Deep Learning to Estimate Cardiac Magnetic Resonance-Derived Left Ventricular Mass

Saan Khurshid, MD*1,2; Samuel Friedman, PhD*3; James P. Pirruccello, MD*1,2; Paolo Di Achille3, PhD; Nathaniel Diamant, BS3; Christopher D. Anderson, MD, MMS*2.4.5; Patrick T. Ellinor, MD, PhD2.6; Puneet Batra, PhD3; Jennifer E. Ho, MD1.2; Anthony Philippakis, MD, PhD3; Steven A. Lubitz, MD, MPH2.6

1 Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, USA
2 Cardiovascular Disease Initiative, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
3 Data Sciences Platform, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
4 Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
5 Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, Massachusetts, USA
6 Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, Massachusetts, USA

*Authors contributed equally to manuscript

Short Title: Deep learning to estimate CMR-derived LV mass

Word count: 4,733

Journal Subject Terms: machine learning, left ventricular hypertrophy, cardiac magnetic resonance

Key Words: machine learning, left ventricular hypertrophy, cardiac magnetic resonance

Disclosures: Dr. Pirruccello has served as a consultant for Maze Therapeutics. Dr. Philippakis receives sponsored research support from Bayer AG, IBM, Intel, and Verily. He has also received consulted fees from Novartis and Rakuten. Dr. Ho receives sponsored research support from Bayer AG and Gilead Sciences. Dr. Ho has received research supplies from EcoNugenics. Dr. Friedman receives sponsored research support from Bayer AG and IBM. Dr. Anderson receives sponsored research support

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
from Bayer AG and has consulted for ApoPharma, Inc. Dr. Batra receives sponsored research support from Bayer AG and IBM, and consults for Novartis. Dr. Lubitz receives sponsored research support from Bristol Myers Squibb / Pfizer, Bayer AG, Boehringer Ingelheim, and Fitbit, and has consulted for Bristol Myers Squibb / Pfizer and Bayer AG, and participates in a research collaboration with IBM. Dr. Ellinor receives sponsored research support from Bayer AG. Dr. Ellinor has consulted for Bayer AG, Novartis, MyoKardia and Quest Diagnostics.

Corresponding author:

Steven A. Lubitz, MD, MPH; Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital, 55 Fruit Street, GRB 109, Boston, MA 02114;
P:617-643-7339; F:617-726-3852; slubitz@mgh.harvard.edu
ABSTRACT

Background: Cardiac magnetic resonance (CMR) is the gold standard for left ventricular hypertrophy (LVH) diagnosis. CMR-derived LV mass can be estimated using proprietary algorithms (e.g., inlineVF), but their accuracy and availability may be limited.

Objective: To develop an open-source deep learning model to estimate CMR-derived LV mass.

Methods: Within participants of the UK Biobank prospective cohort undergoing CMR, we trained two convolutional neural networks to estimate LV mass. The first (ML4H\textsubscript{reg}) performed regression informed by manually labeled LV mass (available in 5,065 individuals), while the second (ML4H\textsubscript{seg}) performed LV segmentation informed by inlineVF contours. We compared ML4H\textsubscript{reg}, ML4H\textsubscript{seg}, and inlineVF against manually labeled LV mass within an independent holdout set using Pearson correlation and mean absolute error (MAE). We assessed associations between CMR-derived LVH and prevalent cardiovascular disease using logistic regression adjusted for age and sex.

Results: We generated CMR-derived LV mass estimates within 38,574 individuals. Among 891 individuals in the holdout set, ML4H\textsubscript{seg} reproduced manually labeled LV mass more accurately ($r=0.864$, 95% CI 0.847-0.880; MAE 10.41g, 95% CI 9.82-10.99) than ML4H\textsubscript{reg} ($r=0.843$, 95% CI 0.823-0.861; MAE 10.51, 95% CI 9.86-11.15, $p=0.01$) and inlineVF ($r=0.795$, 95% CI 0.770-0.818; MAE 14.30, 95% CI 13.46-11.01, $p<0.01$). LVH defined using ML4H\textsubscript{seg} demonstrated the strongest associations with hypertension (odds ratio 2.76, 95% CI 2.51-3.04), atrial fibrillation (1.75, 95% CI 1.37-2.20), and heart failure (4.53, 95% CI 3.16-6.33).
Conclusions: ML4H\textsubscript{seg} is an open-source deep learning model providing automated quantification of CMR-derived LV mass. Deep learning models characterizing cardiac structure may facilitate broad cardiovascular discovery.
Introduction

Left ventricular hypertrophy (LVH) is defined as pathologically increased LV mass\(^1\) and is consistently associated with increased risks of adverse cardiovascular events including heart failure,\(^1\) stroke,\(^1\) atrial fibrillation (AF),\(^4\) and sudden cardiac death.\(^5\) The gold standard for LVH diagnosis is cardiac magnetic resonance (CMR) imaging, which provides accurate and reproducible quantification of cardiac structure.\(^6\) However, traditional LV mass estimation using CMR requires LV segmentation, which is typically performed manually and requires substantial time and expertise.

The United Kingdom (UK) Biobank is a prospective cohort study comprised of over 500,000 individuals designed to facilitate broad-ranging research of diseases affecting middle-aged and older adults. Roughly 40,000 individuals have undergone prospective CMR acquisition, with additional imaging expected in another 60,000 individuals in the near future. However, manually quantified LV mass is available only within roughly 5,000 images,\(^7\) and additional measurements would be challenging to obtain at scale. Although automated quantification based on proprietary segmentation methods such as inlineVF (Siemens Healthineers, Erlangen, Germany) are accessible, previous work has suggested limited accuracy of resultant LV mass estimates, and the most recent software versions are not available to the majority of researchers.\(^8\)

Therefore, a freely available method to facilitate accurate and automated quantification of LV mass using raw CMR images could enable impactful cardiovascular discovery research. In particular, deep learning methods may be well-suited for estimation of LV mass using CMR.
In the current study, we aimed to develop an open-source deep learning model to perform LV mass estimation from CMR images. We compared two separate approaches to LV mass estimation: 1) direct estimation trained on manually labeled LV mass values (Machine Learning for Health-Regression [ML4Hreg]), and 2) identification of LV myocardial pixels followed by integration to obtain LV myocardial volume with subsequent conversion to LV mass (Machine Learning for Health-Segmentation [ML4Hseg]) (Figure 1). We then compared the accuracy of both deep learning approaches to LV mass obtained using inlineVF within an independent holdout set using manually labeled LV mass as the gold standard.

Materials and Methods

Study population

The UK Biobank is a population-based prospective cohort of 502,629 participants recruited between 2006-2010 in the United Kingdom primarily established to investigate the genetic and lifestyle determinants of disease. The design of the cohort has been described previously. Briefly, approximately 9.2 million individuals aged 40-69 living within 25 miles of the 22 assessment centers in England, Wales, and Scotland were invited, and 5.4% participated in the baseline assessment. Extensive questionnaire data, physical measures, and biological samples were collected at recruitment, with ongoing enhanced data collection in large subsets of the cohort, including repeated assessments and multimodal imaging. All participants are followed up for health outcomes through linkage to national health-related datasets. Participants provided written informed consent. The UK Biobank was approved by the UK Biobank Research Ethics Committee.

Ethics Committee (reference number 11/NW/0382). Use of UK Biobank data (application 7089) was approved by the local Mass General Brigham Institutional Review Board.

Cardiac magnetic resonance acquisition

For all analyses, we included individuals who underwent CMR during the UK Biobank imaging assessment and whose bulk CMR data were available for download as of 4-31-2019. The full CMR protocol of the UK Biobank has been described in detail previously. Briefly, all CMR examinations were performed in the United Kingdom on a clinical wide-bore 1.5 Tesla scanner (MAGNETOM Aera, Syngo Platform VD13A, Siemens Healthineers, Erlangen, Germany). All acquisitions used balanced steady-state free precession with typical parameters.

The contours extracted from the inlineVF algorithm and stored in each DICOM file’s metadata were further processed into pixel masks that labeled myocardium, LV cavity and background. The DICOM metadata stores the contour as polygons, which we processed into a pixel mask using the morphological image operators. The short axis CMR sequence in the UK Biobank contained between 6-13 short axis slices extending from base to apex. Height and width of the slices varied by individual but never exceeded 256 in either dimension. All CMR images were zero-padded to be three-dimensional tensors with shape (256, 256, 13). To facilitate the cross-entropy loss computation the three anatomical labels were one-hot encoded to be label masks with shape (256, 256, 13, 3). Each CMR image was normalized on a per-image basis to have mean zero and standard deviation one.
Deep Learning-Based Estimation of Left Ventricular Mass

Left ventricular mass models

We assessed two independent deep learning-based approaches to LV mass estimation. The first model was a 3D convolutional neural network regressor $MLAH_{reg}$ trained with the manually annotated LV mass estimates provided by Petersen et al,7 $P(i)$ to optimize the log cosh loss function, which behaves like L2 loss for small values and L1 loss for larger values:

$$L_{reg}(MRI, P, MLAH_{reg}) = \frac{1}{N} \sum_{i \in MRI} \log \left(\cosh \left(P(i) - MLAH_{reg}(i) \right) \right)$$

$$= \frac{1}{N} \sum_{i \in MRI} \log \left(\frac{e^{P(i) - MLAH_{reg}(i)} + e^{MLAH_{reg}(i) - P(i)}}{2} \right)$$

Here batch size, N, is 4 random samples from the training set of 3,178 after excluding testing and validation samples from the total 5,065 CMR images with LV mass values included in P. The second model $MLAH_{seg}$ is a 3D semantic segmenter trained with the inlineVF contours to minimize L_{seg}, the per-pixel cross-entropy between the label and the model’s prediction:

$$L_{seg}(MRI, IVF, MLAH_{seg}) = \frac{1}{NHWC} \sum_{i \in MRI} \sum_{y=1}^{H} \sum_{x=1}^{W} \sum_{z=1}^{Z} \sum_{c=1}^{C} IVF(i)_{yxzc} \cdot \log(MLAH_{seg}(i)_{yxzc})$$
Here the batch size, N, was 4 from the total set of 33,071. Height, H, and width, W, are 256 voxels and there was a maximum of 13 Z slices along the short axis. There is a channel for each of the three labels, which were one-hot encoded in the training data, inlineVF (IVF), and probabilistic values from the softmax layer of $ML4H_{seg}$. Segmentation architectures used U-Net style long-range connections between early convolutional layers and deeper layers. Such an approach allows the final segmentation to use high-resolution local information with more abstract contextual features, both of which are critical for semantic segmentation. Since not all CMR images used the same pixel dimensions, we built models to incorporate pixel size values with their fully connected layers before making predictions. An overview of the architectures of both deep learning models is shown in Supplemental Figure 1.

For ML4H$_{reg}$, an LV mass estimate was produced directly. To compute an LV mass estimate from ML4H$_{seg}$ and inlineVF, we calculated LV mass based on the pixels predicted to be myocardium. Specifically, we multiplied the number of pixels corresponding to myocardium by the pixel depth (calculated to be 10mm using image metadata and visual confirmation, see Supplemental Figure 2) to yield total LV myocardial volume in milliliters. We then multiplied the predicted myocardial volume by the tissue density of LV myocardium, which is 1.05 g/cm3, to yield an estimate of LV mass.12 Given evidence of systematic overestimation in raw estimates obtained using both inlineVF and ML4H$_{seg}$ (Supplemental Figure 3), we centered initial LV mass estimates using the observed mean LV mass of the manually labeled data within strata of sex.
All models were optimized using the ADAM variant of stochastic gradient descent with initial learning rate 1×10^{-3}, exponential learning rate decay and batch size of 4 on K80 graphical processing units. Additional details regarding model training and evaluation are described in the Supplemental Methods. All models were implemented in tensorflow version 2.1.0 using the ML4H modeling framework. Model architectures, trained weights and more metrics are available at: https://github.com/broadinstitute/ml4h/tree/master/model_zoo/cardiac_mri_derived_left_ventricular_mass/.

Disease associations

Given established associations between increased LV mass and the presence of LVH with cardiovascular disease, we assessed for associations between CMR-derived LV mass (using each method) and prevalent hypertension, atrial fibrillation, and heart failure. For these analyses, LVH was defined as LV mass index (LVMI) >72 g/m² in men and >55 g/m² in women, and alternatively as the sex-specific 90th percentile of LV mass. Indexing for body surface area was performed using the DuBois formula. Diseases were defined using self-report and inpatient ICD-9/10 codes (updated through 2020-03-31, Supplemental Table 1).

Statistical analysis

The primary measure of LV mass estimation accuracy was the Pearson correlation between model-estimated LV mass values and hand-labeled LV mass within
Deep Learning-Based Estimation of Left Ventricular Mass

a holdout set independent of model training. We also calculated the mean absolute error (MAE) and analyzed agreement using Bland-Altman plots15 as secondary measures. Correlation coefficients were compared using Dunn and Clark’s \textit{z} statistic16 for overlapping dependent correlations. Confidence intervals for MAE were obtained using 1,000-iteration bootstrapping. A linear recalibration formula to correct for bias in inlineVF-based measurements was obtained by regressing manually labeled LV mass on LV mass estimates obtained using inlineVF. Associations between LV mass and LVH with prevalent disease were assessed using logistic regression models with adjustment for age and sex.

To assess the behavior of the deep learning segmentation model, we generated saliency maps (maps denoting CMR regions identified as myocardium). Statistical analyses were performed using R v3.5 (packages ‘data.table’, ‘ggplot2’, ‘epiR’, ‘pROC’, ‘nricens’).17,18 All two-tailed p-values <0.05 were considered statistically significant.

Results

Within 33,071 individuals who underwent CMR, we trained models to derive CMR-based LV mass using deep learning regression (ML4H\textsubscript{reg}) and segmentation (ML4H\textsubscript{seg}). The mean age was 64 ± 8 years and 52% were female. Other baseline characteristics of the training and test sets are shown in Table 1.

Initial LV mass estimates obtained using inlineVF and ML4H\textsubscript{seg} demonstrated evidence of systematic overestimation, which was corrected after centering each distribution upon the mean observed manually labeled LV mass. The distributions of LV...
mass stratified by sex using each method are shown in Figure 2. In an independent holdout set of 891 individuals with manually labeled LV mass estimates available, ML4H$_{seg}$ had favorable correlation with manually labeled LV mass (r=0.864, 95% CI 0.847-0.880; MAE 10.41g, 95% CI 9.82-10.99) as compared to ML4H$_{reg}$ (r=0.843, 95% CI 0.823-0.861; MAE 10.51, 95% CI 9.86-11.15, p=0.01) and centered inlineVF (r=0.795, 95% CI 0.770-0.818; MAE 14.30, 95% CI 13.46-11.01, p<0.01, Figure 3). Bland-Altman plots demonstrated reasonable agreement between both ML4H$_{seg}$ and ML4H$_{reg}$ and manually labeled LV mass, although ML4H$_{reg}$ tended to progressively underestimate greater LV mass values (Figure 4). Saliency maps suggested that the ML4H$_{seg}$ appropriately identified areas of LV myocardium for LV mass estimation (Supplemental Figure III and Supplemental Methods). Correlations between manually labeled LV mass with inlineVF and the ML4H$_{seg}$ prior to mean centering are shown in Supplemental Figures IV-V. Correlation between manually labeled LV mass and inlineVF additionally adjusted using linear recalibration was slightly improved (r=0.838, 95% CI 0.817-0.856) and is shown in Supplemental Figure V. A bias-corrected inlineVF LV mass can be calculated using the following equation: $0.543487 \times \text{unadjusted inlineVF LV mass} + 5.808005$.

Associations between CMR-based LV mass and prevalent disease

We assessed for associations between CMR-derived LV mass and prevalent cardiovascular disease. At the time of CMR acquisition, there were 11,271 prevalent hypertension, 1,053 atrial fibrillation, and 236 heart failure events. When compared to the other approaches, LVH defined using ML4H$_{seg}$ consistently demonstrated the
strongest associations with hypertension (odds ratio [OR] 2.76, 95% CI 2.51-3.04), atrial fibrillation (1.75, 95% CI 1.37-2.20), and heart failure (4.53, 95% CI 3.16-6.33, Table 2).

Discussion

Within over 30,000 individuals with CMR imaging performed as part of the UK Biobank prospective cohort study, we developed and tested two deep learning-based approaches to automated LV mass estimation. When compared to one other and the proprietary D13A inlineVF automated segmentation software, ML4Hseg demonstrated the greatest correlation (86%) and lowest estimation error (approximately 10g) when compared against manually labeled LV mass. Importantly, greater CMR-derived LV mass obtained using our segmentation model had the strongest associations with prevalent hypertension, atrial fibrillation, and heart failure. We have shared our model architecture publicly and aim to return CMR-derived LV mass values to the UK Biobank for use by other researchers in order to facilitate future cardiovascular discovery utilizing rich cardiac structural imaging features.

Our study supports and extends previous work demonstrating the potential for deep learning to provide automated quantification of imaging phenotypes. A study by Aung et al.19 utilized a combination of deep learning and manual segmentation to extend LV mass estimates to approximately 16,000 UK Biobank images, in order to facilitate genetic analyses. Similarly, Bai et al.20 utilized deep learning to estimate several cardiac structural features to enable broad phenotypic association testing. In contrast to previous work, we explicitly compared several approaches to automated LV mass estimation, observing that a deep learning segmentation model demonstrated...
favorable performance when compared to deep learning-based regression and a recalibrated inlineVF-based method. Furthermore, we validated the performance of our best performing algorithm by assessing correlation and agreement against manually labeled estimates as well as assessing for expected associations with prevalent disease.

Our results provide insight into the comparative accuracy of potential methods to estimate cardiac structural features, suggesting that automated segmentation may provide superior performance. Specifically, we compared three approaches to automated LV mass estimation: deep learning-based segmentation (ML4Hseg), deep learning-based regression on hand-labeled LV mass estimates (ML4Hreg), and use of the automated contours provided by the inlineVF D13A proprietary software. We observed favorable accuracy using ML4Hseg, which more closely mirrors the manual process of clinical LV mass estimation, in which cardiac radiologists manually label pixels as LV myocardium. Nevertheless, our results demonstrate that a regression approach can achieve reasonable accuracy, which may be improved as more training data becomes available. Future work is needed to better understand the relative strengths and weaknesses of various approaches to deep learning-based cardiac structural characterization, as well as to assess the comparative generalizability of such approaches when transferred to external datasets.

The current work highlights the potential for deep learning to derive clinically relevant imaging phenotypes in an efficient and automated manner. Increased LV mass and LVH have long been implicated as important risk factors for adverse cardiovascular events.\(^1\)\(^-\)\(^5\) The detection of LVH is clinically relevant since the majority of cases are
related to hypertension, for which treatment can lead to regression of hypertrophy and improvement in cardiovascular risk profile.21,22 The associations and effect sizes we observed between CMR-derived LVH and prevalent hypertension, atrial fibrillation and heart failure were consistently strongest using ML4H\textsubscript{seg} and are broadly consistent with prior studies.2,4 On balance, our findings suggest that deep learning may facilitate recognition of clinically relevant degrees of increased LV mass in a manner deployable at scale.

We submit that our findings may directly enable future cardiovascular research focused on CMR-derived LV mass, and potentially additional imaging phenotypes. The UK Biobank has performed CMR in over 35,000 individuals, with imaging expected to extend to nearly 100,000 individuals in the near future. Although LV mass and LVH reflect clinically important aspects of cardiac structure, quantification of LV mass using gold-standard CMR is traditionally performed manually, which is time-consuming and requires specialized expertise. Although UK Biobank images include the inlineVF D13A automated contours which may be used to estimate LV mass, our findings support previous studies demonstrating substantial overestimation.8 Furthermore, inlineVF is a proprietary algorithm whose latest versions are not accessible to all investigators.8 To this end, our deep learning model ML4H\textsubscript{seg} provides more accurate and substantially less biased estimates, and the code underlying the model is available for public use. For investigators opting not to deploy our deep learning model, we also provide a formula to obtain linearly adjusted LV mass using inlineVF D13A, which demonstrated considerable bias correction and only moderately lower correlation as compared to our segmentation model.
Our study should be interpreted in the context of design. First, although the correlation between our deep learning model and manually labeled LV mass was very good (86%), it was not perfect, which may result in some misclassification of LV mass. Nevertheless, it was the best performing model of the three approaches tested, both in terms of correlation, agreement, and absolute error. Second, the number of manually labeled LV mass values available to train and evaluate models was relatively limited. Future models trained on a greater number of ground truth examples may enable the development of more accurate deep learning-based LV mass estimates. Third, the distribution of LV mass in the UK Biobank is lower than that observed in other settings. As a result, external validation of ML4Hseg would be needed prior to deployment in datasets other than the UK Biobank. Fourth, the degree of improvement observed using our segmentation model as opposed to inlineVF is relatively modest, especially after linear correction of inlineVF-based estimates. However, we submit that a 3-point increase in correlation adds substantive value, and the linear correction we provide is based on manually labeled LV mass estimates from a relatively small proportion of the total images available in the UK Biobank. As a result, the performance of linearly corrected inlineVF may decrease when applied to the remaining images and future releases.

Conclusions

Utilizing a unique resource of CMR images obtained within over 35,000 individuals, we developed ML4Hseg – a deep learning segmentation model that provides
automated LV mass estimation with favorable accuracy as compared to deep learning regression or the inlineVF proprietary algorithm. Importantly, model-derived LV mass estimates demonstrated expected associations with cardiovascular disease. We have made our algorithm publicly available for future use, and submit that such deep learning approaches may facilitate broad cardiovascular discovery by enabling future analyses of CMR-derived cardiac structural phenotypes available at scale.

Funding: Dr. Khurshid is supported by NIH T32HL007208. Dr. Pirruccello is supported by a John S. LaDue Memorial Fellowship. Dr. Ho is supported by NIH R01HL134893, R01HL140224, and K24HL153669. Dr. Lubitz is supported by NIH 1R01HL139731 and American Heart Association (AHA) 18SFRN34250007. Dr. Ellinor is supported by NIH 1R01HL092577, R01HL128914, K24HL105780, the American Heart Association 18SFRN34110082, and by the Foundation Leducq 14CVD01. Dr. Anderson is supported by NIH R01NS103924 and AHA 18SFRN34250007.
Deep Learning-Based Estimation of Left Ventricular Mass

References

Deep Learning-Based Estimation of Left Ventricular Mass

 https://github.com/broadinstitute/ml. GitHub 2020;.

15. Bland JM, Altman DG: Measuring agreement in method comparison studies. stat

16. Dunn OJ, Clark V: Correlation Coefficients Measured on the Same Individuals.

 Foundation for Statistical Computing Vienna, Austria. URL https://www.R-
 project.org/.

19. Aung N, Vargas JD, Yang C, et al.: Genome-Wide Analysis of Left Ventricular
 Image-Derived Phenotypes Identifies Fourteen Loci Associated With Cardiac

21. Dahlöf B, Pennert K, Hansson L: Reversal of Left Ventricular Hypertrophy in

22. Okin PM, Devereux RB, Jern S, et al.: Regression of electrocardiographic left
 ventricular hypertrophy during antihypertensive treatment and the prediction of
Figure 1. Overview of left ventricular mass algorithms

Depicted is an overview of the three approaches to CMR-derived LV mass estimation compared in the current study. The top model utilizes deep learning-based regression trained by manually labeled LV mass. The middle model performs deep learning-based segmentation informed by inlineVF contours. The bottom model utilizes the inlineVF automated contours alone. For the deep learning segmentation and inlineVF models, LV segmentations were converted to LV mass by summing pixel volume and multiplying the density of LV myocardium (1.05g/mL, see text).

Figure 2. Distributions of CMR-derived LV mass obtained using each estimation method

Depicted are density plots showing the distribution of CMR-derived LV mass (x-axis) using mean-centered inlineVF (left panel), the deep learning regression model (middle panel), and the deep learning segmentation model (right panel). Results are shown for the full sample with available CMR imaging (N=38,464).

Figure 3. Correlation between manually labeled left ventricular mass and derived left ventricular mass estimated using each model

Depicted are plots illustrating the correlation between manually labeled LV mass (y-axis) and CMR-derived LV mass using inlineVF (left panel), deep learning regression (middle panel), and deep learning segmentation (right panel). Results are shown among individuals within the test set independent of model training. Estimates for inlineVF and the segmentation model are displayed after centering the distribution upon the observed sex-stratified mean manually labeled LV mass (see text).

Figure 4. Bland-Altman plots comparing manually labeled left ventricular mass and derived left ventricular mass using each model

Depicted are Bland-Altman plots showing agreement between manually labeled LV mass and LV mass estimated using inlineVF (top), ML4H_{seg} (middle), and ML4H_{reg} (bottom). Estimates using inlineVF and ML4H_{seg} are depicted after mean centering (see text). In each plot, each point represents a paired observation (i.e., the manually labeled LV mass estimate and the model predicted LV mass estimate). The x-axis depicts increasing mean of the paired observations. The y-axis depicts the difference between the paired observations, with negative values representing pairs in which manually labeled LV mass was larger than model predicted LV mass (underestimation using the model). The colored horizontal line shows the overall mean difference within each sample, and the hashed horizontal lines show the upper and lower bounds of the mean difference (defined as ±1.96 standard deviations [SD] of the difference). The corresponding bounds (a surrogate for level of agreement) and the proportion of observations within those bounds are depicted on each plot. A total of 13 (inlineVF), 1...
Deep Learning-Based Estimation of Left Ventricular Mass

(ML4H$_{\text{reg}}$), and 1 (ML4H$_{\text{seg}}$) outlying observations are not depicted for graphical purposes.
Table 1. Baseline characteristics

<table>
<thead>
<tr>
<th></th>
<th>Training set (N=33,071)</th>
<th>Holdout set (N=5,393)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>64.2 ± 7.5</td>
<td>63.6 ± 7.7</td>
</tr>
<tr>
<td>Female</td>
<td>17,183 (52.0%)</td>
<td>2,847 (52.8%)</td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>32,013 (96.8%)</td>
<td>5,235 (97.1%)</td>
</tr>
<tr>
<td>Asian or Pacific Islander</td>
<td>446 (1.3%)</td>
<td>61 (1.1%)</td>
</tr>
<tr>
<td>Black</td>
<td>207 (0.6%)</td>
<td>29 (0.5%)</td>
</tr>
<tr>
<td>Mixed</td>
<td>151 (0.5%)</td>
<td>23 (0.4%)</td>
</tr>
<tr>
<td>Other</td>
<td>159 (0.5%)</td>
<td>27 (0.5%)</td>
</tr>
<tr>
<td>Unknown</td>
<td>95 (0.3%)</td>
<td>18 (0.3%)</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>135 ± 18</td>
<td>135 ± 18</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg)</td>
<td>81 ± 10</td>
<td>81 ± 10</td>
</tr>
<tr>
<td>HTN</td>
<td>10,122 (30.6%)</td>
<td>1,572 (29.1%)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>1288 (3.9%)</td>
<td>186 (3.4%)</td>
</tr>
<tr>
<td>Heart failure</td>
<td>191 (0.6%)</td>
<td>26 (0.5%)</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>686 (2.1%)</td>
<td>101 (1.9%)</td>
</tr>
<tr>
<td>CMR-derived LV mass (inlineVF, g)</td>
<td>154.9 ± 38.5</td>
<td>154.9 ± 38.2</td>
</tr>
<tr>
<td>CMR-derived LV mass (inlineVF centered, g)</td>
<td>90.0 ± 33.1</td>
<td>90.1 ± 32.8</td>
</tr>
<tr>
<td>CMR-derived LV mass (regression, g)</td>
<td>88.2 ± 16.2</td>
<td>87.6 ± 15.6</td>
</tr>
<tr>
<td>CMR-derived LV mass (segmentation, g)</td>
<td>88.9 ± 28.4</td>
<td>89.1 ± 27.8</td>
</tr>
</tbody>
</table>
Deep Learning-Based Estimation of Left Ventricular Mass

Table 2. Associations between deep learning segmentation-derived LV mass index and prevalent disease

<table>
<thead>
<tr>
<th></th>
<th>N events*</th>
<th>LVMI (per 1 SD)</th>
<th>LVH (95% CI)</th>
<th>LVH (90th percentile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>InlineVF</td>
<td>11,271</td>
<td>1.43 (1.39-1.47)</td>
<td>2.30 (2.15-2.46)</td>
<td>2.33 (2.17-2.50)</td>
</tr>
<tr>
<td>Regression</td>
<td>11,271</td>
<td>1.27 (1.24-1.30)</td>
<td>1.67 (1.38-2.01)</td>
<td>1.64 (1.53-1.76)</td>
</tr>
<tr>
<td>Segmentation</td>
<td>11,271</td>
<td>1.55 (1.51-1.59)</td>
<td>2.76 (2.51-3.04)</td>
<td>2.39 (2.23-2.57)</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>InlineVF</td>
<td>1,053</td>
<td>0.99 (0.93-1.05)</td>
<td>1.19 (0.99-1.44)</td>
<td>1.27 (1.04-1.53)</td>
</tr>
<tr>
<td>Regression</td>
<td>1,053</td>
<td>1.00 (0.93-1.07)</td>
<td>1.13 (0.59-1.93)</td>
<td>0.99 (0.80-1.21)</td>
</tr>
<tr>
<td>Segmentation</td>
<td>1,053</td>
<td>1.13 (1.06-1.21)</td>
<td>1.75 (1.37-2.20)</td>
<td>1.61 (1.34-1.93)</td>
</tr>
<tr>
<td>Heart failure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>InlineVF</td>
<td>236</td>
<td>1.42 (1.26-1.60)</td>
<td>2.82 (2.07-3.78)</td>
<td>2.90 (2.12-3.90)</td>
</tr>
<tr>
<td>Regression</td>
<td>236</td>
<td>1.37 (1.21-1.55)</td>
<td>3.60 (1.50-7.27)</td>
<td>2.31 (1.66-3.14)</td>
</tr>
<tr>
<td>Segmentation</td>
<td>236</td>
<td>1.67 (1.49-1.90)</td>
<td>4.53 (3.16-6.33)</td>
<td>3.59 (2.66-4.80)</td>
</tr>
</tbody>
</table>

*Total N=37,261 with available phenotypic data and CMR-derived LV mass estimates obtained using each method.
Regression

Convolutional Neural Network

LV mass 88 g

Segmentation

Convolutional Neural Network

Sum pixel volume
Apply density 1.05 g/ml

LV mass 89 g

InlineVF

Sum pixel volume
Apply density 1.05 g/ml

LV mass 155 g
Automated LV segmentation and LV mass estimation

Convolutional Neural Network

 Generated image

$\text{r} = 0.86$

Predicted LV mass

Actual LV mass

Good correlation with manually labeled LV mass

$\text{Odds ratio with LVH}$

Hypertension

$2.76 (2.51-3.04)$

Atrial fibrillation

$1.75 (1.37-2.20)$

Heart failure

$4.53 (3.16-6.33)$

$\text{n} = 38,574$

biobank.uk

improving the health of future generations

Strong associations with prevalent disease

$\text{r} = 0.86$

Predicted LV mass

Actual LV mass

$\text{Good correlation with manually labeled LV mass}$

$\text{Odds ratio with LVH}$

Hypertension

$2.76 (2.51-3.04)$

Atrial fibrillation

$1.75 (1.37-2.20)$

Heart failure

$4.53 (3.16-6.33)$

$\text{n} = 38,574$

biobank.uk

improving the health of future generations