Title Reactive balance responses after mild traumatic brain injury (mTBI): a scoping review

Authors: Amanda Morris1*, Tallie Casucci2, Mary M. McFarland3, Ben Cassidy1, Ryan Pelo4, Nicholas Kreter1, Leland E. Dibble4, Peter C. Fino1

1Department of Health and Kinesiology, University of Utah, 250 S 1850 E, Salt Lake City, UT, USA
2J. Willard Marriott Library, University of Utah, 295 1500 E, Salt Lake City, UT, USA
3Eccles Health Sciences Library, 10 N 1900 E, Salt Lake City, UT, USA
4Department of Physical Therapy and Athletic Training, University of Utah, 520 S Wakara Way, Salt Lake City, UT, USA

*Correspondence:
Amanda Morris
amanda.morris@utah.edu

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background: Balance testing after concussion or mild traumatic brain injury (mTBI) can be useful in determining acute and chronic neuromuscular deficits that are unapparent from symptom scores or cognitive testing alone. However, current assessments of balance do not comprehensively evaluate all three classes of balance: maintaining a posture, voluntary movement, and reactive postural response. Despite the utility of reactive postural responses in predicting fall risk in other balance impaired populations, the effect of mTBI on reactive postural responses remains unclear.

Purpose: To (1) examine the extent and range of available research on reactive postural responses in people post-mTBI and (2) determine if reactive postural responses (balance recovery) are affected by mTBI.

Study Design: Scoping review.

Methods: Studies were identified using Medline, Embase, CINAHL, Cochrane Library, Dissertations and Theses Global, PsycINFO, SportDiscus, and Web of Science. Inclusion criteria were: injury classified as mTBI with no confounding central or peripheral nervous system dysfunction beyond those stemming from the mTBI, quantitative measure of reactive postural response, and a discrete, externally driven perturbation was used to test reactive postural response.

Results: A total of 4,247 publications were identified and a total of two studies (4 publications) were included in the review.

Conclusion: The limited number of studies available on this topic highlight the lack of knowledge on reactive postural responses after mTBI. This review provides a new direction for balance assessments after mTBI and recommends incorporating all three classes of postural control in future research.

Keywords: reactive balance, concussion, brain injury, return-to-play
Reactive Postural Responses After mTBI

1 Background

Multiple reviews have concluded that concussion, and the synonymous mild traumatic brain injury, hereafter mTBI, impairs balance [1-6]. Yet, balance is, most generally, the ability to prevent oneself from falling over [7, 8]. Control of balance, or postural control, can be categorized into three different classes of activity: 1) maintaining posture and stability (e.g. standing), 2) voluntary transitional movements (e.g. gait or switching between postures), and 3) reactive postural responses to restore stability after an unexpected disturbance [9]. While the three classes of balance are related and each involve complex interactions between motor and sensory processes [10, 11], they have unique neuromechanical demands.

These three classes of postural control exist on a continuum of feedback and feedforward control [12-16]. Depending on the goal (maintaining a static posture, voluntary transition, or reacting to a disturbance), different postural control strategies are employed (Figure 1). Maintaining a posture requires controlling the center of mass (COM) through active postural muscle activation and integration of sensory feedback while maintaining a fixed base of support (BOS) [16]. Maintaining standing posture is accomplished primarily through the continuous modulation of ankle joint and hip joint torques based on sensory feedback [7, 12]. Unlike static posture, transitional movements involve the voluntary movement of the COM, often beyond the BOS, and often involve changes in the BOS by stepping or changing additional points of contact between the body and surrounding supports (e.g., rising or sitting from a chair). These transitional movements incorporate muscle synergies that are preselected according to initial conditions, an individual’s prior experience, and one’s expectations of movement.
Reactive Postural Responses After mTBI

Thus, voluntary transitional movements incorporate pre-planning and anticipatory control, while also using sensory feedback for corrections [16, 17]. In contrast to static or transitional movements, reactive postural responses involve an involuntary, externally-driven motion of the COM or BOS that must be corrected using rapid, time-constrained, automatic postural responses [15, 16] to quickly stop the initial falling motion by moving the COM or changing the BOS [18, 19] and stabilizing the body through subsequent postural adjustments [16]. While reactive postural responses use pre-programmed postural synergies based on a primed central set [20-23], there is little time for pre-planning or feedback-driven control [24] as these reactive postural responses occur faster than a voluntary movement (70-100 ms versus 180-250 ms) [16, 25]. Because of differences in neuromechanical demands, each class of postural control may yield unique, but complementary knowledge about the neuromechanical and neurophysiological effects of mTBI.

Compared to well-established evidence of abnormal static posture and voluntary transitional movements [3-6, 26], the effect of mTBI on reactive postural responses remains unclear. The vast majority of studies on postural control after mTBI examine static posture [27-30]. A smaller, but still significant, number of studies investigate voluntary transitional movements such as gait and turning [31-36]. The effects of mTBI on both of these postural control classes have been the topic of numerous reviews [1-6]. Yet, a comprehensive review of the literature surrounding reactive postural responses is lacking. Therefore, the purpose of this scoping review was to examine the extent and range of available research on reactive postural responses in people post-mTBI. We aimed to determine if reactive postural responses are affected by mTBI. The objectives,
Reactive Postural Responses After mTBI

inclusion criteria, and methods for this scoping review were specified in advance and
documented in a protocol (Supplemental Resource 1) [37].

2 Methods

To examine the extent and range of research available on reactive postural
responses post-concussion, a scoping review was conducted using Arksey’s five
stages: 1) identifying the research question, 2) identifying relevant studies, 3) study
selection, 4) charting the data and 5) collating, summarizing and reporting the results
[38]. Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses
extension for Scoping Reviews (PRISMA-ScR) checklist, we sought to use best practice
for transparency and reproducibility in reporting our scoping review methodology as
outlined by Tricco et al. [39]. Covidence (Veritas Health Innovation, Melbourne, AU), an
online systematic reviewing platform, was used to screen and select studies.

2.1 Inclusion Criteria

Articles were included if: 1) the injury was classified as mTBI (loss of
consciousness <30 minutes, Glasgow Coma Scale >13, posttraumatic amnesia <24
hours), 2) the outcome was a measure of reactive postural response (i.e. center of
pressure displacement, response latency, time to stabilization, etc.), 3) the perturbation
was an externally driven change in support structure, visual surround, or vestibular
information (sway referenced postural control tests in which the tilting of the support
surface or visual surround directly follows the participant’s sway, such as the SOT, were
not considered reactive postural response paradigms as these tests do not contain an externally driven perturbations), and 4) the perturbation was discrete, not continuous.

Only articles available in English were considered for inclusion. Articles were excluded if there were confounding population factors such as: any central or peripheral nervous system dysfunction beyond those stemming from the mTBI (e.g., vestibular/somatosensory pathology, Parkinson’s disease, etc.), pregnancy, or orthopedic injuries that affect postural control and gait.

2.2 Population: Definition of mTBI

Previously, the terms concussion and mTBI have been considered synonymous [40]. Therefore, both terms were included in the scope of this review. Accordingly, only traumatic brain injuries that were classified as mild, according to the diagnostic criteria defined by the Head Injury Interdisciplinary Special Interest Group of the American Congress of Rehabilitation Medicine, were included. Inclusion criteria for mTBI included: “1. Any period of loss of consciousness; 2. Any loss of memory for events immediately before or after the accident; 3. Any alteration in mental state at the time of the accident; and 4. Focal neurological deficit(s) that may or may not be transient; but where the severity of the injury does not exceed the following: loss of consciousness of approximately 30 minutes or less; after 30 minutes an initial Glasgow Coma Scale of 13-15; and posttraumatic amnesia not greater than 24 hours” [41].
2.3 Concept: Definition of Reactive Postural Response Protocols

We considered the following definition for protocols investigating reactive postural responses: a postural response to an unexpected, external perturbation, defined as a sudden, externally driven change in support structure, visual surround, or vestibular information that takes body posture out of equilibrium [25]. For example, an unexpected external perturbation could consist of changes in support structure such as removal of hands or a support harness (push-and-release [42] or lean-and-release task [43]), translation or rotation of the surface underneath the feet [25, 44] that accelerates the center-of-mass (CoM) with respect to the support surface, vestibular perturbations from electrical stimulation [45], visual perturbation from moving visual images, or a sudden change in the support surface (i.e. slip [46, 47] or trip [48]).

The above definition of reactive response protocols requires a discrete, rather than a continuous perturbation. Several studies have used continuous perturbations involving externally-driven changes in visual surround, support structure, or vestibular stimuli [24, 25]. However, these continuous (oscillatory) perturbation paradigms commonly investigate the steady-state postural response after the body has re-weighted sensory information and reconfigured the sensory-to-motor transformation [49-51]. These protocols more closely examine maintenance of a posture, albeit in a non-standard environment, rather than a reactive response. Discrete (single) perturbations examine the response to a single, often unexpected, disturbance and involve a rapid response without significant reweighting of sensory information. These perturbations elicit pre-programmed motor responses, triggered by multisensory integration from a primed central set, intended to serve as quick corrections to counteract the mechanical
Reactive Postural Responses After mTBI

effects of the perturbation [52]. Because of the difference in neuromechanical response to discrete and continuous perturbations and our interest in reactive postural responses to external disturbances, rather than the multisensory integration to maintain balance [24], only discrete perturbations were included in this review.

2.4 Context

As we were trying to determine the full scope of literature available on this topic, all timeframes post-injury were included. All ages (child, adolescent, and adult) and all health care settings (veterans, community, athletics, etc.) were also included.

2.5 Literature searching

Literature searching was conducted by a librarian (TC) and peer reviewed by an information specialist (MMM) with Peer Review of Electronic Search Strategies (PRESS) guidelines [53]. Search strategy was finalized in Ovid Medline and translated to the other databases. Endnote (Clarivate Analytics, Boston, MA) was used to manage citations and remove duplicates. The following databases were used for electronic searches: Medline(Ovid) 1946 - 2020, Embase (embase.com) 1974 - 2020, CINAHL Complete (EBSCOhost) 1937 - 2020, Cochrane Library (wiley.com) 1898 - 2020, Dissertations & Theses Global (ProQuest) 1861 - 2020, PsycINFO (EBSCOhost) 1872 - 2020, SportDiscus (EBSCOhost) 1800 - 2020, Web of Science (Clarivate Analytics) 1900 - 2020. No date limits, nor search filters, were applied. The search was conducted between January 31 and February 4, 2020 (see Supplemental Resource 2 for specific dates). Search strategies were composed using a combination of database subject terms and multiple keywords for the main concepts of (brain injuries OR concussions) AND (balance) AND (posture OR postural OR perturbations). See supplemental file for
strategies (Supplemental Resource 2). References of included studies were checked for relevancy. If data was missing or if questions arose that only the authors could answer, authors were contacted twice within one month. American Society of Biomechanics abstracts from 2015 to 2019 were hand searched by two independent reviewers (AM, BC).

Titles and abstracts were reviewed independently by four reviewers (AM, BC, RP, NK), and publications that did not meet the inclusion criteria were excluded from the review. Full-text screening and extraction of results was completed independently by three reviewers (AM, BC, RP). Approval by at least two reviewers was required for inclusion; if two reviewers disagreed, all reviewers would come to a consensus based on inclusion and exclusion criteria.

2.6 Extraction of results

Excel (Microsoft, Redmond, WA) was used for data charting and the following data was extracted in duplicate from the selected studies: author, publication year, aims/purpose, population (age if available)/sample size, testing time (time since injury), perturbation method, outcome variables, outcome and interpretation.

3 Results

3.1 Extent of Research Available

The search identified 4,247 publications after duplicates were removed (Figure 2). After title and abstract screening, 4,215 studies were excluded due to incorrect study type, population, or relevance to the aim of this review. Thirty-two full-text articles were
assessed for eligibility. Twenty-eight articles were excluded for the following reasons: severity of injury (N=13), incorrect balance assessment (N=13), outcome measure was not postural (N=1), the article was not available in English (N=1). See supplemental files for a summary of excluded studies (Supplemental Resource 3). Four articles were extracted, after contacting the corresponding author it was determined that three of the articles [54-56] were from the same study (M.Walker, Personal Communication, June 5, 2020). Therefore, the two selected studies are summarized in Table 1.

3.2 Perturbation Method and Postural Response Measures

We found only two studies in the literature that examined the reactive postural responses to discrete perturbations after mTBI. The first study (Study 1, Mang et al. 2018) delivered expected and unexpected upper-extremity perturbations during a standing reaching task using the KINARM robot (BKin Technologies Ltd., Kingston, ON). Methods for this study were clarified via personal communication with the author (C.Mang, personal communication, June 9, 2020). Perturbations were delivered after the reach started and consisted of a 12 N square pulse with a 10 second rise time applied to the left or right side of the participant. Both anticipatory and reactive postural adjustments were measured. Reactive postural responses were quantified using the maximum absolute COP velocity from 100ms after reach onset to end of the reach.

The second study (Study 2, Pan et al. 2015) perturbed static stance by delivering unexpected forces to a waist-belt using a computer controlled motor. The unexpected forces were equal to 10% of the participant’s body weight and delivered for 0.5 seconds in two directions, forward and right [56]. Motion capture recorded retroreflective marker
motion to quantify postural sway length, displacement, and postural oscillations (frequency of marker acceleration) as the reactive postural response outcomes.

3.3 Effect of mTBI on Reactive Postural Responses

Study 1 tested 21 healthy controls and 19 athletes at baseline and within ten days of mTBI, using a KINARM robot to perturb the upper body [57]. Before mTBI, anticipatory postural adjustments were seen only with an expected perturbation. After mTBI, anticipatory postural adjustments were seen in both expected and unexpected perturbations. However, there was no effect of mTBI on reactive postural response.

Study 2 tested veterans with a history of mTBI (7 months – 7 years post mTBI) using the computer controlled rope system described above [56]. Veterans were divided into those with chronic complaints of imbalance (N=8) and those who reported no balance complaints (N=6). Ten non-veterans with no history of mTBI were also tested. Those with chronic complaints of imbalance had significantly more upper trunk sway in response to perturbation than non-veterans and veterans without balance complaints. Additionally, those with complaints of imbalance had high-frequency postural oscillations (frequency of marker acceleration) after perturbations.

4 Discussion

This scoping review presents the available research on reactive postural responses after mTBI. Only two studies met our inclusion criteria; the small number of available studies prohibits a definitive conclusion. Instead, our results highlight the lack
of knowledge on this topic, and demonstrate methodological variability between existing studies examining reactive postural control post–mTBI.

The two studies included in this review presented conflicting results; one study reported no change in reactive postural response after mTBI, while the other study reported worse reactive postural response in those with chronic complaints of imbalance after mTBI. There was no effect of mTBI on reactive postural responses in collegiate athletes in response to upper body perturbations [57], nor were there reactive postural deficits in veterans who did not report disequilibrium after perturbation at the waist [56]. However, veterans who reported chronic imbalance after mTBI had impaired reactive postural response when perturbed and high frequency postural oscillations following perturbations. Therefore, it is possible that abnormal reactive postural responses are evident in people with chronic, persisting symptoms from mTBI, but absent in asymptomatic individuals. However, the available literature is severely limited and more research is needed.

The studies presented here used different methodology and populations, limiting the ability to compare results. The perturbation tasks were different in magnitude (force, timing), direction, and method; one study used right and left upper body perturbations through a hand-held apparatus, while the other study used a forward and rightward perturbation delivered to a waist-belt. These task differences make it difficult to compare the magnitude of balance deficit after mTBI between the studies; different muscle activation patterns, joint torques, and sensory feedback may have been used depending on where the perturbation was applied. Additional differences in perturbation profile (force and acceleration) likely resulted in different strengths of perturbation,
necessitating different magnitudes of postural response [58, 59]. The populations also varied in age (17 ± 0.9 years and 22-40 with a median of 26.5 years), symptom severity (no symptoms, mild, or chronic complaints of imbalance), and time since injury (4.4 ± 0.5 days and 7 months to 7 years) making comparisons between the two studies difficult. It is likely that different age groups may have inherent differences in reactive postural response; there are significant differences to in reactive postural response between healthy young and old adults [60] and between children of different motor developmental levels [61]. Finally, both studies performed testing outside of what would be considered the acute period after mTBI (<48 hours) and did not perform any prospective testing, limiting the ability to determine the immediate and longitudinal effects of mTBI on reactive postural response. Due to conflicting results, inconsistent methods, and extremely limited number of studies, the effects of mTBI on reactive postural response to physical perturbations remains unclear.

5 Conclusions and Recommendations

The extremely small body of literature highlights the need for more research on reactive postural responses after mTBI. Balance testing can be useful in determining both acute and chronic neuromuscular impairments after mTBI that may be unapparent from symptom scores or cognitive testing alone. Studies of maintenance of posture [28-30, 62] and voluntary transitional movement [4, 6, 26, 31-33, 63] after mTBI suggest these domains of balance can be impaired both acutely and chronically after injury. Consequently, the quantification of balance using the Balance Error Scoring System (BESS) [64], Sensory Organization Test (SOT) [65], or tandem gait test [66] have
Reactive Postural Responses After mTBI

become valuable clinical tools. However, these tests do not examine reactive postural responses. Reactive postural responses may provide further, complementary, clinical and scientific utility in the mTBI space. Postural response after an external disturbance has been used to predict fall risk in balance impaired populations such as: older adults [67], stroke [68] and Parkinson’s Disease [69-71]. In these studies, the use of tasks with consistent location of perturbations and systematic manipulation of perturbation magnitude have allowed the characterization of rapid postural response to unpredictable body movement [72]. These responses involve early automatic postural responses [25] and coordination of multiple body segments via neural pathways encompassing spinal, brainstem, and cortical regions [15]. Future research that examines reactive postural responses to well controlled perturbations as well as the other classes of balance (maintaining a static posture, voluntary transitions) may provide more specificity than single-classed assessments of balance about the neurophysiological processes underlying motor deficits. Such studies would allow the simultaneous evaluation of the range of balance performance that are necessary in daily life, work, or competitive athletic environments.

This scoping review serves as an overview of current research on reactive postural responses after mTBI. At the time of this review, only two studies examined reactive postural responses after mTBI, and the literature varied in methodology and population studied. Since this review was conducted, we are aware of one additional study examining reactive postural responses to discrete translations and rotations of the support surface in individuals with mTBI [73, 74]. While too recent to be included within the review, these additional results support the need for further study of reactive
Reactive Postural Responses After mTBI

balance; perturbations eliciting reactive postural responses were more sensitive than standard clinical tests such as the Berg Balance Scale, Dynamic Gait Index, and High-Level Mobility Assessment Tool to detecting lingering balance deficits post-mTBI [74]. Although reactive postural responses have been used in balance impaired populations to successfully predict fall risk [67-71], the area remains understudied after mTBI and should be included in future study protocols [75]. This review highlights the infancy of the current evidence, and provides a valuable new direction for balance assessments after mTBI. We recommend future research that incorporate assessments of reactive postural responses as well as the other classes of balance, at prospectively controlled time points after mTBI.

6 Declarations

Funding: This project was supported in part by the Pac-12 Conference’s Student-Athlete Health and Well-Being Initiative (PI: Fino) and by the Eunice Kennedy Shiver National Institute of Child Health & Human Development of the National Institutes of Health under Award Number K12HD073945. The content of this manuscript is solely the responsibility of the authors and does not necessarily represent the official views of the Pac-12 Conference, or its members, or the National Institute of Health.

Conflicts of interest: AM, TC, MM, BC, RP, NK, LD, and PF have no conflicts of interest directly relevant to the content of this review.

Ethics approval: N/A

Consent to participate: N/A

Consent for publication: N/A

Availability of data and material: We will share any review data, including charting tables, upon request.

Code availability: N/A
7 References

Reactive Postural Responses After mTBI

Reactive Postural Responses After mTBI

Reactive Postural Responses After mTBI

[40] A. McKinlay, A. Bishop, McLellan, Public knowledge of 'concussion' and the different terminology used to communicate about mild traumatic brain injury (MTBI), Brain Injury 25(8) (2011) 761-766.

Reactive Postural Responses After mTBI

Reactive Postural Responses After mTBI

Reactive Postural Responses After mTBI

Table 1. Characteristics of selected studies using discrete perturbations to examine reactive postural response after mTBI.

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>N, groups</th>
<th>Testing Timeline</th>
<th>Perturbation Used</th>
<th>Outcome measures</th>
<th>Interpretation</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mang et al.</td>
<td>Athletes</td>
<td>430</td>
<td>BL and ≤10 days post injury</td>
<td>KINARM robot, Unanticipated and anticipated upper-extremity perturbations during a reaching task</td>
<td>Response time, hand path length, anticipatory (mean COP velocity from 50 ms prior to reach onset to 100 ms after reach onset) and reactive postural adjustments (maximum absolute COP velocity from 100 ms after reach onset to end of reach)</td>
<td>Anticipatory postural adjustments, but not reactive postural adjustments, are impaired in some athletes ≤10 days post mTBI.</td>
<td>Abstract</td>
</tr>
<tr>
<td>Pan et al.</td>
<td>Veterans</td>
<td>24</td>
<td>7 months to 7 years post injury</td>
<td>Motor controlled rope attached to belt at waist, unanticipated forward and rightward perturbations</td>
<td>Sway length and displacement for 2.5 seconds after onset of perturbation</td>
<td>Veterans with chronic disequilibrium after mTBI have measurable deficits in reactive balance control months to years after injury.</td>
<td>Article</td>
</tr>
</tbody>
</table>

Abbreviations: BL, testing at baseline

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>N, groups</th>
<th>Testing Timeline</th>
<th>Perturbation Used</th>
<th>Outcome measures</th>
<th>Interpretation</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mang et al.</td>
<td>Athletes</td>
<td>430</td>
<td>BL: 430</td>
<td>KINARM robot, Unanticipated and anticipated upper-extremity perturbations during a reaching task</td>
<td>Response time, hand path length, anticipatory (mean COP velocity from 50 ms prior to reach onset to 100 ms after reach onset) and reactive postural adjustments (maximum absolute COP velocity from 100 ms after reach onset to end of reach)</td>
<td>Anticipatory postural adjustments, but not reactive postural adjustments, are impaired in some athletes ≤10 days post mTBI.</td>
<td>Abstract</td>
</tr>
<tr>
<td>Pan et al.</td>
<td>Veterans</td>
<td>24</td>
<td>Control: 10</td>
<td>Motor controlled rope attached to belt at waist, unanticipated forward and rightward perturbations</td>
<td>Sway length and displacement for 2.5 seconds after onset of perturbation</td>
<td>Veterans with chronic disequilibrium after mTBI have measurable deficits in reactive balance control months to years after injury.</td>
<td>Article</td>
</tr>
</tbody>
</table>

Abbreviations: BL, testing at baseline

Methods information provided via personal communication with author.

Two other publications were confirmed to be part of the same study via personal communication with the author.
9 Figures

Figure 1. Similarities and differences between the three classes of postural control.
BOS = Base of support; COM = Center of mass

Figure 2. PRISMA Flow Diagram [76]