for brevity):

\[R^{GN}(t) = 1 - e^{-\left(-\frac{p \cdot ER_q \cdot N_t + e^{-Nt} - 1 - \left(\frac{Nn_0}{ER_q} \right) e^{-Nt} + \left(\frac{Nn_0}{ER_q} \right) \right)} N^2} = 1 - e^{-\left(-\frac{p \cdot ER_q}{V} \varphi(t,n_0) \right)} \] (2)

Where \(\varphi = Nt + e^{-Nt} - 1 - \left(\frac{Nn_0}{ER_q} \right) e^{-Nt} + \left(\frac{Nn_0}{ER_q} \right) \) and the ventilation rate \(N \) is. In Eq. (2),

\(N \) represents the number of air renewal events per hour (supposed constant during one
lesson or one break), and is related to the air renewal flow by the relation \(N = Q/V \) (not to be
confused with the parameter \(n \), lowercase, which in the present work represents the total
number of viral particles in the environment volume. In other articles on the same subject,
the notation may vary). The risk of infection \(R \) is affected by the ventilation ratio \(p/Q = p/NV \).

In Eq. (1) and Eq. (2) another underlying assumption is that the initial risk is zero at time equal
to zero, i.e. \(R_{0\text{ec}}(0) = 0 \). This is equivalent to assuming (intuitively) that independently of the
number of viral particles in the volume \(V \), zero time of exposure entails zero risk. To account for
the effect of PPE (personal protective equipment, in this case, face masks) in reducing both the
number of viral particles generated by infectious subjects, and also reducing the likelihood of
inhaled viral particles by exposed subjects, we propose a modification to Eq (2) whereby
the viral inhalation term \(ER_q \cdot p/Q \) is multiplied by two scaling factors:

\((1-f_{\text{out}}) \), which represents the fractional reduction of the generated viral load, and

\((1-f_{\text{in}}) \), which represents the fractional reduction of inhaled viral load,

under the assumption that all subjects are wearing a mask. Eq. (2) can then be rewritten as:

\[R^{\text{mask}}(t) = 1 - e^{-\left((1-f_{\text{out}})(1-f_{\text{in}}) \frac{p \cdot ER_q}{V} \varphi(t) \right)} \] (3)

If masks are not being worn, \(f_{\text{in}} \) and \(f_{\text{out}} \) are both zero. The estimated efficacy of surgical masks
in filtering the airborne viral load upon inhalation, represented by \(f_{\text{in}} \), varies in the available
literature. Some authors (e.g. [Smereka 2020]) estimate the value to be close to zero, claiming
that masks can only filter "large" droplets (>5\(\mu \)m), but more recent measurements suggest that
surgical masks may actually be able to filter even "small", i.e. sub-micrometric, droplets [Mueller
2020]. In the present analysis, we considered a possible range of values 0 - 0.3 for \(f_{\text{in}} \) which is
in line for surgical masks. As for the efficacy in filtering the exhaled viral load, the parameter \(f_{\text{out}} \)
could have a value as high as 0.95 [Leung 2020], in the case of a perfectly-adhering surgical
mask worn the whole time. In the scenario of an average classroom, a more "cautious" value of
0.85 was adopted to account for imperfect adherence.

The total viral load in the environment volume, in the presence of one infectious subject with a
rate of emission \(ER_q > 0 \), is given by:

\[n(t) = \frac{ER_q}{N} + \left[n_0 - \frac{ER_q}{N} \right] e^{-Nt} \] (4)
Cumulative Risk

In the present work, the GN-model was extended in order to account for cumulative risk. In a scenario where the infectious source is removed from the environment (e.g. student or teacher leaving the classroom), the ER_q parameter in Eq (3) and (5) would become zero. However, we can observe that even when \(ER_q = 0 \) in (3), the infection risk \(R_{q}^{GN}(t) \) would remain greater than zero, because of the multiplicative factor \(\phi_q(t) \) (and intuitively, due to the viral load already present in the environment). Hence, equations (3) and (4) become:

\[
R_{ERq=0}^{\text{mask}}(t) = 1 - e^{-(1-f_{out})(1-f_{in})\frac{p_{N0}}{NV}(e^{-Nt}-1)} \quad (5)
\]

\[
n_{ERq=0}(t) = n_0e^{-Nt} \quad (6)
\]

The probability of infection during the i-th lecture of duration \(t_{lec} \), followed by the i-th break of duration \(t_{brk} \), assuming that one infectious subject is present and the starting viral load is \(n_0 \) is then a composed function:

\[
R_i(t) = \left\{ \begin{array}{ll}
R_{lec,i}(t) = 1 - e^{[-\frac{p_{ERq}}{N} \phi_i(t, n_0,i,N)]} & \text{for } 0 \leq t \leq t_{lec} \\
R_{brk,i}(t) = \text{cost} = 0 & \text{for } t_{lec} < t < t_{lec} + t_{brk}
\end{array} \right.
\]

(7)

And the same for the total viral charge in a classroom:

\[
n_i(t) = \left\{ \begin{array}{ll}
n_{lec,i}(t) = \frac{ER_q}{N} + [n_0 - \frac{ER_q}{N}]e^{-Nt} & \text{for } 0 \leq t \leq t_{lec} \\
n_{brk,i}(t) = [n_{lec,i}(t_{lec})]e^{-N(t+t_{lec})} & \text{for } t_{lec} < t < t_{lec} + t_{brk}
\end{array} \right.
\]

(8)

The ventilation profile N(t) appears in \(\phi_i(t, n_0,i,N(t)) \) in equation (7) and in equation (8). It is a two-values function given by:
It is made available under a CC-BY-ND 4.0 International license.

\[N_i(t) = \begin{cases}
N_{\text{min}} & \text{for } 0 \leq t \leq t^{\text{lec}} \\
N_{\text{max}} & \text{for } t^{\text{lec}} < t < t^{\text{lec}} + t^{\text{brk}}
\end{cases} \] (9)

The different N profiles employed are illustrated in Fig. 2 where \(N_{\text{max}} \) changes depending on the ventilation system (mechanical or natural).

During a break, if students/pupils will leave the environment where the viral aerosol has gradually accumulated, it is logical to assume that R would not increase (in that classroom) and will therefore remain constant. This is also reasonable in the light of the fact that during lesson time the number of subjects in the corridors is very small in comparison to classrooms, and generated viral load in corridors would also be diluted in a much larger total volume than that of a single classroom.

Therefore, the risk of airborne infection during breaks in Eq. (5) has been assumed to be zero. When considering the total number of infections at a given time point \(t \) (after a certain number of classes and breaks) this is given by the product \(R(t)S_0 \) where \(S_0 \) represents the number of susceptible subjects in the classroom from \(t = 0 \). In this situation, the variable of practical interest is not the risk of infection during a single lecture, \(R_{\text{lec},i}(t) \), (which would become zero after each break), but rather the cumulative risk \(R_{c,i}(t) \) at the time \(t \), which keeps into account the whole "history" of infection risk up to that point:

\[R_{c,i}(t) = \frac{c_i(t-(i-1)(t^{\text{lec}}+t^{\text{brk}})) + \sum_{j=1}^{i-1} c_j(t^{\text{lec}})}{S_0} + \sum_{j=1}^{i-1} R_{\text{lec},j}(t^{\text{lec}} + t^{\text{brk}}) + \sum_{j=1}^{i-1} R_{\text{lec},j}(t^{\text{lec}}, n_{0j}) \] (10)

Where, \(c_i(t) \) and represents the number of infections in the previous hours and the index \(j \) spans all the "cycles" of lecture+break except the current i-lesson \((j=1 \text{ to } i-1)\). The underlying assumption, which is valid at least in Italian secondary schools, is that the susceptible subjects at the beginning \((S_0)\) remain always the same and do not vary over the course of the school day.

To better understand the importance of cumulative risk, it is better to introduce a practical example. If the classroom were to be completely sanitised and the air completely renewed during the first lecture/break, it may seem intuitive to reset the infection risk to zero at the beginning of the subsequent lecture. However, based on the definition of risk of infection after an exposure time \(t \) as \(C(t)/S_0 \), where \(C(t) \) is the total number of infected subjects at time \(t \), this would be equivalent to neglecting possible infections that occurred in the previous hour, and monitoring only new ones. In our view, the risk factor \(R \) needs to be the answer to the following question: "What is the probability of \(S_0 \) initial susceptible subjects to be infected, after sharing the same space for a given number of hours?". Hence the need to account for the whole fraction of infections from time zero, and not merely the probability of infections during one single teaching hour. The same logic applies when we want to compare risk curves with infection probability thresholds in a classroom with \(n \) students/pupils. For at least one infections to occur, the cumulative risk \(R_c(t) = C(t)/S_0 \) must be greater than \(1/n \). Therefore, the condition for zero infections to occur over the total time spent in the classroom is:

\[R_c(t) < 1/n \] (11)

as opposed to \(R_{\text{lec},i}(t) < 1/n \) as suggested in other analyses, while the condition to exclude \(k \) likely infections will be:
Influence of lecture and break durations on the total risk of contagion

At the end of a typical school day, which can be assumed to last 5 hours (300 min), if one positive student was in the classroom during all lectures, one obtains the total risk of infections as:

\[R_c(t = 5h, t^{lec}, t^{brk}) = R_c(5h, t^{lec}, t^{brk}) = \]

\[= \sum_{j=1}^{k} \left[1 - e^{-\frac{p}{V} E R_q \phi(t^{lec}, n_0[j(t^{lec}, t^{brk})])} \right] + \left[1 - e^{-\frac{p}{V} \phi(5h-k(t^{lec}, t^{brk}), n_0k)} \right] \]

In (12), \(k = \left\lfloor \frac{5h}{t^{lec} + t^{brk}} \right\rfloor \) is the integer number of periods (lesson + break) before the last period. One may observe that the last lecture window could be less than \(t^{lec} \) in order not to overcome 5h of total lectures+breaks time. This is the reason why the last contribution to \(R_c \) is written separately and the last lecture window is then calculated over a time interval \(t = 5h - (i - 1)(t^{lec} + t^{brk}) \) in order to complete the 5 hours.

Equation (9) shows that for a given classroom at the end of a school day, the only variables influencing the cumulative risk of airborne contagion (and the total number of infections) are: 1. the time duration of lectures \((t^{lec}) \) and 2. the time duration of breaks \((t^{brk}) \), since the other model parameters \((V, N, p, ER_q, f_{out}, f_{in}) \) are fixed for a given classroom.
The influence of natural ventilation in the GN model is summarised by the parameter N in equation (2). It must be pointed out that natural ventilation and therefore N are in turn affected by several factors, such as the difference of air temperature between the indoor and outdoor space, the wind direction and average wind speed, as well as geometric factors such as window size and position, etc. [Marr 2012]. The exact calibration of such parameters would be specific to each individual building, or even to each individual classroom within a given building. Such detail however lies outside the scope of this paper. In the present study we will simply explore the quantitative relationship between different levels of natural ventilation (summarised by different values of N) and the infection risk factor R. In the case of static natural ventilation, the range of values commonly found in the literature lies between 0.2 and 1 vol/h, with peaks of 1.5 vol/h (based on experimental measurement of CO2 concentrations before and after opening windows [Marr 2012, Escombe 2007]).

Figure 2 Ventilation profiles used in the present analysis. N_1, $N_3(t)$ assume 50 min lectures alternated by 10 min breaks while N_2, $N_4(t)$ 100 min lessons and 20 min breaks. $N_{1,3}$ have peaks at 2.5 Vol/h (windows opening) and $N_{2,4}$ at 10 Vol/h. The latter value can only be achieved by mechanical ventilation.

Influence of source emission rate and choice of E_{R_q} values

It is important to stress the critical importance of the parameter E_{R_q} in Eq. (2). Very recent studies [Buonanno 2020] suggest that the value of E_{R_q} can span at least two orders of magnitude, between 0.7 and 70 quanta/h for a resting person (student) and 0.9 and 80 quanta/h for a standing person (teacher) who can be required to talk for several hours a day. Given the uncertainty surrounding the exact value of E_{R_q}, we explored several scenarios assuming low (optimistic) and high (pessimistic) values for E_{R_q}, all carefully chosen in a range suggested by recent literature [Buonanno 2020], [Pan 2020], [Watanabe 2010].
Simulation results

Simulation results are reported in Fig. 3 an 4, where cumulative risk curves $R_c(t)$ are calculated with the extended dynamic single-zone GN model. Fig. 1 compares different scenarios in a typical high school classroom of volume $8 \times 7 \times 3 \approx 170 \text{ m}^3$. Two situations have been considered separately: one positive student (Fig 1a) remaining for 5h in the same classroom of volume V (except for break intervals) distinct from the case of a positive teacher in the same classroom (Fig 1b), who is supposed to remain for 2 hours only with different ER$_q$ levels (in average a high school teacher stays in the same classroom not more than 2 hours a day, after this time she/he usually turns into a new classroom). It is remarked that estimated risk levels by definition with equations (5-6) are independent from “classroom crowding”, i.e. from the number of individuals S_0 at $t = 0$ (lectures start). This is due to the GN-model assumptions: 1. instantaneous and perfect (isotropic) mixing of the viral charge emitted by the source and 2. all susceptible persons equally exposed to the airborne risk (since the viral cloud after some time is perfectly mixed in the volume). Other contagion channels like coughing and surface contact are neglected in this analysis.

Red curves show the lowering effect of pure natural ventilation (windows opening) and orange ones that of additional mechanical ventilation during breaks (much higher air change rate N); in these curves the reduction effect of face masks was intentionally in order to isolate the net contribution of air ventilation. The additional contribution of surgical face masks is then shown in the blue curves (natural ventilation + face masks worn 50% and 100% of the time respectively). For each mitigation factor, two different lecture sequences are compared in term of time duration of single lecture-time and single break duration: continuous plots refer to $(t^{lec}, t^{brk})_1 = (50, 10) \text{ min}$ whereas dashed plots refer to a doubled break time and lecture time - $(t^{lec}, t^{brk})_2 = (100, 20) \text{ min}$.

First of all, the deviation of the red curves from the reference one (in black - absence of any mitigation/dilution factor) shows the very significant impact of natural ventilation, quantifiable in an average reduction of the contagion risk of almost 50% at lecture’s end. Moreover, the adoption of more frequent air exchange intervals (every 50 minutes instead of every 100 min) would allow a further significative reduction of R at the same conditions. This reduction (due to more frequent ventilation only) is particularly important in absence of face masks, as confirmed by the visible gap in the orange and red curves and suggested also by intuition.

The important mitigation effect due to surgical masks (under the hypothesis they are worn by all subjects) can be quantified in an additional reduction of 30-45 % from the reference curve (depending on the effective time they are properly worn). It is remarkable that only a combination off masks and natural ventilation may reduce risk levels below the 1 contagion thresholds (grey horizontal lines in Fig. 3). In fact, to completely exclude an airborne contagion in a typical classroom of 15, 25 or 30 students where an infectious subject is present, the value of R at the end of all lectures should stay below 1/15, 1/25, 1/30 respectively (≈6.7%, 4% and 3.3%). This clearly indicates the need to keep as low as possible the number of students per classroom, since the contagion thresholds lower as S_0 increases.

The case of infectious teacher (Fig. 4) shows remarkable differences in the shape of risk curves compared to the positive student case (Fig. 1). For the teacher, higher level of ER$_q$ are required in order to account for an higher (average) speak activity. Even if staying in a classroom for 2 hours only, an infectious teacher speaking most of the time is a much higher viral source than a student (in average) and the corresponding risk curves increase steeper in the first 2h where she/he is in the classroom. After a teacher left the room, ER$_q$ drops to zero but the viral charge emitted by him/her is still present in the room (although lowering down after some hours - see $n(t)$ curves of Fig. 1b). This would cause a further (although lower) increase of R_c during the next...
hours even if he/she is not present in that classroom anymore. One may also observe how the 1-infection threshold for a class of 30 students wearing masks half of the time (realistic scenario) is reached much faster in case of an infectious teacher: the time-to-1-contagion is about 1h only in the optimistic case (low ER_q level) and even less than 1h for a high ER_q level. For subjects exposed to an infectious student, the time-to-1-contagion is much higher, varying from about 2.4h (pessimistic, high ER_q) to 4.5h (optimistic, low ER_q). It is remarked that all ER_q values are compatible with published data in for standing and resting person [Buonanno 2020] (see also Fig. 2).

Figure 3 Top: cumulative risk curves of indirect airborne transmission as a function of exposure time considering a standard classroom (V=170 m³). a) Pessimistic scenario calculated with high ER_q b) Optimistic scenario with low ER_q. Natural and mechanical ventilation profiles refer to Fig. 1. Bottom: time evolution of viral charge in classroom in case of natural (windows) and mechanical ventilation.
Figure 4 Top: cumulative risk curves for the case infected teacher in classroom for 2 hours as a function of exposure time up to 5h considering a standard classroom (V=170 m³). Pessimistic/optimistic scenarios calculated with high \(ER_q \) (a) and low \(ER_q \) (b) respectively. Natural and mechanical ventilation profiles refer to Fig.2. Bottom: time evolution of viral charge in classroom in case of natural (windows) and mechanical ventilation.
Comment on Mechanical Ventilation

Obviously, mechanical ventilation + face masks would be an even more desirable option, but the vast majority of school buildings worldwide has no HVAC systems to date. Fig. 3 shows also that mechanical ventilation alone (active during breaks) is not enough to reduce the risk below the 1 contagion thresholds even at N=10 vol/h. Reducing the contagion risk without face masks by mechanical ventilation systems only, would require permanent power-on of air ejectors at high fun speeds also during lessons (to keep high values of N and lowering R). This would imply a complete re-design of current HVAC systems in schools (if present) while posing challenges for acoustic insulation. For these reasons, the scenario of permanent mechanical ventilation at high N, was not considered in the present analysis.

Optimum ventilation profiles

As previously stated, a significant risk reduction can be obtained with a more frequent ventilation even in absence of face masks. In fact, for a given classroom the risk at the end of a school day (after 5h lessons) can be expressed as a function of two variable parameters, t\text{lec} (lecture time) and t\text{brk} (duration of break intervals), as reported in equation (10). Hence, interest arises into finding an optimal set of t\text{lec}, t\text{brk} which minimizes R_{5h}(t\text{lec}, t\text{brk})\text{,} noting that very poor actions can be undertaken on the other exogenous parameters. Classroom volumes are mostly fixed, especially in high density cities as well as masks filter capability (one may also think to act on the mask parameters f_{out}/f_{in} by requesting students to wear fpp2 masks, but these has been excluded by most regulators since wearing high filtering masks in school contexts for long time appears inappropriate). Acting on N, as shown, can be effective but possibly requires HVAC systems, which are lacking in most schools. ERq and p cannot be controlled: while p – average pulmonary inflation rate - is given and reasonably known, ERq depends on habits/behaviour and has ranges which are parametrically varied to limit uncertainty. However, both these parameters cannot be controlled by legislation actions or by feasible countermeasures. On the contrary, one can act on the duration of lectures and breaks and identify an optimum ventilation schedule which minimizes the cumulated risk at the end of a school day, while maintaining zero contagions by airborne transmission at the end of the day. The two variable risk function z=f(x,y) = R_{5h}(t\text{lec}, t\text{brk})\text{ is represented in Fig. 5. A minimum is found around (t\text{lec}, t\text{brk})} \approx (30\text{min}, 50\text{min})\text{, since the z function shows a clear monotonic behaviour in the surrounding of } x=y \text{ direction. This would imply an unusual recommendation: lesson-breaks should last longer than lessons themselves. This fact is not surprising since during breaks a higher N-level is expected (full windows opening) and this was considered in the analysis. This fact is dictated by practical requirements (particularly in January-February in schools located in North hemispherical regions): with low or very-low outdoor temperatures and a concurrent risk for other seasonal diseases, it is only during lesson-breaks that one can imagine to sensibly increase N by fully opening the windows and let the students exit the classroom. This prescription is contained in the recent directive of Regione Veneto [RV12/2020] (North-Italy), which allows windows opening only during breaks (starting from January the 7th 2021).
Figure 5 – Top: the function $R_{5h}^{c}(t_{\text{lec}}, t_{\text{brk}})$ for the positive student case, with low and medium emission rates. Bottom: infective teacher case with low and medium emission rates.
Cumulative risk is the key to understand airborne transmission of SARS-CoV2 in schools. This because students and teachers are exposed for long time to a possible infection source and interim sanitification/ventilation cycles cannot lower the residual viral charge to zero. On the contrary, it has been shown that a small amount of this charge would still be present in a classroom even after some ventilation cycles with students leaving the classroom during breaks.

In fact, a positive student re-entering the classroom after each break will continue to emit viral quanta. Also a positive teacher remaining in a classroom for only two hours may have emitted sufficient viral quanta to indirectly infect others even after exiting the classroom.

Although the dynamic single-zone model contains some approximations, a clear indication arises from this study: windows in schools should be kept open most of the time in order to decrease the airborne risk to acceptable levels. Since scholars may exit the room at every break, one can imagine to increase the air exchange rate during breaks to prevent discomfort during lectures.

Moreover, numerical results indicate that windows should be fully open (not partially) during breaks and breaks should possibly last as long as possible. However, since these recommendations would imply considerable discomfort during the winter season (also increasing the risk to contract other diseases), a trade-off is necessary. A safety region – rather than an optimality region- for the parameters influencing ventilation profiles has been suggested, which is based entirely on natural ventilation cycles during lesson-breaks. From these calculations, for instance, alternating lectures of 50 min with breaks of 20 min would still allow to keep low the cumulative contagion risk after a school day of 5 hours in groups of 30 students. Since the number of students per classroom also play a critical role for contagion thresholds, breaks duration could also be adjusted according to this parameter, f.i. by slightly decreasing lesson interruption to 10-15min for smaller classes of 15 students. However, simulation results still confirm that only the combination of optimum air exchange cycles and surgical masks permanently worn by all the people in a classroom, can lower the risk of airborne contagion in schools to the desirable level of zero contagions.
Bibliography

[AICARR 2020] AICARR - Protocollo per la riduzione del rischio da diffusione del SARS-CoV-2 nella gestione e manutenzione degli impianti

Quantitative Method for Comparative Assessment of Particle Filtration Efficiency of Fabric Masks as Alternatives to Standard Surgical Masks for PPE edRxiv 2020.04.17.20069567; doi: https://doi.org/10.1101/2020.04.17.20069567

[RV 2020] Piano Ripartenza 2020/21 , Manuale Operativo - a cura della Direzione Regionale Ministero dell’Istruzione Ufficio Scolastico Regionale per il Veneto (6/7/2020)