Lack of antibodies against seasonal coronavirus OC43 nucleocapsid protein identifies patients at risk of critical COVID-19

Martin Dugas1,*, Tanja Grote-Westrick2,*, Uta Merle4, Michaela Fontenay9,10, Andreas E. Kremer8, Richard Vollenberg3, Eva Lorentzen2, Shilpa Tiwari-Heckler4, Jérôme Duchemin9, Syrine Ellouze9, Marcel Vetter8, Julia Fürst8, Tobias Brix1, Claudia M. Denkinger6,7, Carsten Müller-Tidow6, Hartmut Schmidt3, Phil-Robin Tepasse3,*, Joachim Kühn2,*

1 Institute of Medical Informatics, University of Münster, Germany
2 Institute of Virology, Department of Clinical Virology, University Hospital Münster, Germany
3 Medizinische Klinik B (Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie), University Hospital Münster, Germany
4 Medizinische Klinik, Abteilung Innere Medizin IV, University Hospital Heidelberg, Germany
5 Medizinische Klinik, Abteilung Innere Medizin V, University Hospital Heidelberg, Germany
6 Division of Tropical Medicine, Center of Infectious Diseases, University Hospital Heidelberg, Germany
7 German Centre for Infection Research (DZIF), partner site Heidelberg University Hospital, Heidelberg, Germany
8 Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
9 Assistance Publique-Hôpitaux de Paris, AP-HP. Centre-Université de Paris, Hôpital Cochin, Service d'hématologie biologique, Paris, France
10 Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris France

*These authors contributed equally

Corresponding author: Prof. Dr. Martin Dugas, dugas@uni-muenster.de

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

The vast majority of COVID-19 patients experience a mild disease. However, a minority suffers from severe disease with substantial morbidity and mortality.

We report results from a non-interventional validation study comprising 248 patients (132 males, 116 females) with confirmed SARS-CoV-2 infections from three tertiary care referral centers in Germany and France. Overall median age was 60 years. The ICU group comprised more males, whereas the outpatient group contained a higher percentage of females. For each patient, the serum or plasma sample obtained closest after symptom onset was examined.

Patients with critical disease had significantly lower levels of anti-HCoV OC43 nucleocapsid protein (NP)-specific antibodies compared to other COVID-19 patients (p=0.025). OC43 negative inpatients had an increased risk of critical disease (adjusted odds ratio 2.81 [95% CI 1.10 - 7.87]), higher than the risk by increased age or BMI, and lower than the risk by male sex. Frequency of critical disease in COVID-19 inpatients was significantly different according to OC43 status (p=0.009): 23 of 32 (72%) OC43 negative, 46 of 92 (50%) OC43 below or with cutoff, 5 of 18 (28%) OC43 positive inpatients required ICU therapy, respectively.

Our results indicate that prior infections with seasonal human coronaviruses can protect against a severe course of COVID-19. Therefore, anti-OC43 antibodies should be measured for COVID-19 inpatients and considered as part of the risk assessment for each patient. Hence, we expect individuals tested negative for anti-OC43 antibodies to particularly benefit from vaccination against SARS-CoV-2, especially with other risk factors prevailing.

Trial Registration: DRKS00023322
Introduction

Approximately 10 to 20 percent of COVID-19 patients require hospital treatment and about a quarter of those need to be treated in intensive care units (ICU) [1]. In contrast, the majority of COVID-19 patients experience mild symptoms only. Known important risk factors are age, male sex, high body mass index and pre-existing comorbidities [2]. However, severe or fatal COVID-19 occurs also in seemingly healthy individuals without obvious risk factors. COVID-19 disease heterogeneity is still not well understood and complicates patient care.

There are several reports that cross-protection against SARS-CoV-2 might contribute to this phenomenon; for example, Grifoni [3], Le Bert [4] and Mateus [5] have described T cell responses to SARS-CoV-2 in unexposed human individuals. In a recent manuscript, Henss [6] have stated that "disease severity seemed to correlate with low NL63-neutralizing activities, suggesting the possibility of cross-reactive protection". In a survey of 1,186 convalescent patients with mild COVID-19 [7], contact to small children has been reported frequently (30.1% of participants). Potentially, childhood-related infections might modify disease severity of COVID-19 and thereby contribute to the low incidence of severe infections in small children [8]. Infections with human coronaviruses (HCoV) NL63, 229E, HKU1 and OC43 frequently occur in children and are a typical cause of common cold during the cold season.

A pilot study with 60 patients at University Hospital Münster reported less severe course of COVID-19 in patients with elevated levels of antibodies against seasonal human coronaviruses (sHCoV) OC43 and HKU1 [9; preprint under review], which like SARS-CoV-2 belong to the genus betacoronavirus of the subfamily orthocoronaviridae. To validate the findings from the pilot study, a study with an independent patient cohort was conducted according to the same protocol.

Materials and Methods

Patient cohorts

All patients in the pilot and the validation study showed SARS-CoV-2 infection as confirmed by RT-qPCR. For each patient, the serum or plasma sample obtained closest to onset of symptoms was examined. Critical disease was defined by invasive ventilation or ECMO therapy in intensive care units; severe disease by oxygen supplementation; moderate disease by hospitalization for other reasons without oxygen treatment; mild disease by limited clinical symptoms (fever, cough, diarrhea, myalgia, anosmia/ageusia) that were managed in an outpatient setting.

In the pilot study, 60 patients were analyzed in the context of the Coronaplasma Project (local ethics committee approval: AZ 2020-220-f-S) and COVID-19 biomarker study (ethics committee approval: AZ 2020-210-f-S) at the University Hospital Münster. This pilot study has enabled us to identify an association between antibody levels against sHCoVs and disease severity of COVID-19.

In the validation study, 248 COVID-19 patients (132 males, 116 females) treated at tertiary care referral centers in Heidelberg, Paris and Erlangen. Inclusion criteria were confirmed COVID-19 diagnosis and age 18 years or above. Only patients with limited therapeutic options due to severe preexisting conditions (terminal illness) were excluded. Overall median age was 60 years (range 18 - 96 years). Median age in the patient group with critical disease (ICU therapy) was 63, with moderate/severe disease (non-ICU) 61 and with mild disease (outpatient) 53 years, respectively. There was a significant age difference between these groups (p=0.017); COVID-19 outpatients were on average younger than inpatients.
Overall median body mass index (BMI) was 26.0 (range 16.9 - 45.3), in the ICU group 27.2, in the non-ICU group 26.0 and in the outpatient group 25.3. We observed a significant sex difference by type of therapy (p<0.001): While the ICU group comprised more males (54 males, 20 females), the outpatient group included more females (43 males, 63 females).

The Heidelberg University Hospital contributed 153 COVID-19 patients to the validation cohort (75 males, 78 females). This study was approved by the local ethics committee (ethics committee approval: S-148/2020) and informed consent was obtained from study participants. Enrollment started in March 2020. Median age for patients from Heidelberg was 60 years (range 19-90 years). Forty patients were diagnosed with critical disease, 20 with moderate or severe disease and 93 with mild disease, respectively. Median BMI was 26 (range 17 - 45). Overall, 51 patients showed comorbidities: diabetes mellitus (11), arterial hypertension (12), heart disease (9), hypothyroidism (6), kidney disease (4) and other comorbidities (9).

The second external validation cohort included 49 patients from Assistance Publique-Hôpitaux de Paris enrolled between March and April 2020 in Cochin hospital. All patients were informed and expressed their non-opposition to the study. This non-interventional study was approved by the local ethics committee (AAA-2020-08023). Median age for patients from Paris was 53 years (range 29-80 years). The cohort comprised 22 patients with critical disease, 14 with moderate or severe disease and 13 with mild disease, respectively. Median BMI was 26 (range 18 - 40). Nineteen patients had comorbidities: diabetes mellitus (8), arterial hypertension or cardiovascular disease (6), respiratory diseases (3) and other comorbidities (2).

The third external validation cohort included 46 patients from University Hospital Erlangen enrolled between March and June 2020. This study was approved by the local ethics committee (ethics committee approval: 174_20B) and informed consent was collected from study participants. Median age for patients from Erlangen was 65 years (range 18-96 years). Twelve patients were diagnosed with critical disease, 34 with moderate or severe disease. Overall, 35 patients showed comorbidities.

Antibody analyses
Antibody levels against sHCoVs and SARS-CoV-2 were determined with the immunoassay recomLine SARS-CoV-2 IgG from Mikrogen GmbH, Neuried, Germany. With respect to sHCoVs, this assay detects IgG antibodies directed against the nucleocapsid protein (NP) of HCoV 229E, NL63, OC43 and HKU1. Of note, this lab test was designed by the manufacturer for high specificity regarding NP-antibodies and does not pick up antibodies against S protein of sHCoVs. For SARS-CoV-2, the assay allows the detection of NP-specific and spike protein (S)-specific antibodies directed against the S1 subunit and the receptor binding domain (RBD). As in the pilot study, analyses were performed at the Institute of Virology/Department of Clinical Virology of the University Hospital Münster according to the manufacturer’s guidelines. To test precision and reliability, internal negative and positive control sera with known antibody reactivity against sHCoVs and SARS-CoV-2, respectively, were included and analyzed as given below. Immunoblot results were analyzed as described in the pilot study [9; preprint under review]. In summary, antibody levels were visually determined as ordinal values using the cutoff band of immunostrips as internal reference. Individual coronavirus-specific bands were rated on an ordinal scale as non-detectable (-), below cutoff (+/-), with cutoff intensity (+), above cutoff (++), and very strong intensity (+++), see also supplemental figure 1. Relative antibody levels were quantitatively determined with ImageJ (version 153, 64bit-Version for windows) [10] using the signal intensity of the cutoff band as internal reference (ratio HCoV-specific band to cutoff band). Standardized photographs from immunoassay assays were used for this
analysis. Laboratory analyses were performed blinded regarding patient outcome. Quantitative properties of densitometric immunoblot data were validated with a dilution series (supplemental figure 2). In addition, S1-specific IgG antibodies were analyzed by ELISA (Euroimmun, Lübeck, Germany) according to the manufacturer’s instructions.

Data processing and analysis

Demographical data, type of treatment and length of stay were extracted from the study databases at Heidelberg and Paris. Descriptive statistics and statistical tests were performed with R (version 3.6.1). Ordinal and numerical values were analyzed with exact Wilcoxon test, Kruskal-Wallis test, Chi-squared test, exact Fisher test, Spearman correlation test and binary logistic regression. 95% confidence intervals for odds ratios were calculated with R-package epitools. A two-sided p-value of 0.05 was considered significant.

Results

Presence of NP-specific IgG antibodies against sHCoVs

NP-specific IgG antibodies were detected for OC43 in 14%, for HKU1 in 31%, for NL63 in 41% and for NP229E in 26% of patients (n=248), respectively. No such antibodies were measured for OC43 in 21%, for HKU1 in 17%, for NL63 in 13% and for NP229E in 20% of cases (n=248). Antibody level below or with cutoff was found for OC43 in 65%, for HKU1 in 52%, for NL63 in 46% and for NP229E in 54% of patients (n=248).

sHCoV-specific IgG antibody levels in relation to symptom onset

We assessed sHCoV-specific IgG antibody levels in relation to symptom onset (days after start of COVID-19 symptoms) for the validation cohort. Figure 2 presents results from this analysis: We observed no systematic effect of the time point of sample collection on relative IgG antibody levels against HCoV OC43 and HKU1 NP. However, regarding HCoV NL63 and 229E, antibody levels were significantly correlated with time since symptom onset. Median time point of sample collection was 8 days for inpatients and 5 days for outpatients (p<0.0001).

[Figure 2]

Risk of critical COVID-19 for inpatients in relation to HCoV OC43 serostatus

Table 1 presents detailed patient counts for the validation cohort regarding HCoV OC43 serostatus and type of treatment. Frequency of critical disease in COVID-19 inpatients was significantly different according to OC43 status (p=0.009). OC43 negative inpatients required ICU therapy more frequently; thus the key result from the pilot study was validated.

[Table 1]

Figure 3 presents levels of sHCoV-specific IgG antibody levels on an ordinal scale for inpatients (ICU group compared to non-ICU group; without outpatients). The proportion of patients without sHCoV antibodies ("-"+) was increased for critical disease. This pattern was most pronounced for HCoV OC43: odds ratio (OR) 2.96 [95% CI 1.25 - 6.96], followed by HCoV NP229E (OR 1.73 [95% CI 0.73 - 4.10]), HCoV HKU1 (OR 1.43 [95% CI 0.61 - 3.35]) and HCoV NL63 (OR 1.36 [95% CI 0.49 - 3.80]).

[Figure 3]
OC43 serostatus as independent risk factor

Sex, age and BMI are known risk factors for COVID-19 severity. Thus, the association between HCoV OC43 antibody levels and these risk factors was analyzed (supplemental figure 3). There was no significant difference in HCoV OC43 antibody levels between males and females in the validation cohort (p=0.96). There was no significant association between HCoV OC43 antibody levels and age (p=0.13) as or BMI (p=0.93). Therefore, HCoV OC43 antibody levels may provide independent information in addition to known risk factors.

We performed multivariate analysis of our 142 inpatients to compare the effect size of OC43 with established risk factors age, sex and BMI. In binary logistic regression, absence of HCoV OC43-specific antibodies (adjusted odds ratio (AOR) 2.81 [95% CI 1.10 - 7.87]) and male sex (AOR 2.99 [95% CI 1.36 - 6.82]) were the strongest predictors for critical disease, while age (AOR 1.02 [95% CI 0.99 - 1.05]) and BMI (AOR 1.07 [95% CI 0.99 - 1.16]) did not reach statistical significance in this cohort. It has to be considered that median age of inpatients in our validation cohort was 61.5 years. Supplemental table 1 presents a risk stratification of COVID-19 inpatients by sex and OC43 serostatus derived from this multivariate analysis.

Length of stay and sHCoV-specific IgG antibody levels

Figure 4 presents length of stay (LoS) of hospitalised patients in relation to relative IgG antibody levels against sHCoV. Of note, a combination of high sHCoV antibody levels and long LoS occurred infrequently. Median length of stay for HCoV OC43-negative inpatients was 15 days, for OC43-positive inpatients 9.5 days (p=0.056).

Antibody levels against sHCoV in COVID-19 outpatients and inpatients

According to visual determination of band intensities, sHCoV-specific IgG antibodies were less frequently detected in COVID-19 inpatients with critical disease compared to all other COVID-19 patients. Supplemental figure 4 presents a comparison of critical disease (ICU group) with non-critical disease (non-ICU and outpatient groups). This pattern was most pronounced for HCoV OC43 (OC43 antibodies negative: odds ratio for critical disease 2.16 [95% CI 1.15 - 4.07]), followed by HCoV HKU1 (OR 1.57 [95% CI 0.79 - 3.14]), HCoV NL63 (OR 1.08 [95% CI 0.48 - 2.41]) and HCoV 229E (OR 1.32 [95% CI 0.68 - 2.57]). We performed multivariate analysis of the full validation cohort (n=248) to compare the effect size of OC43 with established risk factors age, sex and BMI. In binary logistic regression, absence of HCoV OC43-specific antibodies (AOR 2.30 [95% CI 1.10 - 4.82]) and male sex (AOR 3.91 [95% CI 2.05 - 7.79]) were the strongest predictors for critical disease. The effect size of OC43 was bigger than age (AOR 1.03 [95% CI 1.01 - 1.05]) and BMI (AOR 1.08 [95% CI 1.01 - 1.15]) in our validation cohort.

Supplemental Figure 5 shows relative sHCoV IgG antibody levels determined densitometrically. COVID-19 patients with critical disease (ICU group) presented with lower sHCoV antibody levels than patients with moderate/severe disease (non-ICU group). For HCoV OC43 and HKU1, median antibody levels were lower for outpatients compared to the non-ICU group, but higher in comparison to the ICU group.
SARS-CoV-2 antibody levels

Supplemental figure 6 presents results from SARS-CoV-2 IgG antibody measurements in the full validation cohort at first encounter. In general, patients with critical disease had higher SARS-CoV-2 IgG antibody levels compared to moderate/severe inpatients and outpatients. Additionally, IgG seroreactivity against SARS-CoV-2 S1 protein was determined by ELISA (Euroimmun). S1-specific antibody levels detected by ELISA closely matched results of the immunoblot assay (see supplemental Figure 7). There was no evidence for cross-reaction between NPOC43 and S1SARS2 on the antibody level (see supplemental Figure 8).

Discussion

Identification of vulnerable individuals is a key priority in the current stage of the pandemic to guide protective measures and to design vaccination strategies. Recently, we reported an association of antibody levels against OC43 with mild course of COVID-19 in a pilot study comprising 60 patients [9; preprint under review]. To corroborate our observations, we conducted a non-interventional validation study with 248 patients from three major tertiary referral centers. Thus, the key finding from the pilot study was confirmed: Patients with critical COVID-19 disease showed significantly lower levels of anti-HCoV OC43 NP-specific antibodies compared to COVID-19 patients suffering from mild to severe symptoms.

The validation study provided further insights into the characteristics of HCoV antibody levels during COVID-19: First, levels of antibodies against HCoV OC43 and HKU1 NP remain relatively stable during SARS-CoV-2 infection. At the very beginning of the pandemic, Wang et al. reported on increasing HCoV OC43 antibody levels during COVID-19 for a small number of patients [11]. However, we used a different laboratory test, which is specific for NP of HCoV OC43 and was designed to minimize cross-reactivity. In our setting IgG antibodies were measured, as these values can be considered as biomarkers for HCoV infection in the past. Second, absence of anti-HCoV OC43 antibodies is associated with increased length of hospitalization for COVID-19. In our validation cohort, median LoS was elevated by 5.5 days. HCoV OC43 antibody levels were not significantly associated with sex, age or BMI. Accordingly, a lack of HCoV OC43 antibodies can be considered an independent risk factor. Third, HCoV OC43 antibody levels are lower for patients with critical disease compared to COVID-19 patients suffering from mild to severe symptoms. In the outpatient group we observed a relatively high variation regarding sHCoV antibody levels. An adjusted odds ratio of 2.30 for HCoV OC43 seronegative patients regarding critical disease might look small at first sight. However, in our validation cohort the risk of HCoV OC43 seronegative patients was higher than the risk by increased age or BMI, and lower than the risk by male sex. It is widely accepted that individuals of high age should be vaccinated with priority. If absence of HCoV OC43-specific antibodies conveys more risk than high age, HCoV OC43 seronegative individuals will particularly profit from vaccination and should also be vaccinated with priority. Fourth, the analysis of COVID-19 inpatients yielded an increased risk for critical disease regarding HCoV OC43 seronegative patients. Of note, the HCoV OC43 related risk was clearly higher than the risk associated with high age or elevated BMI regarding inpatients. A recent study based on data from electronic medical records in the Boston area [12] has reported an odds ratio of 0.1 regarding ICU care for SARS-CoV-2 patients with antibodies for endemic coronaviruses, corresponding well to our findings. For this reason, we propose to determine HCoV OC43-specific IgG antibody levels upon admission of COVID-19 patients to the hospital for individual risk assessment. Fifth, COVID-19 outpatients differed in several characteristics as compared to inpatients: in our validation cohort, outpatients had more favorable risk profiles with respect to age, sex and BMI and are likely to cope with a novel pandemic virus. Prior HCoV OC43 infections may be less important in this group compared to inpatients, which is reflected in the lower OC43 antibody level of outpatients compared to non-ICU inpatients (supplemental figure 5).
This study has important limitations: it was a non-interventional, observational study, and association does not necessarily imply causation. We analyzed a patient cohort from major tertiary care referral centers: This could explain why the overall proportion of critical COVID-19 cases is relatively high. Clearly, a prospective, randomized trial would provide more robust evidence. However, in the current pandemic decisions about vaccination priority and therapy options for COVID-19 inpatients must be taken now, based on available evidence. We observed a very consistent pattern in the data from pilot and validation study: HCoV OC43 is the seasonal coronavirus most similar to SARS-CoV-2 [13] and the association measures are stronger for HCoV OC43 than for all other HCoVs. The length of stay data could be interpreted as a dose-response relationship: The more HCoV OC43 antibodies, the shorter the hospital stay, which hints towards causality.

From our data we cannot deduce evidence for cross-reactive antibodies between sHCoVs and SARS-CoV-2. The pattern for SARS-CoV-2 antibodies in our cohort is concordant with the literature [14]. We hypothesize that prior exposure to HCoV OC43 virus facilitates T-cell based immune responses to SARS CoV-2. While previous work supports this hypothesis [3, 4, 5, 15], further research is needed to gain deeper insights into the underlying immunological processes. According to a recent simulation study [16], cross-immunity between HCoV OC43 and SARS-CoV-2 could affect transmission dynamics of SARS-CoV-2.

Conclusion

Our results provide evidence that prior infections with sHCoVs, specifically HCoV OC43, can protect against a severe course of COVID-19. Therefore, anti-HCoV OC43 antibodies should be determined in COVID-19 inpatients and considered as part of the risk assessment for individual patients. Hence, we expect individuals tested negative for anti-HCoV OC43 antibodies to particularly benefit from vaccination against SARS-CoV-2, especially with other risk factors prevailing.

Acknowledgement

Supported by grants from BMBF (HiGHmed 01ZZ1802V, Use Case Infection Control; 01KI20152 RECOVER trial), Bavarian State Ministry for Sciences and Art (TP-10 and TP-11 to AEK), and National research network for University Medicine (NUM to AEK and MD). We are grateful to Petra Klöters-Plachky, Jutta Mohr, Alina Bauer and Amandine Houvert for excellent technical assistance.

Conflict of interest

The authors declare no conflict of interest.
References

15. Doshi P. Covid-19: Do many people have pre-existing immunity? BMJ. 2020 Sep 17;370:m3563. doi: 10.1136/bmj.m3563 PMID: 32943427

<table>
<thead>
<tr>
<th>248 COVID patients</th>
<th>72% ICU</th>
</tr>
</thead>
<tbody>
<tr>
<td>106 outpatients</td>
<td>23 ICU</td>
</tr>
<tr>
<td>142 inpatients</td>
<td>9 non-ICU</td>
</tr>
<tr>
<td>32 OC43 negative (-)</td>
<td>72% ICU</td>
</tr>
<tr>
<td>92 OC43 below (+/-) or with cutoff (+)</td>
<td>50% ICU</td>
</tr>
<tr>
<td>18 OC43 positive (++) or strong positive (+++)</td>
<td>28% ICU</td>
</tr>
<tr>
<td></td>
<td>5 ICU</td>
</tr>
<tr>
<td></td>
<td>13 non-ICU</td>
</tr>
</tbody>
</table>

Table 1: Disease severity of COVID-19 inpatients by HCoV OC43 serostatus in the validation cohort. HCoV OC43-specific IgG antibody levels were rated on an ordinal scale as given in Materials and Methods: non-detectable (-), below cutoff (+/-), with cutoff intensity (+), above cutoff (++), and very strong intensity (+++). 72% of OC43 negative inpatients developed critical disease (treatment on ICU). In contrast, 28% of inpatients with high levels of anti-OC43 antibodies required ICU therapy (p=0.009).
Figures

Figure 1: Demographic information on validation cohort. (a) Age distribution of COVID-19 patients in the validation cohort (global and by type of therapy). (b) BMI distribution. (c) Proportion of males and females: The ICU group comprised more male, the outpatient group more female individuals (p<0.001).
Figure 2: sHCoV IgG antibody levels for the validation cohort at different time points during SARS-CoV-2 infection. Black dots indicate male patients, red dots female patients. Crosses denote fatal cases. Relative IgG antibody levels against NP of sHCoVs were determined by immunostrip assay as given in Materials and Methods. No association was identified for OC43 (p=0.998) and HKU1 (p=0.68). Increasing HCoV IgG antibody levels over time were determined for NL63 (p=0.0013) and 229E (p=0.0005).
Figure 3: Proportion of ordinal sHCoV antibody levels from COVID-19 inpatients with and without critical disease. Patients with critical disease presented non-detectable antibody levels more frequently than inpatients without critical disease. This difference was most pronounced for HCoV OC43 (odds ratio 2.96 [95% CI 1.25 - 6.96]).

Figure 4: Scatterplot of relative sHCoV IgG antibody levels and length of stay in hospital (outpatients: LoS=0). Black dots indicate male patients, red dots female patients. Crosses denote fatal cases. Higher antibody levels were associated with shorter hospital length of stay. This effect was most pronounced for OC43; in addition, all fatalities occurred in patients with low NPOC43 levels. Of note, the outlier regarding OC43 (NPOC43 = 3.2, LoS=86 days) corresponded to a male patient with obesity (BMI 37.2).