Galectin antagonist use in mild cases of SARS-CoV-2 cases; pilot feasibility randomised, open label, controlled trial.
Authors:

Dr Alben Sigamani*
*Corresponding Author
alben.sigamani.dr@narayanahealth.org
Group Head, Clinical Research, Narayana Health, Bangalore

Dr Samarth Shetty
Consultant, Mazumdar Shaw Medical Center, Narayana Health, Bangalore

Dr Madhavi
Consultant, Mazumdar Shaw Medical Center, Narayana Health, Bangalore

Miss Mathu Ruthra
Department of Clinical Research, Narayana Health Bangalore

Miss Sudhisma
Department of Clinical Research, Narayana Health Bangalore

Mr Anup Chugani
MedGenome Laboratories

Dr Hana Chen-Walden
Medical Officer, Pharmalectin Inc

Mr Thomas Kutty BS-CCP
Clinical Perfusionist Baylor Scott& White Health
thomaskutty.alumparambil@bswhealth.org

Dr David Platt
Chief Chemist, Pharmalectin Inc

Word count: 2522 – only manuscript
2972 – with abstract
Abstract

Importance

Novel SARS-CoV-2 virus has infected nearly half a billion people across the world and is highly contagious. There is a need for a novel mechanism to block viral entry and stop its replication.

Background

Spike protein N terminal domain (NTD) of the novel SARS-CoV-2 is essential for viral entry and replication in human cell. Thus the S1 NTD of human coronavirus family, which is similar to a galectin - human galactose binding lectins, is a potential novel target for early treatment in COVID-19.

Objectives

To study the feasibility of performing a definitive trial of using galectin antagonist – Prolectin-M as treatment for mild, symptomatic, rRT-PCR positive, COVID-19.

Main outcomes and measures

Cycle threshold (Ct) value is number of cycles needed to express fluorescence, on real time reverse transcriptase polymerase chain reaction. Ct values expressed for RNA polymerase (Rd/RP) gene +Nucleocapsid gene and the small envelope (E) genes determine infectivity of the individual. A digital droplet PCR based estimation of the Nucleocapid genes (N1+N2) in absolute copies/μL determines viral replication.

Design and intervention

Pilot Feasibility Randomised Controlled Open-Label, parallel arm, study. Oral tablets of Prolectin-M given was administered along with best practice standard of care (SoC) and compared against only SoC. Voluntarily, consenting individuals, aged >18 years, and able to provide frequent nasopharyngeal and oropharyngeal swabs were randomly allocated on REDCap
The intervention, Prolectin-M was administered as a multi dose regime of 4gm tablets. Each tablet contained 2 grams of (1-6)-Alpha-D-mannopyranosil mixed with 2 grams of dietary fibre. Each participant took a single chewable tablet every hour, to a maximum of 10 hours in a day. Tablets were administered only during the day, for total of 5 days.

Results

This pilot trial demonstrated feasibility to recruit and randomize 10 participants. By day 7, following treatment with Prolectin-M, Ct value of Rd/Rp + N gene increased by 16.41 points, 95% (CI – 0.3527 to 32.48, p=0.047). Similarly, small envelope (E) gene also increased by 17.75 points (95% CI:-0.1321 to 35.63, p = 0.05). The expression of N1, N2 genes went below detectable thresholds by day 7, (Mann whitney U = 0.000, p<0.029).

Three participants (60%) turned rRT-PCR negative by day 7, compared to none in the SoC alone group. There were no serious adverse events, and all participants were clinically asymptomatic before day 28 with reactive immunoglobulin G (IgG). Among the SoC alone arm, two participants had zero detectable viral loads even at baseline.

Trial relevance

This pilot study proves that it is feasible and safe to perform a trial, using Prolectin-M, as Galectin antagonist in COVID-19. A novel mechanism for blocking viral entry and its subsequent replication is reported here.

Trial Registration

Clinical Trials.gov identifier NCT04512027; CTRI ref. CTRI/2020/09/027833
Introduction

SARS-CoV-2 has infected over 40 million people worldwide and is responsible for over 1.1 million deaths.\(^1\) Several treatments have been authorized by regulators around the globe and none of them have been able to lower its infectivity.\(^2\) SARS-CoV-2, a new member of the coronaviruses known to infect humans,\(^3\) is a single-stranded RNA-enveloped virus, with a large number of glycosylated S proteins covering its surface.\(^4\) These proteins mediate viral cell entry following a S protein binding on host cell surface.\(^5\)

During viral infection, the target cells activate the S protein, by cleaving it into S1 and S2 subunits.\(^6\) The S1 subunit is further divided into a N-terminal domain (NTD) and a C-terminal domain (CTD). The CTD is known to bind the human angiotensin converting enzyme-2 (ACE-2) receptors while NTD seeks gangliosides on cell surface to stabilize cell adhesion.\(^7,8\)

SARS-CoV-2 belong to betacoronaviridae family, which includes mouse hepatitis coronavirus (MHV). The S1-NTD structure, described in the mouse hepatitis coronavirus (MHV), demonstrates a similar structural fold as the human galactose binding lectins (galectins).\(^9\) Galectins are carbohydrate-binding proteins, involved in many physiological functions, such as inflammation, immune responses, cell migration, autophagy and signalling.\(^10\) They are also involved immunogenicity, i.e. cell recognition, between human cells and infective pathogens; viruses, bacteria and parasites.\(^11\)

Prolectin – M is an orally administered polysaccharide. Polysaccharides competitively bind to the N-terminal tail of human galectin-3 through a proline isomerization.\(^12\) Gal-3 is one among the 15 galectins described in humans and also a ubiquitous human galectin expressed in various disease pathogenesis pathways.\(^13,14\) The objective of this trial is to demonstrate, feasibility for a larger trial and possible mechanism of action for galectin antagonists as treatment in COVID-19.
Viral culture studies of SARS-CoV-215 indicate that date of onset of symptoms and cycle threshold levels relate to infectivity; a cycle threshold of <25 is considered to be infectious.16 A cycle threshold value (Ct) is the number of replication cycles required for a signal of reverse transcription polymerase chain reaction (rRT-PCR) product, to cross a determined threshold.

Most rRT-PCR approved kits, report Ct values for the RNA dependent RNA polymerase (Rd/Rp), envelope (E) protein and nucleocapsid genes. All three genes are reported together for higher sensitivity. The droplet digital PCR measures expression of only nucleocapsid genes (N1&N2) as an absolute number in copies/µL.18 We hypothesized that blocking of S1 NTD can affect viral replication in nasopharyngeal, oropharyngeal, and gastrointestinal tract and potentially clear the virus from the person to make them non-infectious.19

For this pilot study we considered a rising number of the Ct values, along with dropping copies/µL of the nucleocapsid gene as a measure of cure. In subsequent definitive trials, prolectin-M will be tested for effect on time to recovery in days as a measure of lowering infectivity.20,21 Thus a galectin antagonist could treat COVID-19 patients early and prevent the spread of SARS-CoV-2 in the community.22

Methods

Trial Design and oversight

This investigation is a pilot and feasibility open-label randomized controlled trial. The trial protocol appears in supplement 1. A total of 10 subjects were identified between September 15th and 19th, 2020. Study data were collected and managed using REDCap electronic data capture tools hosted at [Narayana Hrudayalaya Limited Bangalore].23,24

REDCap (Research Electronic Data Capture) is a secure, web-based software platform designed to support data capture for research studies, providing 1) an intuitive interface for validated data capture; 2) audit trails for tracking data manipulation and export procedures; 3)
automated export procedures for seamless data downloads to common statistical packages; and 4) procedures for data integration and interoperability with external sources.

This study followed the Consolidated Standards of Reporting Trials (CONSORT) 2010 extension to randomized pilot and feasibility trials. The study was registered at clinicaltrials.gov (NCT04512027) and the Clinical Trials Registry of India (CTRI/2020/09/027833). Study protocol and all documents were reviewed by Institutional Ethics Committee – Narayana Health and approved (NHMEC Ref. No. S44/ 2020), on 31st of August 2020. The study was conducted in compliance with the Declaration of Helsinki, the Good Clinical Practice guidelines, and local regulatory requirements.

Before enrolment and allocation to the study arms, informed consent for participation in the study was obtained in writing from all participants. The participant also signed a form, declaring that they received the correct information and gave informed consent for voluntary participation in the trial, before being randomized.

Participants

This pilot single center trial, enrolled hospitalized, eligible and consenting participants between 18 years and 45 years, both ages included. All patients had to have an instrumental diagnosis for COVID-19; a positive rRT-PCR for SARS-CoV-2 obtained from an outpatient collection of nasopharyngeal swabs. Other inclusion criteria were the presence of symptoms that were not older than 72 hours and inability to provide consent to undergo repeated collection of throat and nasal swabs over the 7-day period. Samples were collected pre randomization, during drug administration on Days 3 and 5 and day 7.

Exclusion criteria included oxygen saturation at admission ≤96%, high temperature ≥100°F (≥37.5°C) not controlled on oral doses of acetaminophen, known history of diabetes on oral medications or insulin therapy or interleukin-6 levels ≥3 times of laboratory reference range and / or significantly elevated levels of CRP, serum ferritin or d-dimer or a Lymphocyte /
monocyte ratio ≤3 or neutrophil / lymphocyte ratio ≥5 or platelet count ≤150,000 cells per microliter. Previously tested positive and recovered for SARS-CoV-2. Even participants on any chronic medications for more than 4 weeks before randomization or active malignancy or having any co-morbidity that increases risk of rapid disease progression were excluded.

Objectives

The primary aim was to evaluate the efficacy, safety and feasibility of administering prolectin-M along with vs standard therapy for 5 days. The primary endpoint was change in absolute count of Nucleocapsid gene and a rising Ct value, estimated from serial samples of RNA, extracted from a nasopharyngeal swab. The swab was collected, in all participants, on days 1 (randomization), 3, 5 and 7. Clinical progression was estimated on a 7-point scale, recorded on days, 7, 21 and 28. A 2-point change was defined as clinical progression.

7-point severity score (ordinal scale):
1. Not hospitalized, no limitations on activities
2. Not hospitalized, limitation on activities.
3. Hospitalized, not requiring supplemental oxygen.
4. Hospitalized, requiring supplemental oxygen.
5. Hospitalized, on non-invasive ventilation or high flow oxygen devices.
6. Hospitalized, on invasive mechanical ventilation or extracorporeal membrane oxygenation (ECMO).
7. Death

Randomization and Treatments

Participants were randomly assigned in a 1:1 ratio to receive a 4 gram tablet of prolectin-M; a (1-6)-Alpha-D-Mannopyranose plus usual care (Treatment group) or usual care alone (Control) via a web-based secure centralized system (REDCap). An independent statistician provided a computer-generated assignment randomization list and blocked with varying block sizes unknown to the investigators.

Prolectin-M was administered orally once every hour up to a maximum dose through the day of 40 gram or 10 tablets a day. The intention was to mimic the viral replication cycle of 8 –
10 hours and also to ensure the participant is consuming the tablets during the day under supervision of a research nurse. Each subject was encouraged to keep the tablet in their mouth for 1-2 minutes before it dissolved and swallowed. During a mealtime, breakfast, lunch, tea and dinner, the subject had to wait for 30 minutes after the last meal before taking the next tablet. This was to avoid any potential drop in blood glucose as the tablets could block absorption of carbohydrates consumed in the meal. All standard of care continued alongside with prolectin-M.

Procedures

Patient follow up was for 28 days since randomization. A sample was considered negative when no Ct value was determined, and no amplification curve was observed or if the Ct value was >29 for all three targets.

A nasopharyngeal/oropharyngeal swab was transported to the laboratory, for RNA extraction, in viral transport media (#MG20VTM-3, MagGenome). All RNA extractions were carried out using QIAamp Viral RNA mini kit (#52904, Qiagen) following the standard instructions as per the kit protocol.

For each blinded sample, the Ct value for Rd/Rp and N, E gene, genes were reported.

rRT PCR: The extracted RNA was analyzed on a rRT PCR platform, TRUPCR® SARS-CoV-2 RT qPCR KITV2(#3B3043B BlackBio Biotech)SARS-COV2. To determine the efficiency of the PCR, Ct values obtained from a series of 5 template DNA dilutions of at least 3 different samples were graphed on the y-axis versus the log of the dilution on the x-axis. The Ct values assumed by the following equation were employed to calculate the logarithm of the recombinant gene copy numbers from: $Ct = \text{slope} \times \log \text{(Gene Copy Number)} + 1$ where I in the formula acts as the intercept of standard curve.

Droplet Digital PCR (ddPCR): The RNA was also analyzed on the Droplet Digital PCR (BioRad, USA). This platform is FDA approved for emergency use.
authorization in COVID19. The test is a partition-based endpoint single well RT-PCR test. The ddPCR was combined with rRT PCR because of its higher sensitivity and precision in low viral abundance samples and for the ability to provide absolute copy numbers and any resistance to inhibition often seen in rRT-PCR testing.

The analytic sensitivity was calculated as 0.260 cp/μl to 0.351 cp/μl (cp = copies) for genetic markers, SARS-CoV-2 N1 and N2 genes, and an internal control human RPP30 gene. The laboratory remained blind to treatment allocation throughout the analysis. On day 28, all participants were tested for serum antibodies against SARS-CoV-2. Immunoglobulin G (IgG) titres tested (values ≥1.00 as reactive) on VITROS® COVID-19 antibody Tests. Adverse events were recorded from time of signature of informed consent and graded according to the Common Terminology Criteria for Adverse Events, version 5.0. Causality was assessed by the investigators for any serious adverse events.

Statistical Analysis

No formal sample size estimation was done. Just 10 subjects were randomised to test the efficacy and safety of Prolectin-M. Ct values and absolute copy numbers were compared using parametric, unpaired repeated t test with Welch’s correction or non-parametric Mann Whitney U test. A two-tailed, p<0.05, was considered statistically significant.

Results

All 10 participants were included for final analysis. All participants consented and were randomised within 2 days of their symptom onset. All patients allocated to treatment arm received their medications. Demographic and baseline clinical characteristics are summarized in Table 1. 8/10 participants were female with a median (range) age of 27.5(39, 25) years. Of the allocated patients, 3 patients, all in the control arm did not have detectable viral RNA on collected nasal and oropharyngeal swabs.

Table 2 shows changes that occurred over the follow up period. On day 7, three participants
(60%) in the treated group tested negative on rRT-PCR. Figure 2a & 2b, shows estimation plots for differences seen in Ct values. All treated participants showed rising Ct values from day 3. Difference in mean change in Ct values for the Rd/Rp & N genes, between treated and control group, was 16.41 (95% CI – 0.3527 to 32.48, p=0.047, Welch’s t test, two tailed). Difference in Ct values of E gene, 17.75 (95% CI;-0.1321 to 35.63, p = 0.05, unpaired t test with Welch’s correction, 2 tailed).

Figure 3 shows the change in copies/µL of the nucleocapsid (N1+N2) gene. A Mann Whitney test indicated that the drop in copy numbers among the treated participants was significant compared to the control group; U = 0.000, p<0.029. Individual patient wise change in absolute copy numbers is shown in supplementary figure panels.

None of the participants experienced any serious adverse event. One participant in the treatment arm had Grade 1 diarrheal episode (CTAE ver. 5.0). No intervention was need, but Prolectin-M was reduced to 5 tablets per day. All participants were fit for discharge on day 14 and with no restrictions except among 2 subjects in each arm, as they tested positive even on day 14. No one had re admission when followed up at day 21 and 28.

Discussion

This is the first ever reported randomised controlled trial of a galectin antagonist against SARS-CoV-2. Blocking N terminal domain (NTD) of S1 subunit, present on spike protein, is seen to have significantly lowered viral gene expression. All five participants in treatment group demonstrated a rapid drop by day 3 in copies/µL of Nucleocapsid protein gene. There was rise in Ct >29, for genes, Rd/Rp, N and E genes. However, participants in control group (001 & 007), remained potentially infective even on day 7 and day 14.

The detection of anti-spike protein IgG on day 28, is an expression of humoral response against the virus. The N protein is highly immunogenic compared to the S protein and in the absence of glycosylation sites on it results in N-specific neutralizing antibody production.
early in the stage of acute infection. All participants in the trial, except two, had a reactive
IgG. This trial did achieve its primary objective of demonstrating an effect of Prolectin-M on
lowering viral infectiousness. It also demonstrated a feasibility to recruit and safely
administer the oral drug which demonstrated an ability to block viral replication.
Strengths of this study is the randomized, concealed allocation and one hundred percent
compliance to treatment and all procedures in the protocol. There was no incidence of any
serious adverse. A higher cut off value for either cycle threshold or copy numbers on ddPCR
as an eligibility criteria could have demonstrated a more significant treatment effect. Hence
future trials will need to use either pre-determined lower (<16) baseline Ct value or a higher
copy number for ddPCR.
Galectin antagonists can potentially prevent SARS-CoV-2 entry into human cells. A larger
trial will give us evidence about its true clinical benefit. The results from this pilot and
feasibility trial sets the stage for a definitive trial of using polysaccharides as galectin
antagonists and study its potential role as a Post Infection Immunisation.

Acknowledgements:

There are no acknowledgements to be mentioned.

Source of Funding: Pharmalectin Inc contracted the trial to a Contract Research Organisation
– CIMED Life Sciences. Pharmalectin and CIMED had no role in data collection, analysis or
interpretation of the results.

Conflict of Interest:

The corresponding author was the listed Principal Investigator for the trial at Narayana
Hrudayalaya Limited and is the Group Head of Clinical Research. His department has
received remuneration from the company – Pharmalectin Inc, towards conducting the clinical
trials at the center.
David Platt is the CEO of Pharmalectin Inc. However he or his team did not have any access to the data, during the trial and after completion. They did not involve in the statistical analysis and only contributed as a co-author in this manuscript.

Other Co – authors have no specific conflict of interest to declare.
References

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Treated</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Age (years)</td>
<td>28.4 ± 3.195</td>
<td>29.1 ± 4.53</td>
</tr>
<tr>
<td>Sex (female)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>rRT PCR confirmed Sars-CoV-2 infection</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Time from symptom onset to randomization (median)</td>
<td>1.80 days</td>
<td>2 days</td>
</tr>
<tr>
<td>WHO – CPS Score (0-10) =</td>
<td>Score 2 (5)</td>
<td>Score 2 (5)</td>
</tr>
<tr>
<td>7-point ordinal scale</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Co – existing conditions</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Laboratory Values</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRP, mg/L</td>
<td>1.13 ± 0.80</td>
<td>4.93 ± 6.54</td>
</tr>
<tr>
<td>D – Dimer, µg/L</td>
<td>84.8 ± 78.25</td>
<td>95.60 ± 83.73</td>
</tr>
<tr>
<td>Neutrophil Count</td>
<td>63±15.24</td>
<td>53.8±9.19</td>
</tr>
<tr>
<td>Lymphocyte count</td>
<td>28.89±10.69</td>
<td>33.78±6.60</td>
</tr>
<tr>
<td>Lymphocytes to neutrophil ratio</td>
<td>0.691±0.557</td>
<td>0.617±0.17</td>
</tr>
<tr>
<td>Lymphocyte to monocyte ratio</td>
<td>0.41±0.91</td>
<td>0.38±0.23</td>
</tr>
<tr>
<td>RDW</td>
<td>14.58±1.90</td>
<td>16.69±2.89</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>13.24 ± 0.20</td>
<td>12.27 ± 0.87</td>
</tr>
<tr>
<td>Platelet count</td>
<td>227±67.32</td>
<td>266.6±109.78</td>
</tr>
<tr>
<td>ALT/ SGPT</td>
<td>19 ± 8.98</td>
<td>16 ± 5.33</td>
</tr>
<tr>
<td>AST / SGOT</td>
<td>29 ± 8.04</td>
<td>25.6 ± 3.43</td>
</tr>
<tr>
<td>Creatinine</td>
<td>0.66 ± 0.11</td>
<td>0.85 ± 0.26</td>
</tr>
<tr>
<td>Ferritin</td>
<td>27.96 ± 36.69</td>
<td>13.30 ± 7.47</td>
</tr>
<tr>
<td>LDH</td>
<td>219 ± 39.96</td>
<td>197 ± 3 6.33</td>
</tr>
<tr>
<td>Cycle thresholds N = 5</td>
<td>21.306</td>
<td>19.549</td>
</tr>
<tr>
<td>Cycle thresholds N = 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ Nucleocapsid Gene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Envelope Gene</td>
<td>23.126</td>
<td>22.0895</td>
</tr>
</tbody>
</table>
Table 2: Follow up, changes seen after randomization

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Treated</th>
<th>Control</th>
<th>Difference between two groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change from Baseline SARS-CoV-2 status, Day 7</td>
<td>3/ 5 (60%) negative</td>
<td>5 No change</td>
<td>Yes</td>
</tr>
<tr>
<td>Day 28 - Serum Ig G (Reactive)</td>
<td>All 5 Reactive)</td>
<td>3 (Reactive) 2 (Non-Reactive)</td>
<td>Yes</td>
</tr>
<tr>
<td>Reactive (≥1.00) Serum IgG antibody titres on day 28 Median (IQR)</td>
<td>9.08 (8.68, 10.1)</td>
<td>4.58 (0.00, 5.68)</td>
<td>Yes</td>
</tr>
<tr>
<td>Change in 7- point ordinal scale day 14</td>
<td>All scored 1</td>
<td>3 scored 1 2 scored 2 restricted as they were positive</td>
<td>Yes</td>
</tr>
<tr>
<td>Change in 7- point ordinal scale day 21</td>
<td>No change from last assessment</td>
<td>Yes – 2 to 1</td>
<td>No</td>
</tr>
<tr>
<td>Change in 7- point ordinal scale day 28</td>
<td>No change from last assessment</td>
<td>No change from last assessment</td>
<td>No</td>
</tr>
<tr>
<td>Cycle Threshold on day 7 – mean increase from baseline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rd/Rp + Nucleocapsid Gene</td>
<td>+ 25.86</td>
<td>+ 9.446</td>
<td>Yes, 16.41 95% CI – 0.3527 to 32.48, p=0.047</td>
</tr>
<tr>
<td>Envelope Gene</td>
<td>+ 28.27</td>
<td>+ 10.52</td>
<td>Yes, 17.75 95% CI;-0.1321 to 35.63, p = 0.05</td>
</tr>
</tbody>
</table>
Figure 2 a – Change in Ct values over time – Rd/Rp+N gene

Figure 2 b – Change in Ct value over time – Envelope Gene
Figure 3 – drop in absolute copy numbers of nucleocapsid gene over time – Treated group
Figure 4 – difference in IgG on day 28
Supplementary Figure 1 (a – e) Nucleocapsid gene expression in Treated group participant

Supplementary Figure 2– Nucleocapsid gene expression in Control group participants