Airway antibodies wane rapidly after COVID-19
but B cell memory is generated across disease severity

Alberto Caglii1, Meng Yu1, Sara Falck-Jones1, Sindhu Vangeti1, Björn Österberg1, Eric Åhlberg1, Lida Azizmohammadi1, Ryan Falck-Jones2,3, Pia C Gubisch1, Mert Ödemis1, Farangies Ghafoor1, Klara Lenart1, Max Bell2,3, Niclas Johansson4,5, Jan Albert6,7, Jörgen Sälde8, Deleah Pettie9,10, Michael Murphy9,10, Lauren Carter9,10, Neil P King9,10, Sebastian Ols1, Anna Färnert4,5, Karin Loré1* and Anna Smed-Sörensen1*

1Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden. 2Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden. 3Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden. 4Division of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Sweden. 5Department of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden. 6Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden. 7Clinical Microbiology, Karolinska University Hospital Solna, Stockholm, Sweden. 8Närakut SLSO, Karolinska University Hospital Solna, Stockholm, Sweden. 9Department of Biochemistry, University of Washington, Seattle, WA 98195, United States. 10Institute for Protein Design, University of Washington, Seattle, WA 98195, United States.

Karin Lore´ and Anna Smed-Sörensen contributed equally to this study.

*Corresponding authors:
Karin Loré and Anna Smed-Sörensen, Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Visionsgatan 4, BioClinicum J7:30, Karolinska University Hospital, 171 64 Stockholm, Sweden.
e-mail addresses: karin.lore@ki.se; anna.smed.sorensen@ki.se

Introductory paragraph:
Understanding immune responses following SARS-CoV-2 infection in relation to COVID-19 severity is critical to predicting the effects of long-term immunological memory on viral spread. Here we longitudinally assessed systemic and airway immune responses against SARS-CoV-2 in a well-characterized cohort of 147 infected individuals representing the full spectrum of COVID-19 severity; from asymptomatic infection to fatal disease. High systemic and airway antibody responses were elicited in patients with moderate to severe disease, and while systemic IgG levels were maintained after acute disease, airway IgG and IgA declined significantly. In contrast, individuals with mild symptoms showed significantly lower antibody responses but their levels of antigen-specific memory B cells were comparable with those observed in patients with moderate to severe disease. This suggests that antibodies in the airways may not be maintained at levels that prevent local virus entry upon re-exposure and therefore protection via activation of the memory B cell pool is critical.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Main:

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that causes coronavirus disease 2019 (COVID-19) can present with a wide range of disease severity from asymptomatic to fatal. Individuals of advanced age and/or those with comorbidities are overrepresented among those who develop severe disease\(^1\). However, the majority of SARS-CoV-2 infected individuals experience asymptomatic infection or only mild disease\(^2\).

Whether patients with different disease severities generate similar protective immunity is still unknown. Here we present data generated from a clinically well-characterized cohort of individuals with SARS-CoV-2 infection (n=147) representing the full spectrum of COVID-19 severity ranging from asymptomatic infection to fatal disease. Individuals were sampled during acute disease and convalescence with longitudinal, matched blood and airway samples. The levels of systemic and airway antibody responses as well as the generation of SARS-CoV-2-specific memory B cells were measured. Plasma, peripheral blood mononuclear cells (PBMC), nostril swabs (NSW) and nasopharyngeal aspirates (NPA) were collected across all disease severities whereas endotracheal aspirates (ETA) were collected only from intubated patients receiving intensive care (Figure 1a). Disease severity was assessed on a seven-point scale derived from the respiratory domain of the sequential organ failure assessment (SOFA) score\(^3,4\), with additional levels for non-admitted mild cases (1) and fatal cases (7). Patients were grouped based on peak disease severity (PDS) (Supplementary table 1 and online methods). In addition, pre-pandemic healthy controls (PPHC) (n=30) as well as individuals who experienced influenza-like symptoms and were possibly exposed to SARS-CoV-2 but had a negative diagnostic PCR (PCR-) (n=9) were sampled in the same way and included as controls (Supplementary table 2 and online methods).

We first assessed systemic IgG and IgA responses at the time of study inclusion that ranged between 0-54 days from onset of symptoms; median 16 days, and at the first follow-up visit during convalescence (46-168 days; median 108 days). Plasma IgG and IgA against the SARS-CoV-2 nucleocapsid (N) and spike (S) proteins as well as the receptor binding domain (RBD)\(^5,6\) of the S protein were measured by ELISA. Antibody responses against the internal N protein have been shown to be elevated in deceased individuals but whether these antibodies contribute to disease severity is unknown\(^7,8\). In contrast, responses against the viral surface protein S and, in particular, against the RBD result in virus neutralization\(^9\). Responses against the RBD are thus likely necessary for protection from re-infection or prevention of symptomatic disease.

In line with previous reports\(^7,8,10-12\), IgG and IgA responses against N, S and RBD were robust in acute disease in the majority of individuals with moderate to severe disease while they were substantially lower in individuals with mild disease (Figure 1b). However, in our cohort, this might also partially be due to earlier study inclusion of patients with mild symptoms (median days from onset of symptoms 11 as compared with 13 and 21.5 in the moderate and severe groups respectively, and 13 in the fatal group) (Supplementary table 1). In fact, while IgG levels remained high in the patients with moderate to severe disease in the convalescent phase, levels had increased in the individuals with mild disease. In contrast, IgA levels from the acute phase, against all antigens, waned substantially during convalescence in most patients (Figure 1b and supplementary fig. 1a). While the levels of IgG against the RBD (Figure 1c), as well as against N and S (Supplementary fig. 1b), exhibited a positive
correlation with days from onset of symptoms during the acute phase, this was less pronounced for IgA levels. Altogether, these data confirm that the generation of IgA likely precede that of IgG. Earlier reports of individuals with asymptomatic infection or mild disease also showed robust early IgA responses.\(^{13-15}\)

Comparably to another study,\(^{16}\) the levels of both IgG and IgA against all antigens tested, during both acute disease and convalescence, correlated directly with disease severity (Supplementary fig. 2a), indicating that individuals with severe disease or even fatal outcome mounted the highest antibody responses against SARS-CoV-2 antigens. In our cohort, this is further supported by the fact that the patients with moderate/severe disease and fatal outcome for whom we initially observed low IgG titers against RBD, had an early study inclusion (on average 13 days from onset of symptoms); but showed significantly higher titers later during the acute phase (on average 19 days) (Figure 1d-e). Similar kinetics of anti-RBD responses have previously been noted in different patient cohorts.\(^{17-19}\)

In line with previous reports, the Charlson Comorbidity Index (CCI) and the Body Mass Index (BMI) were associated with disease severity\(^1\) in the cohort (Supplementary fig. 3). However, the presence of comorbidities did not impact the ability to generate antibodies against any of the antigens analyzed (Supplementary fig. 2b).

As the respiratory tract is the initial site of viral infection and replication, we next measured the levels of IgG and IgA in the upper and lower airways and compared with levels in plasma at matched time points. Due to limited sample volumes, we focused our analyses on IgG and IgA responses against the RBD since these responses are likely most critical for virus neutralization. We found that RBD-specific antibodies could be readily detected in NSW and NPA during the acute phase in several patients across all disease severities (Figure 2a-b and supplementary fig. 4a). In agreement with our observations in plasma, antibody levels in the upper respiratory tract were higher in patients with moderate or severe disease as compared with individuals with mild disease (Figure 2a-b). Both IgG and IgA levels declined significantly in the convalescent phase, with IgG declining to almost undetectable levels (Figure 2a-b). This demonstrates that airway antibody levels wane much faster than those in plasma during convalescence. Low but detectable levels of antibodies to SARS-CoV-2 have previously been reported also in saliva during convalescence\(^{20}\). However, whether these low antibody levels at mucosal sites will be sufficient for protection is not known. We found that RBD-specific IgG and IgA levels in the respiratory tract correlated well with those in plasma during the acute phase but to a lesser extent during convalescence (Supplementary fig. 4b and supplementary fig. 5). When comparing matched NSW, NPA and ETA collected at the same time point during acute disease from intubated patients, significantly higher levels of IgA against the RBD were found in NPA as compared with NSW and ETA (Figure 2c). While this could be partially influenced by differences in sampling method and sample volume, these data suggest that antibody abundance and possibly virus neutralization via IgA differs along the respiratory tract and may be more pronounced in the nasopharynx compared to the lower airways. Hence, nasopharynx antibodies (both IgG and IgA) showed a strong correlation with plasma antibody responses (Supplementary fig. 4b and supplementary fig. 5). We also assessed the presence of B cells in the respiratory tract of COVID-19 patients by analyzing the lymphocytes that could be retrieved from NPA and ETA as compared with NPA from three healthy controls (HC). Lymphocyte frequencies were lower in both NPA and ETA
from several COVID-19 patients as compared with NPA from HC. However, the relative proportion of B cells was not different. In addition, we observed that in the COVID-19 patients, the frequencies of B cells were higher in NPA as compared with ETA which possibly contributes to the higher antibody levels at this site (Supplementary fig. 6).

Altogether, the data presented so far confirm that moderate and severe COVID-19 result in high levels of circulating antibodies and show that despite IgG being well-maintained during convalescence, antibody levels in the airways decline significantly after the acute phase. Generally, antibodies present in circulation and at local sites are the result of secretion from short-lived plasmablasts and/or terminally differentiated plasma cells in the bone marrow or mucosal sites. The response to a secondary infection once antibody titers have waned below protective levels mostly relies on the presence of resting antigen-specific memory B cells that are rapidly activated upon antigen re-exposure. We therefore investigated the induction and maintenance of antigen-specific memory B cells similar to other studies.

We focused on the direct comparison between individuals with mild disease and patients with moderate/severe disease, along with individuals who had reported mild influenza-like symptoms but were SARS-CoV-2 PCR-. Patients with moderate/severe disease who had high circulating IgG and IgA levels were specifically selected for the analysis to be able to compare the opposite ends of the COVID-19 disease spectrum. Matched PBMC from acute disease and convalescence were analyzed side-by-side using fluorescently labelled S and RBD probes to detect antigen-specific B cells. Patients with moderate/severe disease had switched memory B cells specific to S in the acute phase and the memory B cell pool had further expanded in the convalescent phase (ranging from 0.009 to 1.35%; mean 0.42% during convalescence) (Figure 2d-e). Individuals with mild disease showed lower memory B cells during acute disease than the patients with moderate/severe disease, but the levels had increased by the time of convalescent sampling (ranging from 0.17% to 0.64%; mean 0.35% during convalescence) and were comparable between the groups (Figure 2d-e and supplementary fig. 6). Further phenotyping of the S-specific memory B cells indicated that the majority of these cells may be specific for epitopes on S outside of the RBD (Figure 2f).

However, it is possible that binding of B cells to RBD could be underestimated as RBD is also present in the S protein. S-specific memory B cells in the circulation were predominantly IgG+, rather than IgA+ (Figure 2f). Low frequencies of S and RBD-specific memory B cells were observed in the PCR- individuals (Figure 2e). However, these were not significantly different from the levels observed in PPHC (Supplementary fig. 7). Collectively, since the majority of individuals infected with SARS-CoV-2 are either asymptomatic or experience only mild COVID-19 symptoms, the possibility of generating antigen-specific memory B cells without experiencing severe disease, would be very important in the prospect of establishing potential immunity at the population level.

In summary, here we show that COVID-19 disease severity not only determines the magnitude of systemic but also airway antibody levels with efficient generation of virus-specific memory B cells against SARS-CoV-2 also occurring upon mild disease. While plasma IgG levels were generally well detectable at convalescence in all groups, there was a significant decline in airway antibodies after the clearance of infection. This suggests that antibodies in the airways may not be maintained at levels that prevent local virus entry upon re-exposure. However, our data indicate that the majority of infected individuals have the ability to generate anamnestic responses via the memory B cell pool and thereby may be
protected or mitigate disease severity. Whether sufficient number of memory B cells will be maintained long-term and to what extent they will prevent the spread of SARS-CoV-2 at the population level remain to be understood. This is critical knowledge to acquire in the near future to evaluate together with the memory B cell response generated after the introduction of SARS-CoV-2 vaccination. Ultimately, the requirements for establishment of long-term protection and immunity will need to be determined.

Methods

Study design, patient enrollment and sample collection

One hundred and forty-seven (147) PCR-confirmed SARS-CoV-2 infected patients were enrolled at the Karolinska University Hospital and Haga Outpatient Clinic (Haga Närakut), Stockholm, Sweden during March-May 2020 (acute phase) and during April-September 2020 (convalescence). Patients were enrolled at various settings, ranging from primary to intensive care. In order to recruit asymptomatic and mild cases, household contacts of COVID-19 patients were screened with PCR and enrolled if positive. A small subset of these individuals who experienced influenza-like symptoms and were possibly exposed to SARS-CoV-2 but had a negative diagnostic PCR (PCR-) (n=9 of whom 3 were household contacts of confirmed patients, 4 had symptoms including fever and 2 had symptoms but no fever) were sampled in the same way and included as controls alongside with 30 pre-pandemic healthy control samples (PPHC) from 2016-2018.

Respiratory failure was categorized daily according to the respiratory domain of the Sequential Organ Failure Assessment score (SOFA)\(^3\). The modified SOFA score (mSOFA) was calculated when arterial partial pressure of oxygen (PaO\(_2\)) was not available. In this case peripheral transcutaneous hemoglobin saturation (SpO\(_2\)) was used instead\(^4\). Estimation of the fraction of inspired oxygen (FiO\(_2\)) based on O\(_2\) flow was calculated as per the Swedish Intensive Care register definition\(^25\). Patients were categorized based on the peak respiratory SOFA or mSOFA value with the 5-point respiratory SOFA score being extended with additional levels to include and distinguish admitted asymptomatic and non-admitted/admitted mild cases and to include fatal outcome added as a seventh level. Ten (10) patients with fatal outcome had peak disease severity score 6 prior to death and 2 patients had scores of 4 and 5. For convenience, the resulting 7-point composite peak disease severity (PDS) was condensed into a broader classification consisting of mild (1-2), moderate (3-4), severe (5-6), and fatal (7). Demographics and additional data were collected from medical records, including clinical history and risk factors such as BMI and comorbidities. Total burden of comorbidities was assessed using the Charlson co-morbidity index (CCI)\(^26\) (Supplementary table 1). Additional clinical information on this patient cohort can also be found in Falck-Jones et al\(^27\).

Blood was collected in EDTA-containing tubes from all patients except those admitted to the intensive care unit (ICU) for whom blood was pooled from heparin-coated blood gas syringes discarded in the last 12 hours. For some ICU patients, additional venous blood was also collected in EDTA tubes. Nostril swabs (NSW) and nasopharyngeal aspirates (NPA) were collected from the majority of the patients whereas endotracheal aspirates (ETA) were only collected from patients with mechanical ventilation intubated in the ICU. Admitted patients
were sampled during acute disease at up to four timepoints and ICU patient material was
collected at up to ten timepoints. For this study, unless otherwise stated, the measurements
referring to acute disease were performed with samples collected at the time of study
inclusion and during convalescence when patients returned for a follow-up visit.

The study was approved by the Swedish Ethical Review Authority, and performed according
to the Declaration of Helsinki. Written informed consent was obtained from all patients and
controls. For sedated patients, the denoted primary contact was contacted and asked about
the presumed will of the patient and to give initial oral and subsequently signed written
consent. When applicable retrospective written consent was obtained from patients with
non-fatal outcomes.

Enzyme-linked immunosorbent assay (ELISA)
The presence of IgG or IgA binding against the SARS-CoV-2 Nucleocapsid (N) and Spike (S)
trimer or the Receptor Binding Domain (RBD) monomer\(^5\) in plasma and airway samples was
assessed by enzyme-linked immunosorbent assay (ELISA). Recombinant proteins were
received through the global health-vaccine accelerator platforms (GH-VAP) funded by the
Bill & Melinda Gates Foundation. Briefly, 96-half well plates were coated with 50ng/well of
the respective protein. Plates were incubated with a selected duplicate dilution that did not
provide background noise against ovalbumin used as a negative control (data not shown)
(i.e. 1:20 for plasma samples, 1:2 for NSW and NPA, and 1:5 for ETA in 5% milk/PBS buffer).
Duplicate 7-point serial dilutions were initially performed for measuring plasma IgG against
RBD during acute disease and the half maximal effective concentration (EC\(_{50}\)) was calculated
using GraphPad Prism 9. However, since for several samples with low antibody
concentration (mostly from the asymptomatic/mild category) the EC\(_{50}\) was below the highest
dilution used (of 1:20) and therefore below the limit of detection (Supplementary fig. 8a),
the maximal optical density (OD) at 1:20 dilution was used instead for this and for all the
other measurements subsequently performed. The relation with maximal OD and EC\(_{50}\) was
also verified in a subset of patients with high IgG and IgA against S (Supplementary fig. 8b).
Detection was performed with mouse and goat anti-human IgG or IgA HRP-conjugated
secondary antibodies (clone G18-145 from BD Biosciences and polyclonal from
ThermoFisher, respectively) followed by incubation with TMB substrate (BioLegend) which
was stopped with a 1M solution of sulfuric acid. Blocking with 5% milk/PBS buffer and
washing with 0.1% Tween-20/PBS buffer were performed between each step. Absorbance
was read at 450nm and background correction at 550nm using an ELISA reader. Data were
reported as maximal absorbance i.e. OD, as stated above, and plotted using GraphPad Prism
9. All of the antibody measurements in plasma and respiratory samples from SARS-CoV-2
patients were run alongside with samples from two different control groups as described
above. Interestingly, low but readily detectable IgA reactivity against S was detected in the
pre-pandemic healthy controls and in the PCR-individuals (Supplementary fig. 8b). After
having verified the specificity and sensitivity of our ELISA assay for IgA detection with
limiting sample dilutions (Supplementary fig. 8c), we hypothesize that this might be due to
cross-reactivity on the shared portions of the S protein between SARS-CoV-2 and other
common cold coronaviruses. Reports have shown that cross-reactivity between
coronaviruses exists\(^{28,29}\).
Staining of cells from airway samples was performed fresh. Briefly, samples were centrifuged at 400 g for 5 min at room temperature and cells were washed with sterile PBS. Mucus was removed using a 70 µm cell strainer and cells were subsequently stained with the appropriate combination of fluorescently labelled monoclonal antibodies as illustrated in Supplementary table 3a. Staining of PBMC was performed on previously cryopreserved samples. The appropriate combination of fluorescently labelled monoclonal antibodies binding to different cell surface markers and with fluorescently labelled S and RBD proteins used as probes for antigen-specific B cells is illustrated in Supplementary table 3b. Probes were prepared from biotinylated proteins using a 4:1 molar ratio (protein:fluorochrome-labelled streptavidin) considering the molecular weight of protein monomers and of the streptavidin only. The probes were prepared using streptavidin conjugated to PE and APC for S and with BV421 for the RBD. The gating strategy for the identification of antigen-specific memory B cells is shown in Figure 2d. Briefly, after identification of lymphocytes in single suspension, live B cells, (i.e. cells not expressing CD3/CD14/CD16/CD56) were gated. From this gate, B cells were further isolated by expression of CD19 and CD20 and then switched memory B cells were identified as IgD-IgM-. From these, S-specific switched memory B cells were identified by binding to both S protein probes. Further characterization was then carried out by analyzing IgG expression (IgA+ switched memory B cells are assumed to mirror IgD-IgM-Ig- B cells) and fluorescently labelled RBD. Stained cells from airway samples were acquired using a BD LSRFortessa while stained PBMC were acquired using a BD FACSaria Fusion both interfaced with the BD FACSDiva Software. Results were analyzed using BD FlowJo version 10.

Statistical analyses

All statistical analyses were performed using GraphPad Prism 9. Spearman correlation was used to assess the interdependence of 2 different non-categorical parameters across individuals whereas Wilcoxon matched-pairs signed rank or Mann–Whitney U tests as appropriate, were used to assess differences or similarities for one single parameter between 2 different groups. Kruskal–Wallis with Dunn’s multiple comparisons test was used when assessing comparison between multiple groups.

Acknowledgments

We thank the patients and healthy volunteers who have contributed to this study. We would also like to thank medical students and hospital staff for assistance with patient sampling and collection of clinical data, the Biomedicum BSL3 core facility, Karolinska Institutet and Fredrika Hellgren for assistance with English editing. This work was supported by grants from the Swedish Research Council, the Swedish Heart-Lung Foundation, the Bill & Melinda Gates Foundation, the Knut and Alice Wallenberg Foundation through SciLifeLab and Karolinska Institutet.
Author contributions

Competing interests
The authors declare no competing financial interests.

References

Figure legends

Figure 1. Plasma IgG and IgA responses to N, S and RBD across COVID-19 severity during acute disease and convalescence.

a) Overview of study cohort and controls, timeline of longitudinal sampling, the anatomical compartments analyzed, and the measurements performed. AS=asymptomatic. b) Scatter plots show individual levels of plasma IgG and IgA (from left to right) in SARS-CoV-2 infected individuals with different peak disease severity (PDS). Data in cyan and green refer to mild disease (PDS 1 and 2), yellow and orange refer to moderate disease (PDS 3 and 4), red and cayenne refer to severe disease (PDS 5 and 6) and grey refers to patients with fatal outcome (PDS 7). Black lines indicate medians and dotted lines indicate the average background level from PPHC. Mann-Whitney U was used to compare the groups. c) Spearman correlation for plasma immunoglobulins against the RBD versus days from onset of symptoms during the acute and the convalescent phases are shown. Circles with black lining refer to convalescent samples. d-e) Longitudinal measurements of plasma IgG against RBD on a subset of patients with moderate/severe disease and fatal outcome who had low antibody titers at the time of study inclusion. Levels are shown at the time of study inclusion, during the late acute phase and at convalescence, and shown with respect to days from onset of symptoms and as a group comparison. The black lines connect data points from the same individuals. Wilcoxon test was used to compare the groups separately.

Figure 2. Airway IgG and IgA responses to RBD and circulating S-specific memory B cells across COVID-19 severity during acute disease and convalescence. a) Scatter plots of the levels of IgG and IgA to RBD in the upper airway. The black lines indicate median values. Mann-Whitney U was used to compare the groups. b) Heat map generated by sorting data according to PDS. The heat map also includes data from PPHC and PCR- as a reference (indicated with PDS 0). Missing data and not available/applicable samples are shown in black. c) Comparison of the levels of RBD IgG/A in different upper and lower airway compartments. Data on plasma are shown as a reference. The black lines connect data points from the same individuals. Wilcoxon test was used to compare the groups separately. d) Representative example with gating strategy of SARS-Cov-2-specific memory B cells from the four different categories analyzed, and example of further characterization on RBD binding and B cell isotype (IgG+ or IgA+ assumed to correspond to IgD-IgM-IgG- B cells). e) Scatter plot shows the quantification of S-specific memory B cells in matched acute (filled) and convalescent (filled with black lining) PBMCs in relation to days in the subset of individuals analyzed color-coded according to PDS. f) Pie charts showing the cumulative characterization of RBD binding and memory B cell isotypes. The dotted lines on a) and e) indicate the average background level from PPHC. In a) the line overlaps with not detected (ND) for IgG levels.
Study cohort (n=147)

- **AS/Mild** (n=19)
- **Moderate** (n=58)
- **Severe** (n=58)
- **Fatal** (n=12)

Timeline

- **Acute disease** 0 - 54 days
- **Convalescence** 46 - 168 days

Sampling

- **Blood**
 - Plasma
 - PBMC
 - Memory B cells
- **Airways**
 - Nasopharyngeal swab
 - Nostril swab
 - Endotracheal aspirate

Peak disease severity

1. Pre-pandemic
2. Possibly exposed PCR
3. Study inclusion (n=15)
4. FUP Plasma RBD IgG
5. RBD IgG (OD) - T last
6. Convalescent
7. Study inclusion (n=15)

Figure 1

- **b**
 - Plasma IgG (OD)
 - Plasma IgA (OD)
- **c**
 - Plasma IgG (OD)
 - Plasma IgA (OD)
- **d**
 - Plasma IgG (OD)
 - Days from onset of symptoms
- **e**
 - Plasma IgG (OD)
Nasopharyngeal aspirates (NPA)

Nostril swabs (NSW)

0.5

1.5

2.0

% of CD19/20+ IgD/M-

OD

RBD IgG (OD)

RBD IgA (OD)

RBD IgG (OD)

ND

ND

0.1

NSW

0.1

0.1

NPA - RBD IgG (Mild)

10

NS - RBD IgA (Mild)

1

Acute

RBD IgG

(n=13)

IgG

✱

Conv

(n=9)

IgG

✱✱

Spike PE

-10

10

-10

10

Severity

0

100K

200K

50K

Pre - Pandemic

Pandemic

Spike/RBD specificity

40

60

80

Ct value (VL)

0

40

20

Lymphocytes → Single → Live; CD3/14/16/56 → CD19+CD20- → IgD-IgM

Figure 2