No current evidence for risk of vaccine-driven virulence evolution in SARS-CoV-2

Authors: Ian F. Miller 1,*, C. Jessica E. Metcalf 2.

1Department of Ecology and Evolutionary Biology, Princeton University.
2Priceton School of Public and International Affairs.
*Correspondence to: ifmiller@princeton.edu.

Abstract: Vaccines that reduce clinical severity but not infection or transmission could drive the evolution of increased rates of pathogen-inflicted damage, or virulence. Preliminary evidence suggests that COVID-19 vaccines might have such differential effects, conferring greater protection in the lower respiratory tract, where viral growth most impacts severity, than in the upper respiratory tract, where infection is chiefly determined. However, the evolution of increased virulence can only occur under certain conditions, which include the existence of a positive association between transmission and severity linked to viral genetic variation. Here, we review the current evidence for these conditions, which does not point to a risk of vaccine driven virulence evolution. An evo-epidemiological model also indicates that upper respiratory tract protection can minimize or negate selection for increased virulence should these conditions be met. Despite low apparent risks, SARS-CoV-2 virulence should be monitored, and transmission-limiting characteristics should be prioritized for ‘second-wave’ vaccines.
Since its emergence in late 2019, SARS-CoV-2 has spread globally, resulting in over 53 million cases of its associated disease COVID-19, and over 1.3 million deaths (1). Beyond the morbidity and mortality associated with the pandemic, nations and sub-national states heavily affected by COVID-19 have experienced catastrophic economic collapse, critical pauses in educational services, and pervasive psychological damage. Vaccine-induced herd immunity has been consistently identified as the only acceptable course of action for mitigating the pandemic and allowing society to begin the recovery process. The race for SARS-CoV-2 vaccines has proceeded at an unprecedented pace, and several candidate vaccines have completed their ‘phase 1’ and ‘phase 2’ trials to confirm their safety and immunogenicity, and several have completed their final ‘phase 3’ trials to determine their efficacy to protect individuals from disease (2, 3). While phase 1-3 clinical trials will provide the evidence necessary to confirm the ability of vaccines to safely prevent disease in individuals, potential population level and longer-term consequences of vaccine introduction, particularly viral evolution, should also be considered. Potential negative outcomes include vaccine escape via antigenic evolution, which would result in a decrease or loss of vaccine efficacy (4), and the evolution of increased virulence, which could result in more severe health outcomes and a higher infection fatality ratio (IFR). In this paper, we focus on the latter outcome, and characterize the potential for vaccines to drive the evolution of SARS-CoV-2 virulence.

The evolutionary limits to rates of disease associated damage or mortality, termed ‘quantitative virulence’, have intrigued scientists for decades. In the absence of any associated costs, pathogens are expected to evolve towards greater transmissibility but also reduced host damage (since mortality, and in some cases severe symptoms, curtail opportunities for transmission) to maximize both the rate and duration of their spread. However, for many pathogens, host damage either can enhance transmission (e.g. by inducing coughing) or is an unavoidable consequence of transmission (e.g. cellular damage resulting from viral replication). Thus, incremental increases in transmission bear increasing costs of damage. This association results in a positive, saturating relationship between transmission rate and mortality (or severity) rate--the canonical ‘virulence transmission tradeoff’--and has the effect of limiting the evolution of virulence (Fig. 1). The saturating nature of this relationship makes an intermediate degree of virulence evolutionarily optimal, as the benefits of increased transmission are balanced against the costs of host death (or other severe outcomes truncating transmission); a non-saturating
relationship would not limit virulence evolution (5, 6). Direct evidence for the existence of virulence-transmission trade-offs is limited, but suggestive evidence has been found in many systems (7).

Figure 1: Virulence-transmission trade-offs. (A) different possible shapes for a virulence-transmission trade-off. The curves define the maximum transmission rate attainable for a given virulence strategy (interpretable as e.g., the infection fatality ratio). The region under each curve represents the set of all possible combinations of transmission rate and virulence for that trade-off shape. (B) The relationship between virulence and transmission time. (C) The relationship between virulence and fitness (in a completely susceptible population, equivalent to R_0) for different trade-off shapes. Yellow, teal, and purple curves in panels A-C correspond to $\alpha_{optim} = 2 \times \alpha_{obs}$, α_{obs}, $0.5 \times \alpha_{obs}$ respectively and reflect relationships unaffected by immunity (see methods).

Considering this phenomenon in the context of vaccine deployment is important, as theory predicts that immunity which reduces disease but not transmission (8), or reduces disease to a greater extent than transmission (9), can drive virulence evolution. Vaccinal immunity to SARS-CoV-2 could have this combination of effects, if its impacts on infection in the upper respiratory tract (URT) and lower respiratory tract (LRT) are not equal. The partitioning of virulence and transmission effects between respiratory tract compartments is known to exist for other respiratory diseases such as influenza (10, 11). In the case of SARS-CoV-2, protection in the LRT is thought to reduce disease severity, potentially reducing the costs of increased transmission. However, protection in the URT, the primary location of infection colonization,
might lead to a reduction in infection risk, or even complete sterilizing immunity, perhaps negating any gains in transmission rate the virus might be able to acquire via increased virulence (2). This pattern of higher viral infectivity in the URT compared to the LRT reflects a decreasing gradient of angiotensin-converting enzyme 2 (ACE2, the receptor protein utilized by SARS-CoV-2 for cellular entry) expression from the URT to the LRT (12). Non-human primate challenge studies investigating the efficacy of early COVID-19 vaccine candidates found that vaccinal immunity reduced viral replication in the LRT to a greater extent than in the URT (2, 13). The patterns of lower URT than LRT protection for these candidate vaccines may be rooted in the type of immune responses they induce. All are delivered intramuscularly, which generally and predominantly stimulates the production of IgG antibodies. The LRT system is primarily protected by these IgG antibodies, while the URT is primarily protected by IgA antibodies involved in mucosal immunity (2). Other tissues where SARS-CoV-2 infection can cause acute injury (14) are protected by IgG antibodies, indicating immunological protection against damage in the lower respiratory and the rest of the body might be correlated.

While vaccines will be a critical factor shaping the landscape of immunity that drives SARS-CoV-2 evolution, naturally acquired immunity could also contribute to selective pressures. Evidence suggests that similarly to early SARS-CoV-2 candidate vaccines, natural immunity provides greater LRT protection than URT protection, although the differential might not be as large. In macaques re-challenged with SARS-CoV-2, immunity eliminated or significantly reduced viral replication in the LRT, and reduced replication in the URT, but to a lesser extent (15). Consistent with this pattern, a longitudinal study of healthcare workers in the UK found that 0/1246 individuals with anti-spike protein IgG antibodies and 89/11052 seronegative individuals became symptomatically infected, indicating that natural immunity provides robust protection against disease (16). The same study also found that natural immunity provides substantial but incomplete immunity against infection, as the incidence of asymptomatic infection was observed to be roughly four times higher in the seronegative group compared to the seropositive group (16). Natural infection stimulates the production of both IgG and IgA antibodies (2), which likely explains how natural infection generates more balanced URT and LRT protection.

Differential effects of candidate COVID-19 vaccines in the URT and LRT are only one of several features that would have to combine for the virus to evolve increased virulence in
response to vaccine deployment. First, increased transmission must be biologically feasible and a product of genetic variance (e.g. heritable). Second, evolutionary increases in transmission must lead to increases in virulence (e.g. virulence must be an unavoidable consequence of transmission). Third, if a trade-off exists between virulence and transmission, the current balance of the two traits must be such that increasing rather than decreasing transmission rate leads to greater total pathogen spread and thus fitness. Fourth, selection for an increase in transmission must be sufficient to overwhelm the effects of chance (drift). Integrating these last two features requires constructing a model that includes both the epidemiological and evolutionary impacts of vaccination on the virus.

As the world prepares to rapidly roll out COVID-19 vaccines, characterizing the likelihood of vaccine driven virulence evolution becomes critical for public health preparedness. In this paper, we review the evidence surrounding the evolution of SARS-CoV-2 transmission and the existence of a trade-off between this trait and disease severity. Next, we present an evo-epidemiological model that incorporates the differential effects of vaccinal and natural immunity in the URT and LRT and identify desirable features of vaccines that would minimize selection for increased virulence while simultaneously providing personal and population level protection.

Can transmission respond to selection?

Virulence effects unassociated with transmission will only reduce pathogen fitness, because they diminish opportunities for spread. Therefore, we only expect selection for increased virulence if mutations that lead to this viral trait are also associated with increases in transmission (a phenomenon called pleiotropy). The first question then becomes whether mutations in SARS-CoV-2 can increase viral transmission. While most SARS-CoV-2 genomic variants tracked to date are thought to be neutral (17), a few mutations have been posited as candidates for increasing viral spread. In particular, D614G, a mutation in the viral spike protein has rapidly increased in frequency and become the dominant variant worldwide (18). The spread of virus carrying this mutation has been attributed to increased transmission (19, 20), and the D614G variant has indeed been found to enhance replication in vitro (19, 21). Clinical data indicates that patients infected with the this variant have increased viral titers in the URT compared to those infected with the ancestral variant (20), and data from a hamster model system suggests that the increase in viral titers might be limited to the URT (21). While this evidence indicates that it is
plausible that D614G increases SARS-CoV-2 transmissibility, difficulties in disentangling increased transmission from the impact of founder effects suggests that further evidence is necessary to establish a conclusive link to population-scale relevant increases in transmission (22). However, these challenges also mean that it is possible that other mutations associated with increased transmission might be missed.

A mutation in the viral spike protein receptor binding domain, N439K, has arisen independently at least twice and is currently circulating in Europe and the U.S. When expressed in the background of D614G, this mutation is associated with higher viral loads in vivo, and faster initial replication rates in vitro compared to the ancestral variant expressed in the same background. N439K has also been found to reduce the neutralizing efficacy of monoclonal antibody and convalescent sera therapies, although the consequences of this for transmission, especially from infected to immunologically naive individuals are unexplored (23).

Association between transmission and virulence

The next question is whether SARS-CoV-2 transmission and virulence are associated, and if so, whether their relationship constitutes a trade-off. Direct evidence for such a linkage or trade-off between transmission and virulence in SARS-CoV-2 (e.g. paired evolutionary increases in both traits) is lacking. At the population scale, there is weak correlative evidence associating frequency of the D614G mutation and case fatality rates (24, 25), but further analysis is needed to confirm this association while accounting for changes in medical practices. Another mutation, ORF1ab 4715L, shows similar patterns, but whether this mutation affects transmission has not been investigated. Clinical data suggests that neither the D614G mutation nor concurrent N439K and D614G mutations are associated with a change in the severity of disease (23, 26). However, even if a trade-off (or positive association) exists, evolutionary patterns may not clearly indicate such a link if the virulence and transmission are sub-optimal (e.g. they fall on the interior of the set delineated by the trade-off curve). Only after transmission is maximized for a given virulence strategy would evolutionary changes be expected to trace the curve defining the trade-off (Fig.1).

Beyond such population scale data, growing empirical data on the within-host dynamics of SARS-CoV-2 infection provides an alternative window onto the relationship between transmission and virulence. Mechanistically, increases in transmission could result from an increase in receptor binding affinity, faster replication rates, slower clearance rates,
immunological evasion. All of these would result in an increase in within-host viral load. A positive association or saturating relationship between viral load and symptoms, severity or host mortality would provide direct evidence for a linkage or trade-off involving transmission and virulence. However, the evidence to date is complex and fragmentary. Marginal gains in transmission diminish as viral load increases (27), and symptomatic cases have been associated with greater secondary attack rates (28), implying greater transmission. These patterns would result in the required associations if symptoms can curtail the duration of transmission, either by limiting patient mobility or through voluntary isolation (suggested to have shaped a decline in the serial interval over the course of the pandemic (29)). While symptoms (coughing, fever, etc.) occur close to peak viral load in the URT, the most severe outcomes (including mortality) often occur later, and are associated with viral load in the LRT (27). As transmission may increase with viral load in the LRT (27) and such severe manifestations will necessarily curtail transmission, this provides another way by which the virulence transmission trade-off could manifest. Conversely, however, more severe cases are associated with prolonged shedding (30) (the opposite of the expected relationship), severity may manifest after the point where viral load is high enough to allow transmission (30) thus removing the impact of virulence per se on onward transmission (31), and the relationship between viral load and onward transmission may be relatively weak (e.g., flat at some scales (27)), all of which suggests a trade-off might not exist. These incomplete threads of evidence preclude definitive conclusions about the existence or shape of a relationship between transmission and virulence, although the within-host dynamics of SARS-CoV-2 infection remain an area of intense research focus, and future findings could resolve the current uncertainty.

The effects of vaccines on virulence evolution

Uncertain evidence for genetic variation in SARS-CoV-2 transmission, combined with mixed evidence for a trade-off between virulence and transmission all indicate no immediate cause for concern that vaccine-driven selection might drive the evolution of greater virulence in SARS-CoV-2. However, growing clarity around differences associated with transmission and severity in the URT and LRT, and differential effects of vaccines in these two compartments, combined with the unprecedented scale and speed at which the SARS-CoV-2 vaccine is likely to be deployed point to considerable value in bounding expectations for the trajectory of selection on
the pathogen under different vaccine characteristics. Here, we develop a general theoretical framework to explore the degree to which different combinations of vaccinal protection in the URT and LRT (represented by parameters $r_{U,V}$ and $r_{L,V}$) might shape selection on pathogen virulence, if transmission can respond to selection and is involved in a trade-off with virulence (Fig. 2). We replicate our analyses across a range of assumptions about the shape of the virulence-transmission trade-off by varying how optimal virulence, α_{optim}, compares to observed virulence, $\alpha_{obs} = 0.005$ (Fig. 1). Our analysis is motivated by SARS-CoV-2, but separation of contributions to virulence and transmission from different compartments (e.g., in URT and LRT) is likely relevant for a largely array of viruses.

Figure 2: Model Schematic. (A) The effects of immunological protection (either vaccinal or naturally acquired) in the URT and LRT on transmission, infection, and disease associated mortality. Immunological protection in the URT and/or LRT decreases the rate of onward transmission. Additionally, URT protection decreases the rate of infection, and LRT protection decreases the rate of disease associated mortality. (B) Structure of the epidemiological model. Susceptible (S) and vaccinated individuals (V) become infected (to classes I_0 and I_V respectively) in a density dependent manner and eventually recover to a convalescent class (C) with naturally acquired immunity. These convalescent individuals can become reinfected and return to an infected class (I_C). All infected classes contribute to transmission.
We expect that candidate COVID-19 vaccines will not be approved unless they confer robust protection against disease, indicating a high degree of LRT protection. Preliminary reports indicate that the first available vaccines may reduce the rate of disease by 90% or more (32). When vaccinal immunity confers this degree of protection in the LRT ($r_{LV} > 0.9$), we observe that as the degree of vaccinal protection in the URT increases, either the strength of selection against greater virulence grows or the strength of selection for greater virulence shrinks. This pattern holds for all values of α_{optim}, and its magnitude increases with vaccine coverage (Fig. 3). This suggests that robust URT protection, resulting in similarly large reductions in infection and transmission ($r_{UY} > 0.75$), is a highly desirable vaccine effect. Unsurprisingly, we find that increased virulence is selected against when $\alpha_{obs} > \alpha_{optim}$, and selected for when $\alpha_{obs} < \alpha_{optim}$. We found similar results when LRT infection contributes minimally to transmission and for alternate assumptions about the strength of the protective effects of natural immunity in the URT and LRT (Figs. S1-3). We confirmed that all our results were qualitatively similar for $\alpha_{obs} \in \{0.004, 0.006\}$. Further analyses (not shown) suggest that results are more sensitive to the strength of natural immunity ($r_{U,N}, r_{L,N}$) when a great fraction of the population is convalescent, with selection coefficients for greater virulence increasing with the strength and prevalence (fraction convalescent) of natural immunity, because natural and vaccinal immunity exert similar selective pressures on pathogen virulence.
Figure 3: Vaccinal immunity and selection for and against virulence. Panels show the strength and direction of selection for an increase in virulence from α_{obs} to $2*\alpha_{obs}$ across a range of assumptions about optimal virulence and vaccine coverage. Blue signifies selection against increased virulence, and red signifies selection for increased virulence, with darker colors indicating stronger selection. Note that scales differ between rows. In all plots, natural immunity effects are set to $r_{U,N} = 0.5$, $r_{L,N} = 0.75$ and the lower and upper respiratory tracts contribute to transmission ($\varepsilon = 0.5$). Qualitatively similar results were obtained for different assumptions about the contribution LRT infection to transmission (Fig. S1) and the strength of natural immunity (Figs S2-3).
Discussion

As the global spread of SARS-CoV-2 continues and the widespread rollout of early vaccines is imminent, evaluating the risk of vaccine-driven virulence evolution increases in priority. We synthesized information surrounding the factors necessary for virulence evolution to occur, finding evidence for the evolution of transmission but no definitive support for links between transmission and virulence or a trade-off between the two traits. Evidence to date does not warrant concern about first wave vaccines driving the evolution of increased virulence. Our evo-epidemiological model identified URT protection as a desirable characteristic of ‘second wave’ vaccines expected to be administered to large portions of the population, as it would mitigate selection for increased virulence should transmission be subject to an evolutionary tradeoff with disease severity. Overall, we find that vaccines that provide robust protection in both the LRT and URT could achieve the goal of reducing disease severity while minimizing prospects for the evolution of increased virulence.

URT protection would also carry significant public benefits, as it would mean that vaccines reduce transmission and lead towards herd immunity. This impact on transmission, along with other measures, such as non-pharmaceutical interventions, would also decrease effective viral population size, diminishing the impact of selection and likelihood of vaccine driven virulence evolution. However, other factors that increase viral population size, particularly animal reservoirs, could have exacerbate risks of viral evolution. SARS-CoV-2 epidemics in mink farms have already been linked to the generation of novel mutations (33) and animal to human transmission (34). Other domestic and agricultural animal populations, especially those maintained at high density, should be actively monitored for SARS-CoV-2 transmission. Wild animal populations also have potential to harbor sustained viral transmission but present significant challenges for implementing control measures. Species that are known to be competent hosts for coronaviruses and regularly come into contact with humans should be prioritized for monitoring.

While our analyses clearly identify URT protection as a vaccine characteristic that can mitigate the risk of virulence evolution, robust expectations about the likelihood, magnitude, and trajectory of virulence evolution remain elusive. We did not include immunological waning in our model, but the loss of vaccinal and/or natural immunity over time could increase the both effective viral population sizes and likelihood of SARS-CoV-2 becoming endemic (35, 36).
Future analyses should explore how waning immunity might alter selection for increased virulence as evidence regarding the longevity of immunity emerges. Our theoretical analysis assumed a conventional saturating positive relationship between transmission and virulence. However, the shape, nature, and existence of any trade-offs governing virulence evolution in SARS-CoV-2 are currently unknown; and the form of true relationship could modify the direction and magnitude of selection acting on virulence. Assessments of the risk of virulence evolution should be updated as new findings emerge, both by directly monitoring the virulence of the virus, and by better characterizing the nature of the tradeoff. To monitor virulence, infection fatality ratios associated with circulating SARS-CoV-2 strains should be surveilled to detect early evidence of any evolutionary trends. Decreases in fatality rates tied to medical advances will complicate this monitoring, especially as they vary globally, but animal or cell-culture models might provide a means for standardized measurement. Trade-offs affecting the evolution of SARS-CoV-2 transmission can be characterized through comparative epidemiological analyses and clinical studies of within-host viral dynamics.

If vaccines were to drive the evolution of increased virulence, protection against disease in vaccinated individuals may or may not erode, but other groups would bear greater impacts (9). Unvaccinated individuals would bear the consequences of increased virulence without any vaccinal protection to offset disease severity. Vaccine driven evolution could also amplify healthcare disparities between populations if a SARS-CoV-2 strain with increased virulence evolves in a vaccinated population, and spills over into an unvaccinated population with limited access to healthcare. Thus, the countries with the highest expected initial vaccine coverage should all engage in virulence monitoring to mitigate negative consequences for countries with limited or no access to vaccines.

While we focus on the evolution of quantitative virulence in this paper, other aspects of viral evolution should also be considered when evaluating candidate SARS-CoV-2 vaccines. Antigenic evolution leading to ‘vaccine escape’ has occurred in response to other human vaccines (37, 38) and the prospects for similar outcomes in SARS-CoV-2 should be evaluated. Antigenic evolution may also have implications for virulence evolution if it leads to antibody dependent enhancement (39), consequent increases in viral load, and ultimately greater disease severity and potentially greater transmission. The evolution of resistance is theorized to be more likely to occur in response to drug treatment than vaccination because drugs often target a single
pathogen epitope while vaccines induce an immunological response with a border target set (40). All of the candidate SARS-CoV-2 vaccines that are in or have completed phase 3 trials induce an immune response targeted only at the viral spike protein (2), and as such could be viewed as having effects intermediate between drugs and other vaccines. However, the necessity of the spike protein for cellular entry (41) might make SARS-CoV-2 vaccines unlikely to drive the evolution of resistance relative to other vaccines that include many proteins. While evidence thus far suggests that low viral genetic diversity might limit the evolution of vaccine escape (17), the potential for this event to occur should be assessed by comparing patterns of within-host viral evolution between placebo and vaccine groups in ongoing clinical trials (4).
References and notes

40. D. A. Kennedy, A. F. Read, Why does drug resistance readily evolve but vaccine

Acknowledgements

We thank Bryan Grenfell, Jeremy Farrar, Gordon Douglas, Daniel Douek, and Adrian McDermott for helpful discussions. Figure 2A was created in part using BioRender.com.

Funding: IFM is supported by a National Science Foundation Graduate Research Fellowship.

Author contributions: IFM and CJEM conceived of the study. IFM and CJEM reviewed the literature, and IFM performed the analyses. IFM and CJEM wrote and revised the manuscript.

Competing interests: The authors declare no competing interests. **Data and materials availability:** All code used in the analyses is available on GitHub (42).

Supplementary Materials:

Materials and methods

Figures S1-S3
Supplementary Materials for

No current evidence for risk of vaccine-driven virulence evolution in SARS-CoV-2

Ian F. Miller*, C. Jessica E. Metcalf
*Corresponding author: ifmiller@princeton.edu
Materials and Methods

Epidemiological Model

To evaluate the potential evolutionary consequences associated with SARS-CoV-2 vaccine candidates, we develop a compartmental ordinary differential equation model that broadly reflects SARS-CoV-2 epidemiology, and the protective effects of naturally acquired and vaccine-induced immunity (Fig. 2). We extend previous work by explicitly separating the impacts of vaccinal and natural immunity in the upper and lower respiratory tracts, and the impact of these protective effects on infection, transmission, and mortality. We assume that infection in the LRT and URT additively contribute to transmission rate, β (Eqn. S1). The parameter ϵ defines the fractional contribution of the LRT to transmission. The rate of removal due to disease associated mortality (which might also reflect reductions associated with severity, changes in behavior, etc.) is assumed to be equal to virulence, α. Transmission rate in both the URT and LRT follow the classic increasing and saturating function of generally termed the virulence-transmission tradeoff (Fig. 1), which can limit the evolution of pathogen virulence as described above. As α increases, transmission rate initially rises rapidly but then approaches an asymptote, while transmission time ($1/\alpha$) steadily declines, along a curve defined by parameters b_1 and b_2 (Eqn. S1), yielding an intermediate value of corresponding to maximum pathogen fitness. Vaccine-induced immunity limits transmission by reducing virulence by a scalar $1 - r_{UV}$ in the upper respiratory system, and $1 - r_{LV}$ in the lower respiratory tracts. Likewise, naturally acquired immunity scales by a factor $1 - r_{UV}$ in the URT and $1 - r_{LN}$ in the LRT.

$$
\beta(\alpha, r_U, r_L) = (1 - \epsilon)b_1\left((1 - r_U)\alpha\right)^{b_2} + \epsilon\ b_1\left((1 - r_L)\alpha\right)^{b_2}
$$

Moving from how immunity affects transmission to considering how it might affect infection and mortality, we assume that only LRT immune protection reduces disease associated death, in line with current reporting on the pathology of severe cases of SARS-CoV-2. The effects of virulence on disease associated removal are reduced by a scalar $(1 - r_{LV})$ for vaccinated individuals and by $(1 - r_{LN})$ for individuals with naturally acquired immunity. Finally, as the URT seems to be the key driver of transmission, to model effects of immunity on transmission, we assume that force of infection (λ) experienced by vaccinated individuals is
reduced by a scalar \((1 - r_{UV})\) for vaccinated individuals and by \((1 - r_{UN})\) for individuals with naturally acquired immunity.

After defining the relationships between immunity, transmission, infection, and mortality, we incorporate them into a compartmental epidemiological model (Fig. 2B, Eqn. S1-S3). We set model parameters to broadly reflect SARS-CoV-2 epidemiology across a one week time-step, which roughly corresponds to the viral serial interval, implying that the recovery rate \(\gamma = 1\) (43). Using mortality as a first benchmark for how transmission might be curtailed by pathogen virulence, operating at the time-scale of the serial interval of the virus indicates that the virulence parameter is numerically equivalent to IFR. Although the time from infection to death for most COVID-19 cases is greater than one week, most fatally infected individuals would display symptoms and be quarantined within one week of infection (as incubation period appears independent of disease severity (44), making their contributions to transmission beyond the one week time-horizon negligible). As this model is aimed at making short term predictions about the effects of vaccination on selection for virulence, we ignore births, non-COVID-19 associated deaths, and the waning of immunity. Note that convalescent individuals can become reinfected in the absence of immunological waning if immunity provides incomplete protection against reinfection \((r_{UN} < 1)\).

\[
\lambda = \beta(\alpha, 0, 0) I_0 + \beta(\alpha, r_{UV}, r_{LV}) I_V + \beta(\alpha, r_{UN}, r_{LN}) I_C
\]
\[\text{(S2)}\]

\[
\frac{dS}{dt} = -S \lambda
\]
\[\text{(S3a)}\]

\[
\frac{dV}{dt} = -V (1 - r_{UV}) \lambda
\]
\[\text{(S3b)}\]

\[
\frac{dI_0}{dt} = S \lambda - I_0 (\gamma + \alpha)
\]
\[\text{(S3c)}\]

\[
\frac{dI_V}{dt} = V (1 - r_{UV}) \lambda - I_V (\gamma + (1 - r_{LV}) \alpha)
\]
\[\text{(S3d)}\]

\[
\frac{dI_C}{dt} = C (1 - r_{UN}) \lambda - I_C (\gamma + (1 - r_{LN}) \alpha)
\]
\[\text{(S3e)}\]
\[\frac{dC}{dt} = \gamma (I_0 + I_v + I_C) - C \left(1 - r_{U,N} \right) \lambda \]

(S3f)

The dynamics of this model hinge on the relationship between transmission and virulence. While the true nature of this relationship is unknown, we can construct a reasonable set of boundaries to the assumed form for trade-off (Eqn. S4, reflected in Eqn. S1) and parameterizing it according to the estimated value of \(R_0 \) and various assumptions about the optimality of the observed early-pandemic SARS-CoV-2 virulence strategy, \(\alpha_{obs} \).

\[\beta = b_1 \alpha^{b_2} \]

(S4)

To accomplish this, we first construct a set of optimal virulence (\(\alpha_{optim} \)) values to explore that reflect assumptions that the observed degree of SARS-CoV-2 virulence (\(\alpha_{obs} \)) is either below the optimum, at the optimum, or above the optimum: \(\alpha_{optim} \in \{ 2 \times \alpha_{obs}, \alpha_{obs}, 0.5 \times \alpha_{obs} \} \). As \(\alpha \) is equivalent to IFR in our model parameterization, we set \(\alpha_{obs} = 0.005 \), which is the approximate overall IFR observed in the United States (45). For a given assumption about the value of \(\alpha_{optim} \), we use the next-generation matrix approach (46) to set the value of \(b_2 \) to that which maximizes \(R_0 \) at \(\alpha_{optim} \) and \(b_1 = 1 \). By definition, \(R_0 \) is calculated assuming a completely susceptible population. Next, we used these same methods to set the value of \(b_1 \) to that which corresponded \(R_0 = 2.5 \) at \(\alpha_{obs} \). This assumed value of \(R_0 \) is broadly consistent with a range of estimates (47–49). We checked to ensure that the value of \(b_2 \) was insensitive to the value of \(b_1 \), that \(\alpha_{optim} \) maximized \(R_0 \), and that \(\alpha_{obs} \) correspond to \(R_0 = 2.5 \) at the identified values of \(b_1 \) and \(b_2 \). Figure 1 shows the virulence transmission trade-off curves constructed from the three assumptions about the value of \(\alpha_{optim} \); these assumptions map to a wide range of possible shapes of the trade-off.

Evolutionary Analysis

To characterize the landscape of short-term selection on pathogen virulence in response to vaccination across a range of characteristics of vaccinal protection in the URT and LRT, we identify the strength of selection (fitness differential) associated with a doubling of virulence or the IFR. We initialize the model with 10% of individuals convalescent (roughly consistent with
observations from the U.S. in July 2020 (50)), and all non-vaccinated individuals susceptible.
For a given set of protective effects \((r_{U,V}, r_{L,V}) \), we calculated \(R_E \) for \(\alpha_{obs} \) using the next-generation matrix approach. Next, we used the same methods to calculate \(R_E \) for \(\alpha = 2 \times \alpha_{obs} = 0.01 \). We then calculated the selection coefficient for increased virulence as the difference between \(R_E \) at \(2 \times \alpha_{obs} \) and \(R_E \) at \(\alpha_{obs} \).
Figure S1: Vaccinal immunity and selection for and against virulence when LRT infection contributes minimally to transmission. We found that patterns of selection for increased virulence are qualitatively similar when infection in the URT and LRT contribute equally to transmission ($\varepsilon = 0.5$, Fig. 3), and when LRT infection contributes minimally to transmission ($\varepsilon = 0.1$, this figure). Panels show the strength of selection for an increase in virulence ($\alpha = 0.005$ to $\alpha = 0.01$) across a range of assumptions about optimal virulence and vaccine coverage. Note that scales differ between rows. In all plots, $r_{U,N} = 0.5$, $r_{L,N} = 0.75$.
Figure S2: Vaccinal Immunity and selection for and against virulence with weak effects of natural immunity. Our analyses returned qualitatively similar results across a range of assumptions about the strength of natural immunity. Figure S2 shows results for weaker assumed effects of immunity ($r_{U,N} = 0.25, r_{L,N} = 0.5$) than in the analyses presented in the main text ($r_{U,N} = 0.5, r_{L,N} = 0.75$, Fig. 3). Panels show the strength of selection for an increase in virulence ($\alpha = 0.005$ to $\alpha = 0.01$) across a range of assumptions about optimal virulence and vaccine coverage. Note that scales differ between rows. The lower and upper respiratory tracts contribute to transmission ($\epsilon = 0.5$).
Figure S3: Vaccinal Immunity and selection for and against virulence with strong effects of natural immunity. Our analyses returned qualitatively similar results across a range of assumptions about the strength of natural immunity. Figure S2 shows results for stronger assumed effects of immunity (\(r_{U,N} = 0.75, r_{L,N} = 1.0 \)) than in the analyses presented in the main text (\(r_{U,N} = 0.5, r_{L,N} = 0.75 \), Fig. 3). Panels show the strength of selection for an increase in virulence (\(\alpha = 0.005 \) to \(\alpha = 0.01 \)) across a range of assumptions about optimal virulence and vaccine coverage. Note that scales differ between rows. The lower and upper respiratory tracts contribute to transmission (\(\epsilon = 0.5 \)).