The long-term success of mandatory vaccination laws at implementing world’s first vaccination campaign in rural Finland

Susanna Ukonaho¹, Virpi Lummaa¹*, Michael Briga¹*

¹ Department of Biology, University of Turku, Finland

*co-senior authors

Short title: Vaccination law effectiveness
Abstract:

Infectious diseases are a major public health concern and socio-economic burden at all ages, but children are by far the most vulnerable to infections. In high income countries, infectious diseases are on the rise, a phenomenon in part attributed to the recent surge of vaccination hesitancy. To combat vaccination hesitancy, several countries recently made vaccinating children mandatory, but the effectiveness of such vaccination laws in increasing the vaccination coverage remains debated and the long-term consequences are unknown. Here we quantified the consequences of vaccination laws on the vaccination coverage monitoring for a period of 63 years world’s first vaccination campaign against the highly lethal childhood infection smallpox in rural Finland. We found that annual vaccination campaigns were focussed on children up to 1 year old, but that their vaccination coverage was low and declined with time until the start of the vaccination law, which stopped the declining trend and was associated with an abrupt coverage increase of 20 % to cover >80 % of all children. The spatio-temporal variance in vaccination coverage decreased with time but this was not directly associated with the vaccination law. Our results indicate that vaccination laws had a long-term beneficial effect at increasing the vaccination coverage and will help public health practitioners to make informed decisions on how to act against vaccine hesitancy and optimize the impact of vaccination programmes.

Key Words:

Vaccination law, vaccination coverage, vaccine hesitancy, historical Finland, societal development
1. Introduction

Infectious diseases are a major public health concern and socio-economic burden at all ages (1), but children are by far the most vulnerable to infections (2). In many low and middle-income countries, pertussis and measles remain among the top ten of all-cause mortality for children below age five. In high income countries, these infections are currently on the rise (3,4), despite the ready availability of vaccines.

One major factor driving the increasing burden of childhood infections in high-income countries is vaccine hesitancy, i.e. partial or delayed acceptance or refusal of vaccination despite the availability of vaccines (5). This vaccine hesitancy can stem either from passive neglect or active refusal and can arise for example from physical (e.g. poor accessibility and long distances) or psychological reasons (e.g. lack of communication, health literacy and cultural appropriateness) (5). Vaccine hesitancy is a key concern for public health institutions, because vaccination is our main tool to reduce and ultimately reach the local elimination of childhood infections, a target of many national public health institutions and of the World Health Organization (WHO) (6). For the childhood infection measles and pertussis, reaching elimination requires a vaccination coverage of 95 and 98% of the population respectively (7,8), and such levels of vaccination coverage that cannot be achieved with the current levels of hesitancy in high-income countries (9).

One strategy to combat vaccination hesitancy is to adopt vaccination laws, i.e. make vaccination compulsory. Within the last five years, several European countries have adopted vaccination laws, for example in Italy since 2017 children are required to be vaccinated against ten childhood infections to be allowed to public schools and similar laws have been adopted in France (2018) and Germany (2020). However, to what extent vaccination laws are effective at increasing vaccination coverage is debated (10–15). On the one hand, vaccination laws can increase vaccination coverage, but on the other hand vaccination laws can trigger a protest response and increase vaccination refusal. So far, preliminary studies and short-term monitoring indicate that recent vaccination laws have been successful at generating a short-term increase in vaccination coverage in Italy and France (16,17) and in California, where a recent vaccination policy eliminated nonmedical exemptions from school entry requirements (18). However, to what extent this is a general result and whether the increase lasts on the long-term remain unknown.

In this study, we quantified the vaccination coverage and the long-term impact of vaccination laws on the vaccination coverage and its spatio-temporal dynamics during world’s first vaccination program against smallpox in 19th century Finland. In brief, smallpox was one of
the most lethal diseases in human history, affecting especially European and Native American populations (19–21). For example, in our study population in 18th and 19th century Finland, smallpox was a major cause of death in children, killing up to 15% of Finland’s population around 1800 (22,23). The smallpox vaccination campaign started in Finland in 1802 and qualitative historical records indicate it was met with high hesitancy (24,25). Despite continuing opposition to vaccination, the Finnish government adopted a vaccination decree in 1883, enforced from 1885 onwards, which required mandatory vaccinations for all children under the age of two as well as for the anyone in the population who had not already been vaccinated (26).

For the purpose of this study, we digitized a series of unique historical vaccination records (63 years, 1800 pages and 46,000 individuals) that were maintained by the local church and the district doctor from the first vaccination campaign against smallpox in eight rural parishes of Finland (Fig. 1A, Fig. S1). Records contained, per parish and year, the name, parent’s occupation, date and age of people who were called for vaccination, the date of the follow-up examination, and the presence or absence from vaccination and whether the vaccination was a success based on the reaction from the vaccine (effective, mild or no reaction) (Fig. S1). To estimate vaccination coverage per age class, we combined these individual-based vaccination records with church-maintained records on births and deaths from a newly available high-resolution long-term database provided by the Genealogical Society of Finland.

Here we used these records for two specific aims. First, we described the seasonal and annual dynamics of the smallpox vaccination campaigns in rural Finland and which age classes were targeted. Little is known on how the smallpox vaccination campaign was implemented in the 19th century and to what extent it was successful (20), especially in rural areas where vaccination hesitancy remains high even today in many parts of the world (27). Second, we tested two specific hypotheses, namely: did the vaccination law cause (i) a long-term increase in vaccination coverage and (ii) a long-term decrease in variance in vaccination coverage. Increasing vaccination coverage and stabilizing its spatio-temporal variance are important because high variance can create pockets of susceptibles from which epidemics can re-occur (28). The high vaccine hesitancy in the 19th century together with the rare long-term monitoring of vaccination coverage after the vaccination law provide a unique opportunity to quantify the long-term impact of vaccination laws in a high-opposition setting which is not yet possible in countries that recently implemented vaccination laws.
3. Results

3.1. Seasonality and age distribution of the vaccination campaign

Here we present data covering eight rural parishes in South-West Finland (Fig. 1A), with 26,328 records (57%) during the 46 years of the pre-mandatory era from 1837 to 1882 (average 572 records per year) and 19,935 records (43%) during the 17 years of mandatory era from 1883 until 1899 (average 1173 records per year; Table 1).

During both eras, vaccination campaigns started in May or June, occurred predominantly in summer and often ended in August or September or occasionally as late as October or November (Fig. 1B). This seasonal pattern was confirmed by wavelet analysis, where we observed a statistically significant annual vaccination periodicity (p<0.05), both on average over the whole observation period (p<0.05, Fig. S2A) and in the time dependent analyses (p<0.05, Fig. S2B).

We then investigated the age distribution of the people vaccinated during the campaigns. There was a clear bias towards children under one year, with in the pre-mandatory era on average 69% of the records being under age one, 21% between one and three years, 5.3% between three and five years and 4.5% five years old or older ($\chi^2=1143, p<0.0001$, Fig. 2A). In the mandatory era, the bias towards one-year olds was 10% higher at 80% of the records and this increase was statistically significant ($\chi^2=39.73, p=2.9e-10$, Fig. 2A). We did not observe a lower limit for the age at first vaccination (Fig. 2B): 872 of the 34,496 records (2.5%) of the children under the age of one were below the age of 3 months. Thus, there was a bias to vaccinate before age one which increased with time and with no apparent lower age limit.

3.2 Spatio-temporal dynamics of vaccination coverage

The number of vaccinations increased with time (Fig. 2A, Table S1A). Threshold models showed that this increase accelerated after the break point in 1871 (1871<4AICCI<1871; Fig. S4A) and this result was supported by gamm models (Fig. S5A&B). This break point coincided shortly after the drop in births during the famine years 1867-68. Because vaccination dynamics can be driven mostly by the dynamics of births (Fig. 2A), we studied birth-independent spatiotemporal dynamics of vaccinations by using vaccination coverage, i.e. the number of individuals vaccinated relative to the number of individuals in the age class and focused the analyses below on children until age one year.

We tested the hypothesis that the vaccination law increased the vaccination coverage. In the pre-mandatory era, the vaccination coverage was on average 68% (SD=27.8,
18.7<95CI<147) and in the mandatory era this increased with 20% to 88% (SD=21.5,
57.4<95CI<143; Fig. 3). Analysing these time series with threshold models showed an abrupt
increase in vaccination coverage in 1882 (1882<4AICCI<1882; ΔAICc relative to a linear
increase=-30.4; Table S1B; Fig. 4, Fig S4B). Before the threshold the vaccination coverage
decreased with time, while after the threshold we observed an increase, where the 95%CI
coefficient before the threshold is statistically significant but after the threshold overlaps with
zero and hence is not significant (respectively: β₁=-4.27, -8.35<95CI<-0.20, p=0.04; β₂=9.22,
-6.89<95CI<25.33; Table S1B). Gamm models supported the conclusions of threshold
models with the gam derivative indicating the steepest increase in coverage in 1882 (Fig.
S5C&D). Hence, the implementation of the vaccination law was associated with (i) a stop in
declining coverage and (ii) an abrupt 20% increase in coverage which (iii) persistent on the
long-term.

We then tested whether the variance in vaccination coverage changed over time and Breusch-
Pagan test indicated a decrease in variance (ΔAICc=-15.49). We tried to decompose whether
this decrease in variance is due to a spatial (between parishes) and/or a temporal (between
years) component. Vaccination coverage varied substantially and consistently between
parishes: parish identity captured 9.0% of the variance in the pre-mandatory era which
increased to 46% in the mandatory era (model in Table S1B) with a repeatability of respectively
0.083 (0.00<95CI<0.21) and 0.32 (0.069<95CI<0.55). The parish-level SD and CV in
vaccination coverage decreased over time and showed an abrupt change around 1873 (SD:
1869<4AICCI<1876, CV: 1872<4AICCI<1874; Table S1C & S1D; Fig. 3B, Fig. S4C&D) and
gamm models confirmed these conclusions (Fig. S5E-H). The interannual SD decreased as
well with time, from 12.94 in the pre-mandatory era to 6.48 in the mandatory era (Breusch-
Pagan test p=0.46). Hence the variance in vaccination coverage stabilized between parishes
and over time, but the parish-level stabilization started approximately ten years before the
introduction of the vaccination law.
4. Discussion

Commonly preventable childhood infections are on the rise in many contemporary high-income countries following increases in vaccination hesitancy, which has led to vaccination laws against infections such as measles and pertussis e.g. in Europe and Australia. However, we know almost nothing on the long-term effects of vaccination laws on vaccination coverage and its dynamics. In this study, we show that the world’s first vaccination campaigns in rural Finland was mainly executed during the summer, often in the middle of farming season and most of the vaccinated individuals were young children under the age of one year. We show an abrupt increase in vaccination coverage increase which coincided with the start of a vaccination law in Finland and persisted for at least 15 years. However, we also found differences in vaccination coverage between parishes, and although spatio-temporal variance in vaccination coverage decreased with time, this variance persisted and its sudden decrease ten years before the vaccination law appeared not to be associated with the vaccination law. Here we discuss three implications of our results the impact of vaccination campaigns and vaccination policy.

First, one notable characteristic of the campaign was that children seemed to be vaccinated without lower age limit. Smallpox epidemics were still prevalent during the 19th century Finland and as vaccinators travelled to rural areas only once a year, early vaccination may at first hand seem the optimal solution. However, we now know that early vaccination can be ineffective, for example through maternal blunting, where maternal antibodies of vaccinated mothers interfere with infant immune response and lower the infant’s responsiveness to vaccines (46), hence for example in contemporary societies a recommended age at first vaccination of at least three months for several childhood infections and one year for smallpox (47). This ineffective early vaccination likely contributed to later smallpox outbreaks. In addition, early vaccination can also increase the risk of complications, especially central nervous system disease, including postvaccinial encephalopathy (PVE) (47,48), which could cause an increase in vaccine hesitancy, although our results show no evidence of such response.

Second, low vaccination coverage in rural areas is a challenge that contemporary vaccination campaigns try to solve, especially in low and middle income countries (49–51). Increasing their vaccination coverage is important because pockets of low vaccination coverage can be a source for outbreaks towards other areas (28). Our finding of repeatable parish-specific vaccination coverage show that vaccination coverage is a geographically local characteristic. The reasons behind the poor and fluctuating coverage in rural communities are complex (5,49,50), but at least two possibilities stand out. Firstly, remote parishes were often more difficult to access for vaccinators and possibly less well managed than more urban parishes, a characteristic also
found in contemporary societies (52). Secondly, people living in remote rural parishes might be less motivated, more hesitant or even completely opposed to vaccination (53,54). Although we observed a decline in the spatio-temporal variation in vaccination coverage, indicating improvements in the management of the vaccination campaign, the reasons behind this decline remain to be identified.

Finally, recent estimates on the growth of the anti-vaccine movement show an alarming ability to reach and recruit vaccine-hesitant individuals (55). Finland’s smallpox vaccination campaign 200 years ago was also initially likely met with high hesitancy (26). The vaccination decree introduced in 1883 and enforced after 1885 required mandatory vaccinations for all children under the age of two as well as for anyone in the population who had not already been vaccinated. Our results show an abrupt increase in the vaccination coverage at the start of the vaccination law. Similarly, short-term studies in contemporary societies observed immediate increases in vaccination coverage after the introduction of the vaccination laws (16,56) and our study suggested that the observed increases will persist on a longer term. In our study the increase in vaccination coverage associated with the start of the vaccination law could be due to a law-abiding decrease in vaccine hesitancy or alternatively due to a sudden improvement in vaccine access or delivery. In the latter scenario, we would also expect sudden improvements in vaccine access or delivery to also cause abrupt changes in the variance in vaccination coverage, a result which we do not find. This indicates that the vaccination law increased people’s incentive to get vaccinated and is in contrast with the stabilisation (decreasing SD and CV) in vaccination coverage that we observed a decade before the vaccination law, which probably reflects an improvement in Finland’s access to vaccines.

The reasons behind vaccine hesitancy remain complex and hence other measures than vaccination laws, such as training medical professionals about vaccines, actively recommending vaccines and good communication with the lay public are also needed to increase the vaccination coverage (15,57). Vaccination laws should be implemented in association with clear and consistent communication and these can help reach infection-specific thresholds for herd immunity and subsequent elimination or eradication (28,58). Our study indicates that vaccination laws will be an effective long-term tool in the public health battle to increase vaccination coverage and towards the elimination of childhood infections, even in socio-demographic contexts (rural areas, pre-health care periods) where vaccines were met with high reluctance.
2. Materials and methods

2.1 Study population and data collection

Vaccination records were manually photographed and digitised from extensive church records held in Finnish national and provincial archives. These data include details of the villagers and their lives, that were by law required to be collected by local clergymen from 1749 onwards. The clergymen recorded the name, address, parents’ occupation, age, and the level of success of the vaccination (as indicated by reported reaction to the vaccine: effective, mild or no reaction) for each person receiving the vaccination at a given time, as well as previously vaccinated, absent or refused individuals (Fig. S1). We obtained data from eight rural parishes (Honkajoki, Ikaalinen, Jämijärvi, Karvia, Kustavi, Parkano, Rymättylä, Tyrvää) from 1837 until 1899, but we lacked vaccination records from 1847-1851, 1854 and 1856-1858 for all parishes excluding Ikaalinen and Tyrvää, which only lacked campaign season data for these years (Fig. S3). These records include information on a total of 46,232 vaccinations, 26,328 records from pre-mandatory and 19,935 records from mandatory era (Table 1).

In order to estimate the number of vaccinated children per age group, we gathered birth and death records for each parish from the national and provincial archives, the Genealogical Society of Finland and Finland’s Family History Association digitized archives. These records consisted of yearly births and deaths per age cohort (e.g. 0-1, 1-3, 3-5), which we used to calculate the number of individuals per age cohort per parish. We estimated vaccination coverage based on the church records and total cohort sizes by calculating the yearly proportion of vaccinated per cohort and parish from 1837 to 1899. Every five to ten years we had review tables of age-specific cohort sizes per parish from the historical records which confirmed our annually estimated cohort sizes.

2.2 Statistical analyses

2.2.1. Seasonality and age distribution of the vaccination campaign

The first aim of the study is to describe the occurrence and seasonal dynamics of the vaccination campaigns. To detect whether vaccination campaigns were seasonally recurring we conducted wavelet analysis. In brief, wavelet analysis decomposes time series data using functions (wavelets) simultaneously as a function of both time (year of observation) and period, with a period of 12 months indicating a seasonally recurring pattern (29). We fitted a Morlet wavelet with the function ‘analyze.wavelet’ of the package ‘WaveletComp’ (30). We present the monthly analyses by plotting a period from six months to two years, where 12 months indicated a yearly seasonal signal. To circumvent any local peaks, we smoothened and detrended the
results following standard protocol (30). We determined statistical significance by comparing the observed periodicity from the data with that of 1000 ‘white noise’ simulated datasets with [95%] significance level.

We then describe the age structure of the vaccination campaigns. For these analyses, we used a matrix with the number of vaccinated per age group per year and divided age into four groups (0-1, 1-3, 3-5, 5+). We tested for the bias towards children under one year old using non-parametric permutation tests with the function ‘independence_test’ of the package ‘coin’ (31) based on 10,000 permutations.

2.2.2. Spatio-temporal dynamics of vaccination coverage

To quantify the dynamics in vaccination coverage over time and across parishes and whether the vaccination law affected these dynamics, we used generalized linear mixed models (glms) and generalized additive mixed models (gamms). We ran four statistical models with as the dependent variable either: (a) the number of vaccinations, (b) the vaccination coverage, (c) the parish-level annual SD in vaccination coverage and (d) the parish-level annual CV in vaccination coverage (for explanation see below, Table S1A-D). In all these models the predictor variable was year standardized to the mean of zero and an SD of one.

We performed all statistical analyses with the software R (version: 3.6.1, R Core Team, 2020). We fitted glms with the functions ‘glm’, ‘lme’ and ‘gls’ respectively of the packages ‘stats’ (R Core Team 2020) and ‘nlme’ (33). These gave consistent results and we here present the results using ‘glm’ for the number of vaccinated (Poisson distributed counts), ‘lme’ for vaccination coverage (Gaussian distributed) and ‘gls’ for parish-level SD and CV (Gaussian distributed with temporal autocorrelation, see below). To quantify the statistical ‘significance’ of predictor variables, we compared the model fits on the data with the second order Akaike Information Criterion (AICc; (34,35) using the function ‘AICc’ of the package ‘MuMIn’ (36). In brief, model selection ranks the models based on their AICc value, where better fitting models are indicated by lower AICc, models within 4 ΔAICc are considered plausible, and increasingly implausible up to 14 ΔAICc after which they are implausible (34,35).

To account for the fact that people are clustered into parishes, we included parish identity as a random intercept in the model (b), respectively the vaccination coverage analyses, which improved the model fit (ΔAICc=-29 in Table S1B). To have an idea of the importance of parish level differences, we reported the proportion of variance in the model explained by the random intercept and estimated the repeatability of parish-level differences with the function ‘rpt’ of the package ‘rptR’ (37). The repeatability is an intra-class correlation coefficient that captures
the between-parish variance (by parish identity as a random intercept) relative to the total variance and ranges from zero (no parish-level differences) to one (all variance in the dependent variable is explained by parish-level differences). We estimated the 95\% confidence intervals (95CI) around the repeatability based on 1000 bootstraps.

For model (a) number of vaccinations, we used Poisson distribution and for all other models (b-d) we used a Gaussian distribution. All model residuals were correctly distributed and fulfilled all other assumptions as checked with the function `simulateResiduals` of the package `DHARMa` (38). In the model (b), there was however heteroscedasticity as identified with the functions (i) `testQuantiles` from the package `DHARMa` (38), and (ii) the Breusch-Pagan test performing a linear model using as dependent variable the squared value of the conditional residuals of the model (b) and standardized year as predictor variable (39). In model (b), we corrected for heteroscedasticity by including the variance power (`varPower`) in the function weights (40,41). We then tried to identify two sources of changes in heteroscedasticity by decomposing vaccination coverage into a parish-level component and an annual component. For the parish-level component, we used as the dependent variable the annual parish-level SD and CV in vaccination coverage (respectively models (c) and (d), Table S1 C & D). To identify whether there was an annual component in heteroscedasticity we used the Breusch-Pagan test as described above on the annual mean in vaccination coverage (excluding parish-level variance) and using pre-mandatory and mandatory era as a two-level categorical predictor.

We controlled for temporal autocorrelation following (42) by including standardized year as an auto-regressive factor of order 1 (corAR1). In models of number of vaccinated (i) and vaccination coverage (ii), this worsened the model fit ($\phi=0.57\pm0.25$, ΔAICc=+155 for model b in Table S1B), indicating no temporal autocorrelation, a conclusion also supported with the function `acf` (ACF<0.1) of the package `stats` (R Core Team 2020). For these models, we hence presented the results without temporal autocorrelation, but analyses including temporal autocorrelation gave consistent results (not shown). Models (c) and (d), respectively parish-level SD and CV in vaccination coverage were autocorrelated and thus we included the corAR1 autocorrelation structure in these models.

To investigate whether there were abrupt changes in vaccination coverage or its spatio-temporal variance which coincided with the start of the vaccination law, we fitted threshold models following Douhard et al. (43) and Briga et al (44). In brief, for each model (a-d), we tested a series of threshold models, with one year interval between each threshold and identified the best fitting threshold model based on the model’s AICc value. To identify whether threshold models were appropriate at all, we compared the model fit of the best fitting threshold model...
with that of a linear model without threshold (Table S1 A-D). We identified the confidence
interval around the threshold year by including all models within 4 ΔAICc of the best fitting
threshold model (43,44), abbreviated as 4AICCI (Fig. S4 A, B, C & D). To confirm the results
of threshold models, we performed all analyses also using generalized additive mixed models
(gamms), with the function ‘gamm’ of the package ‘mgcv’, and to identify the year of change
(inflection points) we used their derivatives with the function ‘fderiv’ of the package ‘gratia’
(45). All gamm analyses confirmed the conclusions obtained from the threshold models (Fig.
S5 A-H).

Acknowledgements

Many thanks to Kimmo Pokkinen, Sara Itkonen and Tuija Koivisto for help with historical
data, to the National Archives of Finland for allowing us to digitize and use the vaccination
records and to Finland’s Family History Association and the Genealogical Society of Finland
for access to the birth and death data. We are grateful for the funding from the Doctoral
Programme in Biology, Geography and Geology, University of Turku (SU), the Academy of
Finland (292368, VL), ERC (CoG 648766, VL) and the Ella & Georg Ehrnrooth Foundation
(MB).
References

23. Briga M, Ketola T & Lummaa V. The immediate effectiveness of the world’s first vaccination programme against childhood infections in a developing society. In review.

24. Björkstén J. Vaccinationens historia i Finland II. Helsingfors; 1908.

25. Björkstén J. Vaccinationens historia i Finland, I. Helsingfors; 1902.

44. Briga M, Jimeno B & Verhulst S (2019). Coupling lifespan and aging? The age at onset of body mass decline associates positively with sex-specific lifespan but negatively with...
470 https://doi.org/10.1016/j.exger.2019.01.030

Figures and tables

Table 1. Overview of the data, where we describe year, population and sample size, average number of vaccinated per year per parish, average timing and vaccination coverage per age class and interannual and interparish standard deviation (SD) and coefficient of variation (CV) of vaccination coverage for both pre-mandatory and mandatory eras.

<table>
<thead>
<tr>
<th></th>
<th>Pre-mandatory era</th>
<th>Mandatory era</th>
</tr>
</thead>
<tbody>
<tr>
<td>Years</td>
<td>1837-1882</td>
<td>1883-1899</td>
</tr>
<tr>
<td>Average population size per parish</td>
<td>2600</td>
<td>3700</td>
</tr>
<tr>
<td>N vaccinated</td>
<td>26328</td>
<td>19935</td>
</tr>
<tr>
<td>Average n vaccinated per year per parish</td>
<td>108</td>
<td>148</td>
</tr>
<tr>
<td>Average [95CI] of month vaccinated</td>
<td>7.40 ± 0.018</td>
<td>6.72 ± 0.011</td>
</tr>
<tr>
<td>Average % of vaccinated that are under 1 year old</td>
<td>68.1</td>
<td>87.5</td>
</tr>
<tr>
<td>Average % of vaccinated between 2 and 5 years</td>
<td>16.3</td>
<td>10.3</td>
</tr>
<tr>
<td>Interannual -parish SD of vaccination coverage</td>
<td>27.8</td>
<td>21.5</td>
</tr>
<tr>
<td>Interannual -parish CV of vaccination coverage</td>
<td>40.9</td>
<td>24.6</td>
</tr>
</tbody>
</table>

Figure 1. Geographical and temporal distributions of the data, showing (A) map of the eight rural parishes in south-west Finland with a map of Northern Europe on the left and a zoomed-in map of south-west Finland on the right, and (B) the predominant seasonal timing of annual vaccination campaigns occurring in summer.
Figure 2. Smallpox vaccinations were biased towards the youngest age groups (A) with no apparent minimum age (B). The number of vaccinated per age group (A) and age distribution for children under the age of one year (B). The dashed black line in (A) indicates the number of annual births in the eight study parishes. The red line in (B) indicates contemporary recommendation for age at first vaccination, which is 3 months in Finland for most vaccines. For smallpox, the recommended age at first vaccination is one year (47).

Figure 3. The vaccination coverage increased after the introduction of vaccination law in 1883 (A) together with the decrease in the variance between parishes (B).
Figure 4. The temporal dynamics in vaccination coverage of children until age one year are best captured by a threshold model with an increase in vaccination coverage in 1882. Before the threshold, the vaccination coverage decreases with time, while after the threshold there is an increase but the 95% CI of both coefficients overlap with zero and hence are not statistically significant. The predicted values are plotted as a light grey line against the black observed datapoints and the grey bands represent the [95%] confidence intervals.
Supplementary material:

The long-term success of mandatory vaccination laws at implementing world’s first vaccination campaign in rural Finland

Susanna Ukonaho¹, Virpi Lummaa¹*, Michael Briga¹*

¹ Department of Biology, University of Turku, Finland

*co-senior authors

Figure S1. Illustration of Finnish historical vaccination records (Community: Ikaalinen, year: 1876, page 1). Columns represent (from left to right): I, ii, iii: Location, village and house; iv: Name and occupation of the parent (mother or father); v, vi: Names and birthdate of person called for vaccination; vii, viii: date of vaccination; ix, x: date of follow-up examination; xi-xiii: success of vaccination (successful, partial or no reaction); xiv-xv: absent from vaccination or follow-up examination. People who disagreed to vaccination are symbolised by ‘/’ or ‘x’ and do not have a date (not on this page); xvi: remarks and notes.
Figure S2. Wavelet periodogram (A) and wavelet power spectrum (B) for season at vaccination show a consistent average around one year from 1837 until 1899. A) A smaller peak can be observed at 6 months. Red dots represent significance at the 5% level and blue dots 10% level. The axis describe period in months on the y-axis and wavelet power levels on the x-axis. B) Legend describes wavelet power levels, where red indicates strong periodicity and green to blue signals weak periodicity. The blue gaps around 1850-1860 represent a gap in the data from all parishes at that time. The black line highlights the one-year mark in both plots.

Figure S3. The number of vaccinated individuals increased towards the end of the 19th century as monitored from 1837 to 1899.
Table S1. The model selection table indicated a quadratic increase in the number of vaccinated (count), vaccination coverage and coefficient of variation over time, but was not a significant predictor in standard deviation models. The table describes model type, model intercept, threshold intercept (Intercept2), scaled year coefficient, scaled threshold year coefficient (year2), period (before vs. after the law), model AICc, delta AICc, Akaike weight and threshold year for each dependent variable. The vaccination coverage model in B includes parish as a random variable. Best fitting models are indicated in italic.

<table>
<thead>
<tr>
<th>Model output</th>
<th>Model selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) Vaccination count</td>
<td></td>
</tr>
<tr>
<td>Linear</td>
<td>Intercept</td>
</tr>
<tr>
<td>No year-related change</td>
<td>6.51</td>
</tr>
<tr>
<td>Threshold</td>
<td>6.60</td>
</tr>
<tr>
<td>B) Vaccination coverage</td>
<td></td>
</tr>
<tr>
<td>Linear</td>
<td>Intercept</td>
</tr>
<tr>
<td>No year-related change</td>
<td>74.90</td>
</tr>
<tr>
<td>Threshold</td>
<td>75.20</td>
</tr>
<tr>
<td>C) Parish-level standard deviation in vaccination coverage</td>
<td></td>
</tr>
<tr>
<td>Linear</td>
<td>Intercept</td>
</tr>
<tr>
<td>No year-related change</td>
<td>23.29</td>
</tr>
<tr>
<td>Threshold</td>
<td>23.26</td>
</tr>
<tr>
<td>D) Parish-level coefficient of variation in vaccination coverage</td>
<td></td>
</tr>
<tr>
<td>Linear</td>
<td>Intercept</td>
</tr>
<tr>
<td>No year-related change</td>
<td>32.49</td>
</tr>
<tr>
<td>Threshold</td>
<td>32.43</td>
</tr>
</tbody>
</table>

CC-BY-NC-ND 4.0 International license It is made available under a perpetuity. is the author/funder, who has granted medRxiv a license to display the preprint in (which was not certified by peer review) preprint doi: https://doi.org/10.1101/2020.12.14.20247577; this version posted December 16, 2020. The copyright holder for this version posted December 16, 2020. The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
Figure S4. The number of vaccinated showed statistically significant threshold in 1871 (A, Table S1A), while the vaccination coverage showed a statistically significant threshold in 1882 (B, Table S1B). Both parish-level SD and CV models showed a statistically significant threshold in 1873 (C&D, Table S1C&D).
Figure S5. Gamm models show the steepest increase for number of vaccinated in 1871 (A) and vaccination coverage in 1882 (C), and for both parish-specific SD and CV a decrease starting from 1873 onwards (E&G).

Shown here are the predicted values (A, C, E, G) and the derivatives of the GAMM models (B, D, F, H) for vaccination count (eq. model Table S1A; A&B), vaccination coverage (eq. model Table S1B; C&D) and parish-specific SD (eq. model Table S1C; E&F) and parish-specific CV (eq. model Table S1D; G&H). Vaccination coverage models included parish identity as a random factor. All models used autocorrelation structure AR1 for year and estimated 95% confidence intervals (grey band) around the predicted slopes (blue line).