Case finding of early pregnancies at risk of preeclampsia using maternal blood leptin/ceramide ratio

Running title: Lep/Cer predicts impending preeclampsia

Qianyang Huang¹#, Shiying Hao²,³#, Jin You⁴#, Xiaoming Yao¹#, Zhen Li⁵, James Schilling¹, Zhen Li⁶,⁷, Sheeno Thyparambil¹, Wei-li Liao¹, Xin Zhou⁸, Lihong Mo⁹, Subhashini Ladella⁹, John C. Whitin¹⁰, Harvey J. Cohen¹⁰, Doff B. McElhinney²,³, Ronald J. Wong¹⁰, Gary M. Shaw¹⁰, David K. Stevenson¹⁰, Karl G. Sylvester⁵, Xuefeng B. Ling³,⁵*

¹mProbe Inc., Mountain View, CA, United States
²Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, United States
³Clinical and Translational Research Program, Betty Irene Moore Children's Heart Center, Lucile Packard Children’s Hospital, Palo Alto, CA, United States
⁴Department of Bioengineering, University of California Riverside, Riverside, CA, United States
⁵Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
⁶Binhai Industrial Technology Research Institute, Zhejiang University, Tianjin, China
⁷School of Electrical Engineering, Southeast University, Nanjing, China
⁸Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
⁹Department of Obstetrics and Gynecology, University of California San Francisco-Fresno, Fresno, CA, United States
¹⁰Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States

#Co-first authors
*
Corresponding author: Stanford University School of Medicine, Stanford, CA, 94305, USA; Tel: 650-427-9198; Fax: (650)-723-1154; Email Address: bxling@stanford.edu
The early risk assessment of preeclampsia (PE) remains challenging in current clinical practice. We hypothesized that impending PE events can be predicted, when asymptomatic early in gestation, through the determination of the serum levels of leptin (Lep), a placental functions regulatory cytokine, and ceramide (Cer), a sphingolipid with anti-angiogenic and pro-apoptotic roles. Sera from two independent cohorts of PE and control women were assembled (Testing Cohort: 7 non-PE and 8 PE women sampled at confirmatory diagnoses; Validation Cohort: 20 non-PE and 20 PE women sampled longitudinally through gestation). Our multi-omics approach, integrating global genomic and lipidomic discoveries, revealed a marked elevation of the Lep/Cer (d18:1/25:0) ratio in PE women. Longitudinal analyses of Lep/Cer ratio can predict a median of 23 weeks before PE confirmative diagnosis. Sensitivity, positive predictive value, and AUC of the Lep/Cer (d18:1/25:0) ratio were 85%, 89%, and 0.92. Therefore, serum elevations of Lep/Cer (d18:1/25:0) ratio can be used to assess risk for impending PE during early asymptomatic pregnancies.

Keyword: Preeclampsia Prediction; Early Gestation; Leptin; Ceramide; Maternal Serum
List of Abbreviation

Acetyl-CoA carboxylase: ACC
Area Under the Curve: AUC
AMP-activated protein kinase: AMPKK/AMPK
Body Mass Index: BMI
Carnitine Palmitoyltransferase 1: CPT1
Ceramide: Cer
Confidence Interval: CI
Dihydroceramide: DHCer
Enzyme-Linked Immunosorbent Assay: ELISA
Fatty Acid Oxidation: FAO
Gene Expression Omnibus: GEO
Leptin: Lep
Leptin Receptors: LetR
Liquid Chromatography-Tandem Mass Spectrometry: LC/MS/MS
Negative Predictive Value: NPV
Placental Growth Factor: PlGF
Positive Predictive Value: PPV
Preeclampsia: PE
Soluble fms-Like Tyrosine Kinase: sFlt-1
Triglyceride: TG
Wk: Week
INTRODUCTION

Preeclampsia (PE) is a disorder of the placental vasculature, affecting 5% to 8% of all pregnancies worldwide. It still remains a leading cause of maternal and fetal mortality (Sibai et al, 2005), accounting for 42% of all maternal deaths and 15% of preterm deliveries (Noris et al, 2005; Roberts et al, 2003). It is characterized by diffused endothelial dysfunction, increased peripheral vascular resistance, hypertension, proteinuria, and dysregulated coagulation. The pathogenesis of PE is complex as it progresses from asymptomatic stage in the first trimester to a symptomatic stage late in gestation. Although its etiologies remain largely unknown, mounting evidence has revealed that placental dysfunction is integral to the development of PE (Roberts & Escudero, 2012). Pathophysiological perturbations of placental development cause incomplete remodeling of the uterine spiral arteries and poor invasion of trophoblasts into placental cells, which induces persistent placental oxidative stress and hypoxia, such as PE (Chaiworapongsza et al, 2014b; Ahmed & Ramma, 2015). Gestational interventions such as steroids to accelerate fetal lung maturity (ACOG committee opinion. Antenatal corticosteroid therapy for fetal maturation. American College of Obstetricians and Gynecologists., 2002), magnesium for seizure prophylaxis (Vatten et al, 2008), aspirin treatment, and antihypertensive therapy (Raia-Barjat et al, 2019) are effective in reducing both maternal and fetal mortality in populations with high risks of developing PE (Phipps et al, 2019; Armaly et al, 2018).

However, the early prediction of PE remains challenging. Traditional risk factors such as a prior history of PE, first pregnancy, multiple gestation, and obesity have insufficient sensitivity and specificity (less than 60%) for the prediction of PE (Poon et al, 2019; Musa et al, 2018; Chaiworapongsza et al, 2014a; Rodriguez-Lopez et al, 2017). An imbalance of angiogenic and anti-angiogenic factors during pregnancy was found to disrupt the developmental homeostasis of the placenta (Kopcow & Karumanchi, 2007; Zhou et al, 2007). Two placental-derived factors, angiogenic soluble fms-like tyrosine kinase (sFlt-1) and anti-angiogenic placental growth factor (PIGF), were associated with the pathophysiology of PE (Kim et al, 2007). A multicenter trial demonstrated that the sFlt-1/PIGF ratio in maternal sera significantly differentiates pregnant PE from normal pregnant women after 24 wks’ of gestation (Romero et al, 2008; Carty et al, 2008). Later studies discovered that this ratio had limited value in predicting the development of PE when examined during the first or early second trimesters (Verlohren et al, 2010; Hao et al, 2020). Thus, there is an unmet need to identify sensitive and specific markers to predict PE early in gestation.

Previous studies have suggested that PE is a pregnancy complication that is associated with changes of multiple systems and encompasses genetic, proteomic, and metabolic factors (Kelly et al, 2017; Liu et al, 2013; Aghaeepour et al, 2018). Recent multi-omics studies identified a number of molecular-level candidates associated with PE (Benny et al, 2020; Tarca et al, 2019; Nguyen et al, 2019; Tarca et al, 2020; Trifonova et al, 2014; Harati-
Sadegh et al., 2019; Jung et al., 2019; Wu et al., 2019). One of these candidates is leptin (Lep), a secreted adipokine that affects the central regulation of energy homeostasis, neuroendocrine function, and cytoplasmic metabolism (Friedman, 2016). Notably, placenta and adipose tissue are the only two leptin-producing tissues. During pregnancy, placental Lep contributes to endocrine-mediated alterations in energy balance, such as the mobilization of maternal fat, which occurs during the second half of pregnancy (Masuzaki et al., 1997a). In addition to the energy balance modulation, Lep actively regulates the placenta development during the first stage of pregnancy. It binds to the leptin receptors (LetR) expressed on the surface of endothelial cells and trophoblasts and this signal transduction plays essential physiological effects on the implantation and placentation, as well as fetus development, including cell proliferation, angiogenesis, growth and immunomodulation (Pérez-Pérez et al., 2018).

Our previous findings have demonstrated elevations of Lep in early gestation in PE patients (Hao et al., 2020; Liu et al., 2013; Zhao et al., 2009, 2014). Other have also reported that sphingolipid metabolism, particularly via ceramide (Cer), acts downstream to the anorectic actions of central Lep, and played an important role in Lep-induced hypothalamic control of feeding (Gao et al., 2011; Bonzon-Kulichenko et al., 2009; Unger & Roth, 2015). Furthermore, our recent findings have also illustrated the regulatory role of Cer as a metabolic messenger for the homeostatic development of normal pregnancy along gestation (Huang et al., 2020b), and placental changes in cytoplasmic amount of Cer in trophoblast cells have been shown to be implicated in the pathogenesis of PE (Charkiewicz et al., 2017b; del Gaudio et al., 2020; Melland-Smith et al., 2015).

In this study, we employed a multi-omics approach to identify Lep and Cer as potential biomarker candidates for risk of impending PE. This initial omics-based discovery led to the generation of our hypothesis that the gestational profiles of Lep and Cer differ in maternal serum from women without PE compared with those with PE. We further hypothesized that the ratio of Lep and Cer can serve as a serological marker capable of predicting impending PE early in gestation. We therefore characterized the serological profiles of circulating Lep and Cer longitudinally and investigated their potential utility in predicting impending PE early in pregnancy and biological insights.

RESULTS

Study Design

The overall sample allocation, hypothesis generation, biomarker discovery, independent validation, and panel construction workflows are illustrated in Fig. 1. Our study was conducted in three phases: (1) the discovery phase,
which included both in-silico expression analysis of PE and non-PE placenta samples and comprehensive literature mining to generated the hypothesis that Lep and Cer might be implicated in PE pathophysiology as potential biomarkers; (2) the testing phase, which contained the quantitative analysis of Lep and Cer in a case-control cohort of PE and non-PE maternal sera sampled at confirmative diagnosis; (3) the validation phase, which comprised the quantitative analysis of Lep and Cer in an independent longitudinal cohort of PE and non-PE maternal sera sampled at different gestational ages.

Meta-analysis confirmed the significant elevation of placental Lep expression in PE placentas

To test the ability of placental Lep levels to differentiate control from PE pregnancies, we performed a meta-analysis of gene expression profiles based on six PE placental studies (GSE4707, GSE10588, GSE24129, GSE25906, GSE44711, and GSE54618; see Table I). Among the 13,137 genes, Lep in PE placentas had the maximal change (1.9-fold) and the most significant difference ($P < 0.0001$) compared with non-PE placentas (Fig. 2 and Appendix 1). Furthermore, in each study, Lep levels were higher in PE compared with non-PE placentas ($P < 0.05$; Fig. 3). The overexpression of the Lep transcripts was found to be significant in all PE women (including early-onset, late-onset, and severe PE).

Literature meta-analysis identified Cer as the downstream metabolic messenger of Lep cascade

To discover the potential metabolic messengers downstream of Lep signaling cascade, we conducted a literature mining study based on the PubMed database. As the central player to regulate energy homeostasis and induce stimulation of fatty acid oxidation and decreases in circulating and tissue levels of triglyceride (TG). We started with the keyword of “Leptin; Lipid Metabolism”, we obtained 4212 relevant publications from years of 2000 to 2020. Among 4212 publications, 78 studies were implemented to investigate the biology underlying the cytoplasmic interactions between Lep and Cer at the molecular level and the possible mechanistic roles of Cer in mediating the central feeding cascade of Lep. In addition, we obtained 14 and 150 publications by using the keywords of “Ceramide; Pregnancy” and “Ceramide; Preeclampsia”, respectively, suggesting correlation of the physiological role of Cer in homeostatic pregnancy as well as its pathological implication in PE. We therefore selected Cer and dihydroceramide (DHCer), its biosynthetic precursor, as the biomarker candidates to generate our hypothesis and launched the following analyses.

Serological quantitative analysis confirmed Lep, Cer, and DHCer as maternal markers for PE at diagnosis
We measured levels of circulating Lep in women from the testing cohort (testing cohort included 7 non-PE and 8 PE women; demographic data are shown in Table II). Concentrations of Lep were significantly higher in PE women than in women without PE between 25 and 31 wks’ of gestation ($P = 0.02$, 2.97-fold; Fig. 4A, Appendices 2 and 3).

We also characterized gestational profiles of 16 Cers and 10 DHCers in maternal sera (Fig. 4, Appendices 2 and 3). A total of 11 candidates (4 Cers and 7 DHCers) were significantly altered in PE ($P < 0.05$; Fig. 4A). Among the 11 candidates, Cer (d18:1/25:0) was found to be the only Cer that significantly changed compared with Lep in PE women (0.88-fold).

Lep/Cer (d18:1/25:0) ratio differentiated PE from normal pregnancies

The Lep/Cer (d18:1/25:0) ratio had the largest area under the curve (AUC) compared with other marker combinations (Fig. 4B and Appendix 4) for differentiating PE from normal pregnancies in the testing cohort. Furthermore, compared with the individual Lep and Cer (d18:1/25:0) levels, the Lep/Cer (d18:1/25:0) ratio showed a lower P (0.006 vs 0.02 and 0.03, respectively), a larger fold change (4.04 vs 2.97 and 0.88, respectively), and a higher AUC (0.911 vs 0.875 and 0.839, respectively; Table III and Appendix 5).

Validation analysis found that Lep/Cer (d18:1/25:0) ratio predicts PE early in gestation

When we evaluated the predictive performance of the Lep/Cer (d18:1/25:0) ratio in the validation cohort (20 women without PE with 55 samples, and 20 women with PE with 51 samples; see Table IV and Fig. 5), We found that among the 20 PE women, 5 and 13 had early- and late-onset PE, respectively. The dates of diagnosis were missing in the remaining 2 women.

We observed an increase in serum Lep ($P < 0.0001$; 1.71-fold) and a decrease in Cer (d18:1/25:0) ($P < 0.0001$; 0.70-fold) in PE women at 5 to 29 wks’ of gestation (Appendix 6), which resulted in an elevated Lep/Cer (d18:1/25:0) ratio (Fig. 6). Most notably, this ratio was a significantly better predictor of all types of PE (AUC = 0.887) than Lep (AUC = 0.809; $P = 0.0006$) or Cer (d18:1/25:0) (AUC = 0.790; $P = 0.008$) levels alone. In addition, the ratio performed well at wider gestational windows from 5 to 15 and 16 to 29 wks (AUC = 0.876 and 0.892, respectively) than the individual markers: Lep (AUC = 0.868; $P = 0.4$ and 0.824; $P = 0.1$, respectively) and Cer (d18:1/25:0) (AUC = 0.868; $P = 0.1$ and 0.747; $P = 0.02$, respectively). These results were consistent with the univariate and multivariate results found in non-obese women (Appendix 7). The Lep/Cer (d18:1/25:0) ratio accounted for 31% of the variation in the PE outcome, higher than that with Lep (15%), Cer (d18:1/25:0) (15%), and pre-pregnancy body mass index (BMI)
In a multivariate analysis, the explained variance of Lep was dominant early in gestation (5 to 15 wks), while Cer (d18:1/25:0) was dominant in mid-gestation (16 to 29 wks; Appendix 7B). The longitudinal profiling of Lep and Cer (d18:1/25:0) levels improved the predictive performance of Lep/Cer (d18:1/25:0) ratio. Moreover, the Lep/Cer (d18:1/25:0) ratio outperformed the sFlt-1/PlGF ratio in predicting impending PE, with a lower P (Fig. 6) and a higher AUC ($P < 0.0001$; Appendix 6D).

Time-to-event analysis at 5 to 25 wks (Fig. 7) compared the Lep/Cer (d18:1/25:0) ratio and the sFlt-1/PlGF ratio in predicting the impending PE. Among the 18 PE women with known diagnoses dates, 83% (15/18; 5 early-onset and 10 late-onset) were identified by the Lep/Cer (d18:1/25:0) ratio 11 or more weeks prior to their clinical diagnosis. In contrast, the sFlt-1/PlGF ratio only identified 22% (4/18; 1 early-onset and 3 late-onset) of PE women 11 or more weeks prior to the diagnosis. The Lep/Cer (d18:1/25:0) ratio was able to predict impending PE a median of 23.0 [95% confidence interval (CI): 12.8, 30.7] wks prior to the confirmatory diagnosis.

As shown in Fig. 8A, the Lep/Cer (d18:1/25:0) ratio correctly classified 85% (17/20) of women with impending PE and 90% (18/20) of pregnancies without PE at 5 to 25 wks, giving a sensitivity of 85% (17/20), a specificity of 90% (18/20), a positive predictive value (PPV) of 89% (17/19), and a negative predictive value (NPV) of 86% (18/21). In contrast, 40% (8/20) of women with subsequent PE and 45% (9/20) of women without PE were correctly classified by the sFlt-1/PlGF ratio, yielding a sensitivity of only 40% (8/20), a specificity of 45% (9/20), a PPV of 42% (8/19), and a NPV of 43% (9/21) (Fig. 8B). In addition, the Lep/Cer (d18:1/25:0) ratio had a higher AUC than the sFlt-1/PlGF ratio at 5 to 25 wks [0.92 (95% CI: 0.86, 0.98) vs. 0.52 (95% CI: 0.39, 0.64); $P < 0.001$].

DISCUSSION

Early prediction of PE remains a challenge in current clinical practice. Known traditional risk factors inadequately identify women who will develop PE early in gestation (Poon *et al*., 2019; Musa *et al*., 2018; Chaiworapongsa *et al*., 2014a; Verlohren *et al*., 2010; Hao *et al*., 2020). To aim the discovery of novel serological markers with better predictive power for PE, we applied a multi-omics approach, integrating differentially expressed gene (DEGs) from placental mRNA expression multiplex analysis and lipidomic database mining of existing literature, to identify novel PE biomarkers, which are Lep and Cer. By characterizing the maternal serological profiles of Lep and Cer using commercial ELISA and reported liquid chromatography-tandem mass spectrometry (LC/MS/MS) assays, we validated the up-regulated Lep and down-regulated Cer (d18:1/25:0) in a case-control testing cohort with maternal sera collected at confirmative diagnosis of PE. With a cohort of longitudinally collected maternal sera from both PE and non-PE women, we further assessed the PE-predictive power of the Lep/Cer (18:1/25:0) ratio early in
gestation. Our results validated this ratio as a better serological predictor of impending PE than the established sFlt-1/PlGF ratio. Our findings demonstrated that the use of the Lep/Cer (d18:1/25:0) ratio can identify women at high risk of developing PE at a substantially earlier time window during pregnancy (at 5 to 25 wks) than the sFlt-1/PlGF ratio (after 25 wks). Moreover, our results showed that, compared with the sFlt-1/PlGF ratio, the Lep/Cer (d18:1/25:0) ratio has better sensitivity (40% vs 85%), specificity (45% vs 90%), PPV (42% vs 89%), and NPV (43% vs 86%). Therefore, early in gestation, the Lep/Cer (d18:1/25:0) ratio outperforms the established sFlt-1/PlGF ratio and is a predictor of impending PE. The fact that the Lep/Cer (d18:1/25:0) ratio increases early in gestation in pregnant women who later develop PE offers an opportunity for predicting PE prior to the onset of clinical signs and symptoms. Integration of the ratio into a high-risk screening tool might allow patient identification at a pre-symptomatic stage. In addition, the concept of integrating a transcriptomic approach in placenta tissue with a lipidomic approach in serum is novel, as it combines the merits of studies in tissue whose focuses are more towards the pathogenesis and pathophysiology with those study in serum whose focuses are more towards the clinical translation. Taking the candidates obtained from the discovery phase to the validation phase makes the findings of this study translatable into clinical practice.

Previous studies have suggested that placental trophoblast cells are a leading source of circulating Lep in pregnancy (Masuzaki et al., 1997b), where Lep increases progressively in the first and second trimesters, peaks in the third, and returns to pre-pregnancy levels prior to parturition (Bajoria et al., 2002; Henson & Castracane, 2006). In early gestation, Lep may play a critical role in modulating essential biological activities such as proliferation, protein synthesis, invasion, and apoptosis of trophoblast cells (Chehab, 2014; Reitman et al., 2001). Failure of trophoblastic invasion might result in incomplete remodeling of the maternal spiral arteries and inadequate placental perfusion to the embryo (Pollheimer & Knofler, 2005; E Davies et al., 2016; Staun-Ram & Shalev, 2005), leading to various disorders of reproduction and gestation such as intrauterine growth restriction (Weiss et al., 2016), PE (Sheikh et al., 2016), gestational diabetes mellitus (Perez-Perez et al., 2016), and recurrent miscarriage (Serazin et al., 2018). Other recent studies documented significant elevations of Lep expression in preeclamptic placentas (Mise et al., 1998; el Shahat et al., 2013; Lacroix et al., 2016; Taylor et al., 2015; Yeboah et al., 2017). In the current study, we found a significant upregulation of Lep in maternal sera of PE women, which is consistent with previous reports (Serazin et al., 2018; Mise et al., 1998; el Shahat et al., 2013; Lacroix et al., 2016; Taylor et al., 2015).

The gestational dysregulation of Cer metabolism is believed to induce the aberrant de novo synthesis and lysosomal breakdown of Cer, which leads to trophoblast cell autophagy, dysfunctional development of placenta, and eventually pregnancy complications like PE (Melland-Smith et al., 2015; Bailey et al., 2017; Charkiewicz et al., 2017a).
Cer (d18:1/25:0) is an unusual odd-chain species of the Cer family that is generated by de novo synthesis based on 25:0 fatty acid. Such odd-chain fatty acids are mainly from dairy products and meat from ruminant animals (Jenkins et al., 2015). Cer (d18:1/25:0) was previously described as a potential urinary marker of inflammation-induced alcoholic liver disease (Sun et al., 2015). Recently, an elevation of the Cer (d18:1/25:0) was also identified as a serum prognostic marker to predict various acute diseases, including cardiovascular death, myocardial infarction, and stroke in patients with acute myocardial infarction within an ensuing 12-month period (de Carvalho et al., 2018). Our results suggested the pathological implications of Cer (d18:1/25:0) in the development of pregnancy complicated by PE, which might provide additional insights into the mechanistic roles of Cer (d18:1/25:0) and other odd-chain Cer species in PE pathophysiology.

A potential molecular connection between Lep and Cer might be involved in the lipid metabolism. For example, in the skeletal muscle, Lep activates AMP-activated protein kinase (AMPKK/AMPK) through two distinct mechanisms: a direct effect of Lep and the hypothalamic–sympathetic nervous system and α-adrenergic receptor. Activation of AMPK phosphorylates and inhibits Acetyl-CoA carboxylase (ACC) activity. Lep then inhibits malonyl CoA synthesis, activating carnitine palmitoyltransferase 1 (CPT1), thereby increasing mitochondria import and fatty acid oxidation (FAO) in muscle (Minokoshi et al., 2012). While evidence showed one Cer, C16:0 play key negatively regulatory roles in insulin sensitivity, FAO and energy expenditure in obesity situation (Turpin et al., 2014). More associations between Lep and Cer has been reported in several other studies. Lep was shown to exert its anorexigenic action by promoting mitochondrial lipid oxidation in both adipose and non-adipose tissues to alleviate ectopic accumulation of lipotoxic Cer. De novo synthesis of Cer plays a prominent role in modulating downstream signaling of central Lep’s activity via mediation of malonyl-CoA, carnitine palmitoyl transferase-1c, and serine palmitoyl transferase (Gao et al., 2011; Bonzon-Kulichenko et al., 2009; Unger & Roth, 2015). Persistent elevation of circulating Lep also appears to induce resistance at the level of the Lep receptor, which accounts for attenuated potency of Lep to alleviate the accumulated cytotoxic Cer (Gao et al., 2011; Bonzon-Kulichenko et al., 2009; Unger & Roth, 2015). Our data suggest a crosstalk between Lep’s activity and de novo Cer synthesis. Lep functions well as a predictor of PE early in gestation, while Cer (d18:1/25:0) performs better at mid-gestation. The Lep/Cer (d18:1/25:0) ratio has a better predictive performance than Lep or Cer (d18:1/25:0) levels alone. Our findings revealed a correlation between the biological patterns of the two markers during PE progression, which might add value to existing knowledge about the Lep-Cer relationships.

Our study has several limitations. First, the sample sizes of the cohorts were small and lacked racial heterogeneity—thus, the generalizability of the results awaits larger and more racially diverse study populations.
Second, longitudinal collections of blood samples were not evenly distributed over gestation. Finally, we did not investigate the exact tissue of origin, where Lep is overexpressed in PE women. By using a conditional knock-in placental Lep transgenic mouse model, it may be possible to elucidate the mechanistic role of placental Lep in the pathogenesis of PE early in pregnancy.

In conclusion, the disruptions of gestational homeostasis involving placenta-related biological networks are important factors contributing to the pathophysiology of PE. Lep, an endocrine regulator of body energy repletion, and Cer (d18:1/25:0), a bioactive metabolic messenger downstream of Lep, were identified by the multi-omics discovery to be significantly up- and down-regulated in the maternal circulation of women with PE. The Lep/Cer (d18:1/25:0) ratio was demonstrated to provide augmented predictive power in differentiating PE from a pregnancy without PE before a confirmatory diagnosis can be made. The Lep/Cer (d18:1/25:0) ratio, with an earlier elevation in gestation, is a superior prognostic marker than the sFlt-1/PlGF ratio. If validated as a laboratory developed test or in vitro diagnostics, the deployment of the Lep/Cer ratio test to assess PE and proactively manage asymptomatic early pregnancies should have profound impact on PE care.

MATERIALS and METHODS

Meta-analysis of placental gene expression

Six PE placenta expression studies from Gene Expression Omnibus (GEO) datasets (Nishizawa et al, 2007; Sitras et al, 2009; Nishizawa et al, 2011; Tsai et al, 2011; Jebbink et al, 2015; Blair et al, 2013) were combined and subjected to multiplex analysis with the method as we previously developed (Chen et al, 2010; Morgan et al, 2010). We calculated the meta-fold change of each gene across all studies. For gene expression measurements, this corresponds to combining fold-changes across studies to identify a meta-fold-change that is an amalgamation of the constituent studies. We took a linear combination of effect sizes (fold-changes in this case), weighted by the variance in the effect size within each study, with the confidence intervals combined with the same weights. This means that studies with larger intra-study variation (noise) contribute less to the overall estimate of fold-change. The meta p-values were obtained by Fisher’s method. Significant genes were selected if they were measured in five or more studies and the meta effect p value was less than 4.5×10⁻⁵. This effort identified Lep as the leading protein biomarker candidate. We also compared the expression of Lep transcript between non-PE and PE women in individual datasets.

Study population and blood collection
Two independent cohorts of pregnant women were assembled for this study. The testing cohort was composed of serum samples collected between 25 and 31 wks’ of gestation from women with or without PE purchased from ProMedDX Inc. (Norton, MA). Each woman had one sample collected. All PE samples were collected at the time of confirmative diagnosis. The validation cohort included pregnant women who participated in a longitudinal study sponsored by the March of Dimes Prematurity Center at Stanford University between November 2012 and May 2016. Each woman had multiple samples collected from 5 to 29 wks’ of gestation and prior to PE diagnosis. Study approval was obtained from ProMedDX Inc. and the Institutional Review Board at Stanford University. Written informed consent was obtained from all participants.

The diagnosis of PE was made according to the American College of Obstetricians and Gynecologists criteria (Hypertension in Pregnancy) as follows: a persistent systolic blood pressure ≥140 mmHg, or a diastolic blood pressure ≥ 90 mmHg after 20 wks’ of gestation in a woman having a previous normal blood pressure in conjunction with one or more of the following: new-onset proteinuria, new-onset thrombocytopenia, impaired liver function, renal insufficiency, pulmonary edema, or visual or cerebral disturbances in the absence of proteinuria. Early-onset PE was defined as PE that develops before 34 wks’ of gestation, whereas the late-onset PE develops at or after 34 wks’ of gestation.

Enzyme-linked immunosorbent assay (ELISA)

Serum concentrations of Lep, sFlt-1, and PlGF were measured by quantitative sandwich ELISA using species-specific commercial kits from R&D System Inc. (Minneapolis, MN). The measurements were implemented for sera from both testing and validation cohorts by following the protocols provided by the manufacturer. Briefly, the serum samples were appropriately diluted with the calibrator diluent into the dynamic range and seeded onto 96-well plates coated with a monoclonal antibody that was specific for the targeted protein. Following 2-hr incubation at room temperature and adequate washing steps, another monoclonal antibody conjugated with horseradish peroxidase was added to the bound protein of interest. After washing away all unbound substances, a substrate solution was added to initiate the colorimetric reaction, and the absorbance was read out at 450 nm for measurement and 540 nm for correction using a Synergy HTX multi-mode reader from BioTek (Winooski, VT). The concentration of targeted protein was calculated by plugging the absorbance value back into the calibration curve and then multiplying the dilution factor.
LC/MS/MS analysis

Serum concentrations of 16 Cers and 10 DHCers were measured by liquid chromatography-tandem mass spectrometric assay. The measurements were implemented for sera by the analytical methodology as previously described (Huang et al, 2020a). In brief, 10 µL of serum was extracted with methanol containing deuterated Cers to remove the proteins. Following vigorous vortex and centrifuge, 10 µL of supernatant was injected onto a C18 reverse phase column, separated by an isocratic elution program using a mixture of methanol and 2-propanol as the mobile phase, and detected by a TSQ Quantiva tandem mass spectrometer from Thermo Fisher (San Jose, CA) using selected reaction monitoring with scheduled retention time windows. The method employed 13 light Cers as reference standards and 4 heavy Cers as internal standards for quantitation. The matrix-matched calibration curves were established across biologically relevant concentrations using the de-lipidized serum for targeted Cers and DHCers, and linear regression fitting with a weighting factor of 1/x² was applied for building the calibration. The concentrations of targeted Cers and DHCers were calculated by plugging the analyte-to-IS response ratios into the corresponding calibration curves using XCalibur 4.0 software package from Thermo Fisher. The method was validated for the lower limit of quantitation, linearity, precision, accuracy, recovery, stability, and carryover according to 2018 FDA bioanalytical guideline for industry.

Statistical analyses

The differentiating power of each gene in non-PE and PE placental tissues from multiple GEO datasets was combined by meta-analysis. The optimal Cer marker in women’s serum was determined by Mann–Whitney U test P-value, fold change, and AUC in the testing cohort. Performance of Lep, the optimal Cer marker, and Lep/Cer ratio in predicting PE was measured in the validation cohort by calculating AUC, sensitivity, specificity, PPV, and NPV. A time-to-event analysis was performed to calculate the gap between the time of prediction and the time of confirmatory diagnosis of PE. Results were compared with a reference point sFlt-1/PIGF ratio. Statistical analyses were preformed using R packages (R Core Team, 2014).
Acknowledgements

We thank our colleagues in the March of the Dimes Prematurity Research Center at Stanford University and Pediatrics Proteomics Group for critical discussions.

Author contributions: XBL, KGS, and HJC contributed to concept development and design.

JY, RJW, and DKS contributed to the acquisition of data.

QH, SH, XY, JY, ZL, JS, ZL, ST, WL, XZ, LM, SL, RJW, GMS, DKS, JCW, and DBM contributed to the analysis and interpretation of data.

QH and SH drafted the manuscript.

XY, JY, ZL, JS, ZL, ST, WL, XZ, LM, SL, RJW, GMS, DKS, HJC, JCW, DBM, KGS, and XBL critically revised the manuscript.

All the authors gave final approval of the version to be submitted and agreed to be accountable for all aspects of the work.

Data and materials availability: The datasets used and/or analyzed in this study are available upon request to the corresponding author.

Conflict of interest

The authors declare that they have no conflicts of interest.

Funding

None.

Hypertension in Pregnancy

Morgan AA, Khatri P, Jones RH, Sarwal MM & Butte AJ (2010) Comparison of multiplex metanalysis techniques for understanding the acute rejection of solid organ transplants From 2010 AMIA Summit on Translational Bioinformatics

Circulation Research 100: 88–95
Figure 1. Schematic diagram of the study design.
Figure 2. Meta-analysis identified differentially expressed genes in placentas from preeclamptic (PE) women. Volcano plot, fold changes (FC) on the X-axis and –log(P) on the Y-axis, was used to evaluate the performance of each placental gene that differentiates PE from non-preeclamptic (non-PE) women.
Figure 3. Transcriptional quantification of leptin (Lep) genes: a comparison between non-preeclamptic (PE) and preeclamptic (PE) placental expressions at delivery.
Figure 4. Comprehensive mass spectrometric analyses of 26 Cers/DHCers for preeclampsia (PE) diagnosis in the testing cohort. A: Fold change of each analyte between non-preeclamptic (non-PE) and preeclamptic (PE) women. A total of 11 Cers had $P < 0.05$. B: Area under curve (AUC) comparison between Lep/Cer(d18:1/25:0) ratio and other Lep-Cer combinations using each of the significant Cers in conjunction with Lep. DeLong test P were calculated (the y-axis). Lep: leptin. Cer: ceramide. DHCer: dihydroceramide.
Figure 5. Sample collection timelines from the validation cohort: Serial blood sampling from each non-preeclamptic (PE) and preeclamptic (PE) woman at different gestational ages (GAs). Times of sample collection, delivery, and confirmatory PE diagnosis of each woman (denoted by each row) are represented by black circles, black squares, and red-filled triangles, respectively.
Figure 6. Comparisons of maternal serum levels between non-preeclamptic (PE) and preeclamptic (PE) pregnancies in the validation cohort. Left: Lep/Cer (d18:1/25:0) ratio; Right: sFLT-1/PIGF ratio. Lep: leptin. Cer: ceramide.
Figure 7. Comparative analysis between the ratios of Lep/Cer (d18:1/25:0) and sFLT-1/PIGF in predicting impending preeclampsia (PE). X-axis: the duration of time (wks) from the sampling to PE confirmatory diagnosis. Y-axis: the percentage of the PE women who were identified as high-risk within the specified duration before a confirmatory diagnosis. Lep: leptin. Cer: ceramide. wks: weeks.
Lep/Cer (d18:1/25:0) ratio

<table>
<thead>
<tr>
<th></th>
<th>PE</th>
<th>Non-PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classified as PE</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>Classified as Non-PE</td>
<td>3</td>
<td>18</td>
</tr>
</tbody>
</table>

Predictive performance at 5-25 weeks

<table>
<thead>
<tr>
<th>Marker</th>
<th>Sample GA (wks)</th>
<th>Sensitivity (95% CI)</th>
<th>Specificity (95% CI)</th>
<th>PPV (95% CI)</th>
<th>NPV (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lep/Cer (d18:1/25:0) ratio</td>
<td>5-25</td>
<td>0.85 (0.62-0.97)</td>
<td>0.50 (0.68-0.99)</td>
<td>0.89 (0.69-0.97)</td>
<td>0.86 (0.68-0.95)</td>
</tr>
<tr>
<td>sFLT-1/PIGF ratio</td>
<td>5-25</td>
<td>0.40 (0.19-0.64)</td>
<td>0.45 (0.23-0.68)</td>
<td>0.42 (0.27-0.59)</td>
<td>0.43 (0.29-0.58)</td>
</tr>
</tbody>
</table>

Figure 8. Individual-level performance of the Lep/Cer (d18:1/25:0) ratio in predicting impending preeclampsia (PE).

Table I. Microarray datasets for meta-analysis on leptin (Lep) levels in placentas from non-preeclampsia (PE) and PE women

<table>
<thead>
<tr>
<th>Study</th>
<th>Non-PE, n</th>
<th>PE, n</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSE4707</td>
<td>4</td>
<td>5 early-onset, 5 late-onset</td>
</tr>
<tr>
<td>GSE10588</td>
<td>26</td>
<td>17 severe PE</td>
</tr>
<tr>
<td>GSE24129</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>GSE25906</td>
<td>37</td>
<td>23</td>
</tr>
<tr>
<td>GSE44711</td>
<td>8</td>
<td>8 early-onset</td>
</tr>
<tr>
<td>GSE54618</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Characteristic</td>
<td>Preeclampsia (PE)</td>
<td>Non-PE</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>n = 7 (46.7%)</td>
<td>n = 8 (53.3%)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>African-American</td>
<td>2 (28.6%)</td>
<td>1 (12.5%)</td>
</tr>
<tr>
<td>Asian</td>
<td>2 (28.6%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>3 (42.8%)</td>
<td>6 (75.0%)</td>
</tr>
<tr>
<td>Other</td>
<td>0 (0%)</td>
<td>1 (12.5%)</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>23.1±5.8</td>
<td>27.0±4.9</td>
</tr>
<tr>
<td>Wks’ GA(^a)</td>
<td>27.8±1.8</td>
<td>28.9±2.0</td>
</tr>
</tbody>
</table>

\(^a\)Time of blood collection
Table III. Maternal serum leptin (Lep)/Cer (d18:1/25:0) ratio at 25–31 wks’ GA is a strong marker of preeclampsia (PE) in Cohort I.

<table>
<thead>
<tr>
<th>Marker</th>
<th>P^a</th>
<th>Fold Change</th>
<th>AUCb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lep</td>
<td>0.02</td>
<td>2.97</td>
<td>0.875</td>
</tr>
<tr>
<td>Cerc (d18:1/25:0)</td>
<td>0.03</td>
<td>0.88</td>
<td>0.839</td>
</tr>
<tr>
<td>Lep/Cer (d18:1/25:0) ratio</td>
<td>0.006</td>
<td>4.04</td>
<td>0.911</td>
</tr>
</tbody>
</table>

aMann–Whitney U test

bAUC: area under the curve

cCer: ceramide
Table IV. Demographics of Cohort II. GA: gestational age. PE: Preeclampsia.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Non-PE (n = 20)</th>
<th>PE (n = 20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>20 (100)</td>
<td>9 (45)</td>
</tr>
<tr>
<td>Asian</td>
<td>0 (0)</td>
<td>5 (25)</td>
</tr>
<tr>
<td>African-American</td>
<td>0 (0)</td>
<td>1 (5)</td>
</tr>
<tr>
<td>Other</td>
<td>0 (0)</td>
<td>5 (25)</td>
</tr>
<tr>
<td>Age, yrs</td>
<td>31.9±4.8</td>
<td>31.8±6.0</td>
</tr>
<tr>
<td>GA at delivery, wks</td>
<td>39.5±1.2</td>
<td>36.7±3.3</td>
</tr>
<tr>
<td>Early-onset PE (Diagnosed < 34 wks’ GA), n (%)</td>
<td>NA</td>
<td>5 (25)</td>
</tr>
<tr>
<td>Diagnosed with severe PE, n (%)</td>
<td>NA</td>
<td>10 (50)</td>
</tr>
</tbody>
</table>